W UNIVERSITY of WASHINGTON L16: C++ Inheritance II, Casts CSE333, Fall 2025

C++ Inheritance Il, Casts (Wrap-up)
CSE 333 Autumn 2025

Instructors: Naomi Alterman, Chris Thachuk

Teaching Assistants:

Ann Baturytski Derek de Leuw Blake Diaz
Rishabh Jain Chendur Jel Jayavelu Lucas Kwan
Irene Xin Jie Lau Nathan Li Maya Odenheim
Advay Patil Selim Saridede Deeksha Vatwani

Angela Wu Jiexiao Xu

W UNIVERSITY of WASHINGTON L16: C++ Inheritance II, Casts CSE333, Fall 2025

Relevant Course Information

» Exercise 12 is due Monday (11/3)

» Homework 3 is due in roughly two weeks (11/13)

= Suggestion: write index files to /tmp/, which is a local scratch
disk and is very fast, but please clean up when you’re done

= Demo walkthrough of HW3 during section this week + bonus O/H

+ Graded midterms out Monday

W UNIVERSITY of WASHINGTON L16: C++ Inheritance II, Casts

Lecture Outline

+ C++ Inheritance
= Abstract Classes
= Static Dispatch

® Constructors and Destructors

J/
>

= Assignment

+ C++ Casting

*

C++ Conversions

J
>

+ Reference: C++ Primer, Chapter 15

*

CSE333, Fall 2025

W UNIVERSITY of WASHINGTON L16: C++ Inheritance II, Casts CSE333, Fall 2025

Abstract Classes

+» Sometimes we want to include a function in a class but
only implement it in derived classes
" |nJava, we would use an abstract method
" |n C++, we use a “pure virtual” function
- Example: | virtual string Noise () = 0;

+ A class containing any pure virtual methods is abstract
"= You can’t create instances of an abstract class
= Extend abstract classes and override methods to use them

+ A class containing only pure virtual methods is the same
as a Java interface

" Pure type specification without implementations

W UNIVERSITY of WASHINGTON L16: C++ Inheritance II, Casts CSE333, Fall 2025

Reminder: virtual is “sticky”

« IfX::F () is declared virtual, then a vtable will be
created for class X and for all of its subclasses

" The vtables will include function pointers for (the correct) F

« F () will be called using dynamic dispatch even if
overridden in a derived class without the virtual
keyword

" Good style to help the reader and avoid bugs by using override

- Style guide controversy, if you use override should you use
virtual in derived classes? Recent style guides say just use
override, but you’ll sometimes see both, particularly in older code

CSE333, Fall 2025

W UNIVERSITY of WASHINGTON L16: C++ Inheritance II, Casts

What happens if we omit “virtual”?

+ By default, without virtual, methods are dispatched

statically
= At compile time, the compiler writes ina call to the address of
the class’ method in the . text segment

- Based on the compile-time visible type of the callee

= This is different than Java

(class Derived : public Base { ... };
—p Derived: :Foo ()

int main(int argc, char** argv) {
Derived d;
Derived* dp = &d;
Base* bp = &d;
dp->Foo () ;
bp->Foo () ;
return EXIT SUCCESS;

» Base: :Foo ()

W UNIVERSITY of WASHINGTON L16: C++ Inheritance II, Casts CSE333, Fall 2025

Static Dispatch Example

« Removed virtual on methods:. Stock h
/~ defined in Stk % Dividend Stock ock.

double Stock::GetMarEEtValue() const;
double Stock::GetProfit() const;

defined in .?ﬁz.% inheted. L}(Diidend Stode J Gl Get Market Valw t(:)

DividendStock dividend():;
DividendStock* ds = ÷nd;
Stock* s = ÷nd;

// Invokes DividendStock::GetMarketValue ()
ds->GetMarketValue () ;

// Invokes Stock::GetMarketValue ()
s—->GetMarketValue () ;

// invokes Stock::GetProfit().
// Stock::GetProfit() invokes Stock::GetMarketValue().
s—->GetProfit () ;

// invokes Stock::GetProfit (), since that method is inherited.
// Stock::GetProfit() invokes Stock::GetMarketValue().
ds->GetProfit () ;

W UNIVERSITY of WASHINGTON L16: C++ Inheritance II, Casts CSE333, Fall 2025

Why Not Always Use virtual?

