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Relevant Course Information

❖ Exercise 12 is due Monday (11/3)

❖ Homework 3 is due in roughly two weeks (11/13)
▪ Suggestion:  write index files to /tmp/, which is a local scratch 

disk and is very fast, but please clean up when you’re done

▪ Demo walkthrough of HW3 during section this week + bonus O/H

❖ Graded midterms out Monday

2



CSE333, Fall 2025L16:  C++ Inheritance II, Casts

Lecture Outline

❖ C++ Inheritance

▪ Abstract Classes

▪ Static Dispatch

▪ Constructors and Destructors

▪ Assignment

❖ C++ Casting

❖ C++ Conversions

❖ Reference:  C++ Primer, Chapter 15
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Abstract Classes

❖ Sometimes we want to include a function in a class but 
only implement it in derived classes

▪ In Java, we would use an abstract method

▪ In C++, we use a “pure virtual” function

• Example:  virtual string noise() = 0;

❖ A class containing any pure virtual methods is abstract

▪ You can’t create instances of an abstract class

▪ Extend abstract classes and override methods to use them

❖ A class containing only pure virtual methods is the same 
as a Java interface

▪ Pure type specification without implementations
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virtual string Noise() = 0;
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Reminder: virtual is “sticky”

❖ If X::F() is declared virtual, then a vtable will be 
created for class X and for all of its subclasses

▪ The vtables will include function pointers for (the correct) F

❖ F() will be called using dynamic dispatch even if 
overridden in a derived class without the virtual 
keyword
▪ Good style to help the reader and avoid bugs by using override 

• Style guide controversy, if you use override should you use 
virtual in derived classes?  Recent style guides say just use 
override, but you’ll sometimes see both, particularly in older code
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What happens if we omit “virtual”?

❖ By default, without virtual, methods are dispatched 
statically
▪ At compile time, the compiler writes in a call to the address of 

the class’ method in the .text segment

• Based on the compile-time visible type of the callee

▪ This is different than Java
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class Derived : public Base { ... };

int main(int argc, char** argv) {

  Derived d;

  Derived* dp = &d;

  Base* bp = &d;

  dp->Foo();

  bp->Foo();

  return EXIT_SUCCESS;

}

Derived::Foo()

...

Base::Foo()

...
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Static Dispatch Example

❖ Removed virtual on methods:
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DividendStock dividend();

DividendStock* ds = &dividend;

Stock* s = &dividend;

// Invokes DividendStock::GetMarketValue()

ds->GetMarketValue();

// Invokes Stock::GetMarketValue()

s->GetMarketValue();

// invokes Stock::GetProfit().

// Stock::GetProfit() invokes Stock::GetMarketValue(). 

s->GetProfit();

// invokes Stock::GetProfit(), since that method is inherited.  

// Stock::GetProfit() invokes Stock::GetMarketValue().

ds->GetProfit();

double Stock::GetMarketValue() const;

double Stock::GetProfit() const;

Stock.h
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Why Not Always Use virtual?

❖ Two (fairly uncommon) reasons:

▪ Efficiency:

• Non-virtual function calls are a tiny bit faster (no indirect lookup)

• A class with no virtual functions has objects without a vptr field

▪ Control:

• If F() calls G() in class X and G is not virtual, we’re guaranteed to 
call X::G() and not G() in some subclass

– Particularly useful for framework design

❖ In Java, all methods are virtual, except static class 
methods, which aren’t associated with objects

❖ In C++ and C#, you can pick what you want
▪ Omitting virtual can cause obscure bugs

▪ (Most of the time, you want member function to be virtual)
8
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Mixed Dispatch

❖ Which function is called is a mix of both compile time and 
runtime decisions as well as how you call the function
▪ If called on an object (e.g., obj.Fcn()), usually optimized into a 

hard-coded function call at compile time

▪ If called via a pointer or reference:
PromisedT* ptr = new ActualT;

ptr->Fcn();  // which version is called?

9
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Mixed Dispatch Example
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class A {

 public:

  // m1 will use static dispatch

  void M1() { cout << "a1, "; }

  // m2 will use dynamic dispatch

  virtual void M2() { cout << "a2"; }

};

class B : public A {

 public:

  void M1() { cout << "b1, "; }

  // m2 is still virtual by default

  void M2() { cout << "b2"; }

};

void main(int argc, 

          char** argv) {

  A a;

  B b;

  A* a_ptr_a = &a;

  A* a_ptr_b = &b;

  B* b_ptr_a = &a;

  B* b_ptr_b = &b;

  a_ptr_a->M1();  // 

  a_ptr_a->M2();  // 

  a_ptr_b->M1();  // 

  a_ptr_b->M2();  // 

  b_ptr_b->M1();  // 

  b_ptr_b->M2();  // 

}

mixed.cc
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Lecture Outline

❖ C++ Inheritance

▪ Abstract Classes

▪ Static Dispatch

▪ Constructors and Destructors

▪ Assignment

❖ C++ Casting

❖ C++ Conversions

❖ Reference:  C++ Primer, Chapter 15
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Derived-Class Objects

