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Relevant Course Information

» Exercise 12 is due Monday (11/3)

» Homework 3 is due in roughly two weeks (11/13)

= Suggestion: write index files to /tmp/, which is a local scratch
disk and is very fast, but please clean up when you’re done

= Demo walkthrough of HW3 during section this week + bonus O/H

+ Graded midterms out Monday
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Lecture Outline

+ C++ Inheritance
= Abstract Classes
= Static Dispatch

® Constructors and Destructors

J/
>

= Assignment

+ C++ Casting

*

C++ Conversions

J
>

+ Reference: C++ Primer, Chapter 15

*
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Abstract Classes

+» Sometimes we want to include a function in a class but
only implement it in derived classes
" |nJava, we would use an abstract method
" |n C++, we use a “pure virtual” function
- Example: | virtual string Noise () = 0;

+ A class containing any pure virtual methods is abstract
"= You can’t create instances of an abstract class
= Extend abstract classes and override methods to use them

+ A class containing only pure virtual methods is the same
as a Java interface

" Pure type specification without implementations
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Reminder: virtual is “sticky”

« IfX::F () is declared virtual, then a vtable will be
created for class X and for all of its subclasses

" The vtables will include function pointers for (the correct) F

« F () will be called using dynamic dispatch even if
overridden in a derived class without the virtual
keyword

" Good style to help the reader and avoid bugs by using override

- Style guide controversy, if you use override should you use
virtual in derived classes? Recent style guides say just use
override, but you’ll sometimes see both, particularly in older code
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What happens if we omit “virtual”?

+ By default, without virtual, methods are dispatched

statically
= At compile time, the compiler writes ina call to the address of
the class’ method in the . text segment

- Based on the compile-time visible type of the callee

= This is different than Java

(class Derived : public Base { ... };
—p Derived: :Foo ()

int main(int argc, char** argv) {
Derived d;
Derived* dp = &d;
Base* bp = &d;
dp->Foo () ;
bp->Foo () ;
return EXIT SUCCESS;

» Base: :Foo ()
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Static Dispatch Example

« Removed virtual on methods:. Stock h
/~ defined in Stk % Dividend Stock ock.

double Stock::GetMarEEtValue() const;
double Stock::GetProfit() const;

defined in .?ﬁz.% inheted. L}( Diidend Stode J Gl Get Market Valw t(:)

DividendStock dividend():;
DividendStock* ds = &dividend;
Stock* s = &dividend;

// Invokes DividendStock::GetMarketValue ()
ds->GetMarketValue () ;

// Invokes Stock::GetMarketValue ()
s—->GetMarketValue () ;

// invokes Stock::GetProfit().
// Stock::GetProfit() invokes Stock::GetMarketValue().
s—->GetProfit () ;

// invokes Stock::GetProfit (), since that method is inherited.
// Stock::GetProfit() invokes Stock::GetMarketValue().
ds->GetProfit () ;
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Why Not Always Use virtual?

+» Two (fairly uncommon) reasons:
= Efficiency:
- Non-virtual function calls are a tiny bit faster (no indirect lookup)
- A class with no virtual functions has objects without a vptr field

= Control:

« IfF () callsG () inclass Xand G is not virtual, we’re guaranteed to
call X: : G () and not G () in some subclass

— Particularly useful for framework design
+ In Java, all methods are virtual, except static class
methods, which aren’t associated with objects

« In C++ and C#, you can pick what you want
"= Omitting virtual can cause obscure bugs
= (Most of the time, you want member function to be virtual)
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Mixed Dispatch

« Which function is called is a mix of both compile time and
runtime decisions as well as how you call the function

= If called on an object (e.g., ob7j .Fcn () ), usually optimized into a
hard-coded function call at compile time

= |f called via a pointer or reference:
PromisedT* ptr = new ActualT;
ptr->Fen(); // which version 1is called?

Is Fen () Yes 5 [PIrCIIRIEERNTE SRR W Yes Dynamic dispatch of
. . marked virtual in . \
defined in . . . | most-derived version of
PromisedT? Pl szl ST EEEEEs T Fcn() visible to ActualT
—_— derives from? —_—
l No l No
Compiler Static dispatch of

Error PromisedT::Fcn()
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Mixed Dispatch Example