+» Two (fairly uncommon) reasons:
= Efficiency:
- Non-virtual function calls are a tiny bit faster (no indirect lookup)
- A class with no virtual functions has objects without a vptr field

= Control:

« IfF () callsG () inclass Xand G is not virtual, we’re guaranteed to
call X: : G () and not G () in some subclass

— Particularly useful for framework design
+ In Java, all methods are virtual, except static class
methods, which aren’t associated with objects

« In C++ and C#, you can pick what you want
"= Omitting virtual can cause obscure bugs
= (Most of the time, you want member function to be virtual)

W UNIVERSITY of WASHINGTON L16: C++ Inheritance II, Casts CSE333, Fall 2025

Mixed Dispatch

« Which function is called is a mix of both compile time and
runtime decisions as well as how you call the function

= If called on an object (e.g., ob7j .Fcn ()), usually optimized into a
hard-coded function call at compile time

= |f called via a pointer or reference:
PromisedT* ptr = new ActualT;
ptr->Fen(); // which version 1is called?

Is Fen () Yes 5 [PIrCIIRIEERNTE SRR W Yes Dynamic dispatch of
. . marked virtual in . \
defined in . . . | most-derived version of
PromisedT? Pl szl ST EEEEEs T Fcn() visible to ActualT
—_— derives from? —_—
l No l No
Compiler Static dispatch of

Error PromisedT::Fcn()

W UNIVERSITY of WASHINGTON L16: C++ Inheritance II, Casts CSE333, Fall 2025

Mixed Dispatch Example

(: B .)
mixed.cc volid main(int argc,
p — char** argv) {
class A { A a;
public: B b; Pmm?-'-ﬂﬁl [
// ml will use static dispatch / fﬂ’dﬁ"“
void M1 () { cout << "al, "; } A* a ptr a = &a;
// m2 will use dynamic dispatch A* a ptr b = &b;
virtual void M2 () { cout << "az2"; } W/A’mpdfr ercof
b A B* b ptr b = &b;
class B : public A { a ptr a->M1(); //p:ML
public: a ptr a->M2(); //A=ML
void M1 () { cout << "bl, "; }
// m2 is still virtual by default a_ptr b->M1(); //A:ML
(vietpal) void M2 () { cout << "b2";)} a ptr b->M2(); //B:ML
7)
b ptr b->M1(); //FB=MA
sty dispstch based on provised type b ptr b->M2(); //B:ML
d{,”m dﬁfd'ﬁh I‘-‘ﬁl‘ﬁi o .ﬁ.[:'l'l.-l\.l "Ym \})

10

W UNIVERSITY of WASHINGTON L16: C++ Inheritance II, Casts

Lecture Outline

+ C++ Inheritance
= Abstract Classes
= Static Dispatch

" Constructors and Destructors

J/
>

= Assighment

C++ Casting

L)

*

C++ Conversions

J
>

Reference: C++ Primer, Chapter 15

D)

*

CSE333, Fall 2025

11

W UNIVERSITY of WASHINGTON L16: C++ Inheritance II, Casts CSE333, Fall 2025

Derived-Class Objects

« A derived object contains “subobjects” corresponding to
the data members inherited from each base class

= No guarantees about how these are laid out in memory (not even
contiguousness between subobjects)

+ Conceptual structure of DividendStock object:

symbol
members inherited total shares
from Stock total cost

current price

members defined by
DividendStock

dividends

12

W UNIVERSITY of WASHINGTON

L16: C++ Inheritance Il, Casts

CSE333, Fall 2025

Constructors and Inheritance

« A derived class does not inherit the base class’
constructor

" The derived class must have its own constructor

= A synthesized default constructor for the derived class first
invokes the default constructor of the base class and then
initialize the derived class’ member variables

- Compiler error if the base class has no default constructor

" The base class constructor is invoked before the constructor of
the derived class

- You can use the initialization list of the derived class to specify which
base class constructor to use

13

W UNIVERSITY of WASHINGTON

Constructor Examples

badctor.cc

L16: C++ Inheritance Il, Casts

goodctor.cc

[class Base { // no default ctor
public:
Base (int yi)
int y;

b g

y(yi) { }

// Compiler error when you try to
// instantiate a Derl, as the

// synthesized default ctor needs
to invoke Base's default ctor.
public Base {

public Base {

class Der2
public:
Der2 (int vyi,
Base (yi),
int z;

b g

int z1i)
z(zi) { }
ihunkej m,jPECﬁTL eﬂhjfrui*cf‘

.