❖ A derived object contains “subobjects” corresponding to 
the data members inherited from each base class

▪ No guarantees about how these are laid out in memory (not even 
contiguousness between subobjects)

❖ Conceptual structure of DividendStock object:
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symbol_

total_shares_

total_cost_

current_price_

dividends_

members inherited 
from Stock

members defined by 
DividendStock



CSE333, Fall 2025L16:  C++ Inheritance II, Casts

Constructors and Inheritance

❖ A derived class does not inherit the base class’ 
constructor

▪ The derived class must have its own constructor

▪ A synthesized default constructor for the derived class first 
invokes the default constructor of the base class and then 
initialize the derived class’ member variables

• Compiler error if the base class has no default constructor

▪ The base class constructor is invoked before the constructor of 
the derived class

• You can use the initialization list of the derived class to specify which 
base class constructor to use

13
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Constructor Examples
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class Base {  // no default ctor

 public:

  Base(int yi) : y(yi) { }

  int y;

};

// Compiler error when you try to 

// instantiate a Der1, as the

// synthesized default ctor needs 

// to invoke Base's default ctor.

class Der1 : public Base {

 public:

  int z;

};

class Der2 : public Base {

 public:

  Der2(int yi, int zi) 

    : Base(yi), z(zi) { }

  int z;

};

badctor.cc

// has default ctor

class Base {

 public:

  int y;

};

// works now

class Der1 : public Base {

 public:

  int z;

};

// still works

class Der2 : public Base {

 public:

  Der2(int zi) : z(zi) { }

  int z;

};

goodctor.cc
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Destructors and Inheritance

❖ Destructor of a derived 
class:

▪ First runs body of the dtor

▪ Then invokes of the dtor 
of the base class

❖ Static dispatch of 
destructors is almost 
always a mistake!

▪ Good habit to always 
define a dtor as virtual

• Empty body if there’s
no work to do

15

class Base {

 public:

  Base() { x = new int; }

  ~Base() { delete x; }

  int* x;

};

class Der1 : public Base {

 public:

  Der1() { y = new int; }

  ~Der1() { delete y; }

  int* y;

};

void Foo() {

  Base* b0ptr = new Base;

  Base* b1ptr = new Der1;

  delete b0ptr;  // 

  delete b1ptr;  //

}

baddtor.cc

STYLE
TIP
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Assignment and Inheritance

❖ C++ allows you to assign 
the value of a derived 
class to an instance of 
a base class

▪ Known as object slicing

• It’s legal since b = d 
passes type checking rules

• But b doesn’t have space
for any extra fields in d
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class Base {

 public:

  Base(int xi) : x(xi) { }

  int x;

};

class Der1 : public Base {

 public:

  Der1(int yi) : Base(16), y(yi) { }

  int y;

};

void Foo() {

  Base b(1);

  Der1 d(2);

  d = b;  //

  b = d;  //

}

slicing.cc
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STL and Inheritance

❖ Recall:  STL containers store copies of values

▪ What happens when we want to store mixes of object types in a 
single container?  (e.g., Stock and DividendStock)

▪ You get sliced 
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#include <list>

#include "Stock.h"

#include "DividendStock.h"

int main(int argc, char** argv) {

  Stock s;

  DividendStock ds;

  list<Stock> li;

  li.push_back(s);   // OK

  li.push_back(ds);  // OUCH!

  return EXIT_SUCCESS;

}
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STL and Inheritance

❖ Instead, store pointers to heap-allocated objects in STL 
containers

▪ No slicing! ☺

▪ sort() does the wrong thing 

▪ You have to remember to delete your objects before 

destroying the container 

• Unless you use smart pointers!

18
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Lecture Outline

❖ C++ Inheritance

▪ Abstract Classes

▪ Static Dispatch

▪ Constructors and Destructors

▪ Assignment

❖ C++ Casting

❖ C++ Conversions

❖ Reference:  C++ Primer §4.11.3, 19.2.1
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Explicit Casting in C

❖ Simple syntax:  lhs = (new_type) rhs;

❖ Used to:

▪ Convert between pointers of arbitrary type

• Doesn’t change the data, but treats it differently

▪ Forcibly convert a primitive type to another

• Actually changes the representation

❖ You can still use C-style casting in C++, but sometimes the 
intent is not clear
▪ You should not use C-style casting in C++.