[// has default ctor

class Base {
public:

int y;
[

// works now
class Derl public Base
public:

int z;

I g

// still works
class Der?2 public Base
public:
Der2 (int zi)
int z;

I g

z(zi) |

~\

CSE333, Fall 2025

14

W UNIVERSITY of WASHINGTON

L16: C++ Inheritance Il, Casts

CSE333, Fall 2025

Destructors and Inheritance

« Destructor of a derived
class:
= First runs body of the dtor

= Then invokes of the dtor
of the base class

<« Static dispatch of
destructors is almost
always a mistake!
*&(Good habit to always
define a dtor as virtual

- Empty body if there’s
no work to do

[
STYLE
[\

TFIF
baddtor.cé

-
class Base {

public:
Base ()
~Base ()
int* x;

[

{ x =
{ del

class Derl : pu

public:
Derl ()
~Derl ()

{ v =
{ del

int* y;a//—‘(x|

},' EDF-frII —
bds T 3 |

vosa BEIS T EFENA

Base* bOptr
Base* blptr

delete bOptr;
delete blptr;

¥ /t—- 'Mu.g.lceg ﬁBéJE()

N\

new int;

}
// state disgatch

ete x; }

blic Base {

new int; }
ete y; }

new Base;
new Derl;

// oeletes ¥
//

15

W UNIVERSITY of WASHINGTON

L16: C++ Inheritance Il, Casts

CSE333, Fall 2025

Assignment and Inheritance

+ C++ allows you to assign
the value of a derived
class to an instance of
a base class
= Known as object slicing

- It's legal sinceb = d
passes type checking rules

- But b doesn’t have space
for any extra fields in d

slicing.

CC

-
class Base {

public:
Base(int xi)

int x; b,‘f@

}i
public Base {

o x(x1) { }

class Derl :
public:
Derl(int yi) : Base(,

int y;
g A 1@ | U

void Foo ()
Base b (l);
2

y(yi)

{
Derl d(2);
d =b; // CEm@hrewm*-wwﬁﬁwgkiﬁ%
b =4d // Ol b Uha haﬁw‘h}r?

|

N

{3}

16

W UNIVERSITY of WASHINGTON L16: C++ Inheritance II, Casts CSE333, Fall 2025

STL and Inheritance

« Recall: STL containers store copies of values

" What happens when we want to store mixes of object types in a
single container? (e.g., Stock and DividendStock)

" You get sliced ®

r#include <list>
#include "Stock.h"
#include "DividendStock.h"

int main(int argc, char** argv) {
Stock s;
DividendStock ds;
list<Stock> 11i;

1i.push back(s) ; // OK
1i.push back(ds); // OUCH!

return EXIT SUCCESS;

17

W UNIVERSITY of WASHINGTON L16: C++ Inheritance II, Casts CSE333, Fall 2025

STL and Inheritance

+ Instead, store pointers to heap-allocated objects in STL
containers vechr {Std*7

. AR
" No slicing! © Stk DiidendSiock

= sort () doesthe wrong thing ® — sds on adreses by default
" You have to remember to delete your objects before

destroying the container ®
- Unless you use smart pointers! <5, vechr <==-karec1~p+f‘<5f°¢>>

18

W UNIVERSITY of WASHINGTON L16: C++ Inheritance II, Casts

Lecture Outline

+» C++ Inheritance

J/
>

= Abstract Classes

= Static Dispatch

= Constructors and Destructors
= Assignment

C++ Casting

L)

*

C++ Conversions

J
>

Reference: C++ Primer §4.11.3, 19.2.1

D)

>

CSE333, Fall 2025

19

W UNIVERSITY of WASHINGTON L16: C++ Inheritance II, Casts CSE333, Fall 2025

Explicit Casting in C

+ Simple syntax:[lhs = (new_ type) rhs;]
+ Used to:

= Convert between pointers of arbitrary type ((vord ¥) '“Y*f’h*

- Doesn’t change the data, but treats it differently

= Forcibly convert a primitive type to another (float) my-?n“f’
- Actually changes the representation

+ You can still use C-style casting in C++, but sometimes the
intent is not clear
o $ou should not use C-style casting in C++.

20

W UNIVERSITY of WASHINGTON L16: C++ Inheritance II, Casts CSE333, Fall 2025

Casting in C++ STYLE

« C++ provides an alternative casting style that is more
informative:

" statlic cast<to type>(expression)
" dynamic cast<to type>(expression)
" const cast<to type>(expression)

" reinterpret cast<to type>(expression)

+ Always use these in C++ code
" |ntentis clearer

= Easier to find in code via searching

21

CSE333, Fall 2025

W UNIVERSITY of WASHINGTON

static_cast

7
0‘0

7
0’0

, Gy uﬁil‘de‘f:ﬁ'\ﬂd Convess 10N
statlc cast canconvert:

L16: C++ Inheritance Il, Casts

" Pointers to classes of related type

- Compiler error if classes are not related
- Dangerous to cast down a class hierarchy

= Casting between void* and T*

" Non-pointer conversion
- e.g., floattoint

staticcast.cc

[class A {]
®

public:
int x;

b g

class B {

public: (E)\\
float x;
I S
S
class C : public {
public:
char x;

I 2 J

static castis
checked at compile time

statizc - cost <2
change the dsta

|
reFfE.ser-.ﬁd hial

void Foo () {
B b;

//
A *
//
B*
//
C*

C ¢c;

compiler error (“”Wlajf"ﬁ)
aptr = static cast<A*>(&b);
0k (would have been Jone inmplicitly)
bptr = static cast<B*>(&c);
compiles, but dangerous
cptr = static cast<C*>(&b);

22

W UNIVERSITY of WASHINGTON L16: C++ Inheritance II, Casts

CSE333, Fall 2025

dynamiccast.cc

- class Base {
dynamic cast o
virtual void Foo () { }
. float x;
+ dynamic cast can convert:)
= Pointers to classeg of related type class Derl : public Base |
= References to classes of related type public:
, : — — char x;
+ dynamic castischecked atboth |,
compile time and (oie el |
run time Base b; Derl d;
= Casts between // OK (run-time check passes)
unrelated classes fail Base* bptr = dynamic cast<Base*>(&d) ;
atconprethne assert (bptr !'!= nullptr);
® (Casts from base to // OK (run-time check passes)

derived fail at run

) _] assert (dptr
time if the pointed-to

Derl* dptr =

dynamic cast<Derl*> (bptr) ;
!= nullptr);

object is not the // Run-time check fails, returns nullptr

. bptr = &b;
derived type prr — &

assert (dptr

dptr = dynamic cast<Derl*> (bptr) :;
!= nullptr);

W UNIVERSITY of WASHINGTON

const_cast

L16: C++ Inheritance Il, Casts

+ const cast adds or strips,const-nes

= Dangerous (!)

[void Foo(int* x) {
*xX++4;
}

volid Bar(const int* x)
Foo (x) ;

}

(
int x = 7;
Bar (&x);

return EXIT SUCCESS;

Foo (const cast<int*>(x

{
// compiler error
)); // succeeds

int main(int argc, char** argv) {

CSE333, Fall 2025

24

W UNIVERSITY of WASHINGTON L16: C++ Inheritance II, Casts

CSE333, Fall 2025

reinterpret cast

+ reinterpret cast casts between incompatible types

= Low-level reinterpretation of the bit pattern
" e.g., storing a pointerinan int, orvice-versa

- Works as long as the integral type is “wide” enough
" Converting between incompatible pointers

- Dangerous (!)

- This is used (carefully) in hw3

= Use any other C++ cast if you can!

25

W UNIVERSITY of WASHINGTON L16: C++ Inheritance II, Casts CSE333, Fall 2025

Casting Style Considerations £y

« From the “Casting” and “Run-Time Type Information
(RTTI)” sections of the Google C++ Style Guide:
= When the logic of a program guarantees that a given instance of a

base class is, in fact, an instance of a particular derived class, then
a dynamic cast may be used freely on the object.