20

lhs = (new_type) rhs;
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Casting in C++

❖ C++ provides an alternative casting style that is more 
informative:
▪ static_cast<to_type>(expression)

▪ dynamic_cast<to_type>(expression)

▪ const_cast<to_type>(expression)

▪ reinterpret_cast<to_type>(expression)

❖ Always use these in C++ code

▪ Intent is clearer

▪ Easier to find in code via searching

21

STYLE
TIP
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static_cast

❖ static_cast can convert:

▪ Pointers to classes of related type

• Compiler error if classes are not related

• Dangerous to cast down a class hierarchy

▪ Casting between void* and T*

▪ Non-pointer conversion

• e.g., float to int

❖ static_cast is 
checked at compile time

22

class A {

 public:

  int x;

};

class B {

 public:

  float x;

};

class C : public B {

 public:

  char x;

};

void Foo() {

  B b; C c;

  // compiler error

  A* aptr = static_cast<A*>(&b);

  // OK

  B* bptr = static_cast<B*>(&c); 

  // compiles, but dangerous

  C* cptr = static_cast<C*>(&b);

}

staticcast.cc
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dynamic_cast

❖ dynamic_cast can convert:

▪ Pointers to classes of related type

▪ References to classes of related type

❖ dynamic_cast is checked at both
compile time and
run time
▪ Casts between 

unrelated classes fail 
at compile time

▪ Casts from base to 
derived fail at run 
time if the pointed-to 
object is not the
derived type
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void Bar() {

  Base b; Der1 d;

  // OK (run-time check passes)

  Base* bptr = dynamic_cast<Base*>(&d);

  assert(bptr != nullptr);

  // OK (run-time check passes)

  Der1* dptr = dynamic_cast<Der1*>(bptr);

  assert(dptr != nullptr);

  // Run-time check fails, returns nullptr

  bptr = &b;

  dptr = dynamic_cast<Der1*>(bptr);

  assert(dptr != nullptr);

}

dynamiccast.cc
class Base {

 public:

  virtual void Foo() { }

  float x;

};

class Der1 : public Base {

 public:

  char x;

};
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const_cast

❖ const_cast adds or strips const-ness

▪ Dangerous (!)

24

void Foo(int* x) {

  *x++;

}

void Bar(const int* x) {

  Foo(x);                    // compiler error

  Foo(const_cast<int*>(x));  // succeeds

}

int main(int argc, char** argv) {

  int x = 7;

  Bar(&x);

  return EXIT_SUCCESS;

}
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reinterpret_cast

❖ reinterpret_cast casts between incompatible types

▪ Low-level reinterpretation of the bit pattern

▪ e.g., storing a pointer in an int, or vice-versa

• Works as long as the integral type is “wide” enough

▪ Converting between incompatible pointers

• Dangerous (!)

• This is used (carefully) in hw3

▪ Use any other C++ cast if you can!

25
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Casting Style Considerations

❖ From the “Casting” and “Run-Time Type Information 
(RTTI)” sections of the Google C++ Style Guide:

▪ When the logic of a program guarantees that a given instance of a 
base class is, in fact, an instance of a particular derived class, then 
a dynamic_cast may be used freely on the object.

• Usually one can use a static_cast as an alternative in such 
situations

▪ Only use reinterpret_cast if you know what you are doing 
and you understand the aliasing issues

• For unsafe conversions of pointer types to and from integer and other 
pointer types, including void*

26

STYLE
TIP
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Lecture Outline

❖ C++ Inheritance

▪ Abstract Classes

▪ Static Dispatch

▪ Constructors and Destructors

▪ Assignment

❖ C++ Casting

❖ C++ Conversions

❖ Reference:  C++ Primer §4.11.3, 19.2.1
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Implicit Conversion

❖ The compiler tries to infer some kinds of conversions

▪ When types are not equal and you don’t specify an explicit cast, 
the compiler looks for an acceptable implicit conversion

28

void Bar(std::string x);

void Foo() {

  int x = 5.7;  // conversion, float -> int

  char c = x;   // conversion, int -> char

  Bar("hi");    // conversion, (const char*) -> string

}
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Sneaky Implicit Conversions

❖ (const char*) to string conversion?

▪ If a class has a constructor with a single parameter, the compiler 
will exploit it to perform implicit conversions

▪ At most, one user-defined implicit conversion will happen

• Can do int → Foo, but not int → Foo → Baz
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class Foo {

 public:

  Foo(int xi) : x(xi) { }

  int x;

};

int Bar(Foo f) {

  return f.x;

}

int main(int argc, char** argv) {

  return Bar(5);  // equivalent to return Bar(Foo(5));

}
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Avoiding Sneaky Implicits

❖ Declare one-argument constructors as explicit if you 
want to disable them from being used as an implicit 
conversion path
▪ Usually a good idea

30

class Foo {

 public:

  explicit Foo(int xi) : x(xi) { }

  int x;

};

int Bar(Foo f) {

  return f.x;

}

int main(int argc, char** argv) {

  return Bar(5);  // compiler error

}

STYLE
TIP
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Extra Exercise #1

❖ Design a class hierarchy to represent shapes

▪ e.g., Circle, Triangle, Square

❖ Implement methods that:
▪ Construct shapes

▪ Move a shape (i.e., add (x,y) to the shape position)

▪ Returns the centroid of the shape

▪ Returns the area of the shape

▪ Print(), which prints out the details of a shape

31
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Extra Exercise #2

❖ Implement a program that uses Extra Exercise #1 (shapes 
class hierarchy):

▪ Constructs a vector of shapes

▪ Sorts the vector according to the area of the shape

▪ Prints out each member of the vector

❖ Notes:

▪ Avoid slicing!

▪ Make sure the sorting works properly!

32
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