- Usuallyonecanusea static cast asan alternative in such
situations

" Onlyuse reinterpret cast if you know what you are doing
and you understand the aliasing issues

- For unsafe conversions of pointer types to and from integer and other
pointer types, including void*

26

W UNIVERSITY of WASHINGTON L16: C++ Inheritance II, Casts CSE333, Fall 2025

Lecture Outline

J/
>

» C++ Inheritance

= Abstract Classes

= Static Dispatch

= Constructors and Destructors
= Assignment

C++ Casting

L)

*

C++ Conversions

J
>

Reference: C++ Primer §4.11.3, 19.2.1

D)

>

27

W UNIVERSITY of WASHINGTON L16: C++ Inheritance II, Casts CSE333, Fall 2025

Implicit Conversion

+ The compiler tries to infer some kinds of conversions

= When types are not equal and you don’t specify an explicit cast,
the compiler looks for an acceptable implicit conversion

rvoid Bar (std::string x);

volid Foo () {
int x = 5.7; // conversion, float -> int
char ¢ = x; // conversion, 1int -> char
Bar("hi") ; // conversion, (const char*) -> string

}

\ J

28

W UNIVERSITY of WASHINGTON L16: C++ Inheritance II, Casts

Sneaky Implicit Conversions

%+ (const char*)to string conversion?

= |f a class has a constructor with a single parameter, the compiler

will exploit it to perform implicit conversions

= At most, one user-defined implicit conversion will happen

- Cando int = Foo, butnot int » Foo =» Baz

rclass Foo {

public:
Foo(int x1i) : x(xi) { }
int x;

b

int Bar(Foo f) {
return f.x;

int main(int argc, char** argv) { {T
return Bar(5); // equivalent to return Bar (Foo(5)) ;

}

} Congtrudt
imv[}”“'HT

CSE333, Fall 2025

Jlrlnunked

29

W UNIVERSITY of WASHINGTON L16: C++ Inheritance II, Casts CSE333, Fall 2025

Avoiding Sneaky Implicits

+ Declare one-argument constructors as explicit if you
want to disable them from being used as an implicit
conversion path

= Usually a good idea

rclass Foo {

public:
explicit Foo(int x1i) : x(xi) { }
int x;

b

int Bar (Foo f) {
return f.x;

}

int main(int argc, char** argv) {
return Bar(5); // compiler error — ho lsnger allowed , st Conld

) st do~ Bar(Fus(5)) fnafmJl

\,

30

W UNIVERSITY of WASHINGTON L16: C++ Inheritance II, Casts

Extra Exercise #1

« Design a class hierarchy to represent shapes
= e.g., Circle, Triangle, Square

+» Implement methods that:

Construct shapes

Move a shape (i.e., add (x,y) to the shape position)
Returns the centroid of the shape

Returns the area of the shape

Print (), which prints out the details of a shape

CSE333, Fall 2025

31

W UNIVERSITY of WASHINGTON L16: C++ Inheritance II, Casts CSE333, Fall 2025

Extra Exercise #2

+ Implement a program that uses Extra Exercise #1 (shapes
class hierarchy):

L)

® Constructs a vector of shapes
= Sorts the vector according to the area of the shape
" Prints out each member of the vector

*

- Notes:

D)

L)

= Avoid slicing!

" Make sure the sorting works properly!

32

	Slide 1: C++ Inheritance II, Casts (Wrap-up) CSE 333 Autumn 2025
	Slide 2: Relevant Course Information
	Slide 3: Lecture Outline
	Slide 4: Abstract Classes
	Slide 5: Reminder: virtual is “sticky”
	Slide 6: What happens if we omit “virtual”?
	Slide 7: Static Dispatch Example
	Slide 8: Why Not Always Use virtual?
	Slide 9: Mixed Dispatch
	Slide 10: Mixed Dispatch Example
	Slide 11: Lecture Outline
	Slide 12: Derived-Class Objects
	Slide 13: Constructors and Inheritance
	Slide 14: Constructor Examples
	Slide 15: Destructors and Inheritance
	Slide 16: Assignment and Inheritance
	Slide 17: STL and Inheritance
	Slide 18: STL and Inheritance
	Slide 19: Lecture Outline
	Slide 20: Explicit Casting in C
	Slide 21: Casting in C++
	Slide 22: static_cast
	Slide 23: dynamic_cast
	Slide 24: const_cast
	Slide 25: reinterpret_cast
	Slide 26: Casting Style Considerations
	Slide 27: Lecture Outline
	Slide 28: Implicit Conversion
	Slide 29: Sneaky Implicit Conversions
	Slide 30: Avoiding Sneaky Implicits
	Slide 31: Extra Exercise #1
	Slide 32: Extra Exercise #2