( : B . )
mixed.cc volid main(int argc,
p — char** argv) {
class A { A a;
public: B b; Pmm?-'-ﬂﬁl [
// ml will use static dispatch / fﬂ’dﬁ"“
void M1 () { cout << "al, "; } A* a ptr a = &a;
// m2 will use dynamic dispatch A* a ptr b = &b;
virtual void M2 () { cout << "az2"; } W/A’mpdfr ercof
b A B* b ptr b = &b;
class B : public A { a ptr a->M1(); //p:ML
public: a ptr a->M2(); //A=ML
void M1 () { cout << "bl, "; }
// m2 is still virtual by default a_ptr b->M1(); //A:ML
(vietpal) void M2 () { cout << "b2"; )} a ptr b->M2(); //B:ML
7 )
b ptr b->M1(); //FB=MA
sty dispstch based on provised type b ptr b->M2(); //B:ML
d{,”m dﬁfd'ﬁh I‘-‘ﬁl‘ﬁi o .ﬁ.[:'l'l.-l\.l "Ym \} )

10
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Lecture Outline

+ C++ Inheritance
= Abstract Classes
= Static Dispatch

" Constructors and Destructors

J/
>

= Assighment

C++ Casting

L)

*

C++ Conversions

J
>

Reference: C++ Primer, Chapter 15

D)

*
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Derived-Class Objects

« A derived object contains “subobjects” corresponding to
the data members inherited from each base class

= No guarantees about how these are laid out in memory (not even
contiguousness between subobjects)

+ Conceptual structure of DividendStock object:

symbol
members inherited total shares
from Stock total cost

current price

members defined by
DividendStock

dividends

12
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Constructors and Inheritance

« A derived class does not inherit the base class’
constructor

" The derived class must have its own constructor

= A synthesized default constructor for the derived class first
invokes the default constructor of the base class and then
initialize the derived class’ member variables

- Compiler error if the base class has no default constructor

" The base class constructor is invoked before the constructor of
the derived class

- You can use the initialization list of the derived class to specify which
base class constructor to use

13
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Constructor Examples

badctor.cc

L16: C++ Inheritance Il, Casts

goodctor.cc

[ class Base { // no default ctor
public:
Base (int yi)
int y;

b g

y(yi) { }

// Compiler error when you try to
// instantiate a Derl, as the

// synthesized default ctor needs
to invoke Base's default ctor.
public Base {

public Base {

class Der2
public:
Der2 (int vyi,
Base (yi),
int z;

b g

int z1i)
z(zi) { }
ihunkej m,jPECﬁTL eﬂhjfrui*cf‘

.

[ // has default ctor

class Base {
public:

int y;
[

// works now
class Derl public Base
public:

int z;

I g

// still works
class Der?2 public Base
public:
Der2 (int zi)
int z;

I g

z(zi) |

~\

CSE333, Fall 2025
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Destructors and Inheritance

« Destructor of a derived
class:
= First runs body of the dtor

= Then invokes of the dtor
of the base class

<« Static dispatch of
destructors is almost
always a mistake!
*&( Good habit to always
define a dtor as virtual

- Empty body if there’s
no work to do

[
STYLE
[\

TFIF
baddtor.cé

-
class Base {

public:
Base ()
~Base ()
int* x;

[

{ x =
{ del

class Derl : pu

public:
Derl ()
~Derl ()

{ v =
{ del

int* y;a//—‘( x|

},' EDF-frII —
bds T 3 |

vosa BEIS T EFENA

Base* bOptr
Base* blptr

delete bOptr;
delete blptr;

¥ /t—- 'Mu.g.lceg ﬁBéJE()

N\

new int;

}
// state disgatch

ete x; }

blic Base {

new int; }
ete y; }

new Base;
new Derl;

// oeletes ¥
//

15
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Assignment and Inheritance

+ C++ allows you to assign
the value of a derived
class to an instance of
a base class
= Known as object slicing

- It's legal sinceb = d
passes type checking rules

- But b doesn’t have space
for any extra fields in d

slicing.

CC

-
class Base {

public:
Base(int xi)

int x; b,‘f@

}i
public Base {

o x(x1) { }

class Derl :
public:
Derl(int yi) : Base( ,

int y;
g A 1@ | U

void Foo ()
Base b (l);
2

y(yi)

{
Derl d(2);
d =b; // CEm@hrewm*-wwﬁﬁwgkiﬁ%
b =4d // Ol b Uha haﬁw‘h}r?

|

N

{3}

16
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STL and Inheritance

« Recall: STL containers store copies of values

" What happens when we want to store mixes of object types in a
single container? (e.g., Stock and DividendStock)

" You get sliced ®

r#include <list>
#include "Stock.h"
#include "DividendStock.h"

int main(int argc, char** argv) {
Stock s;
DividendStock ds;
list<Stock> 11i;

1i.push back(s) ; // OK
1i.push back(ds); // OUCH!

return EXIT SUCCESS;

17
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STL and Inheritance

+ Instead, store pointers to heap-allocated objects in STL
containers  vechr {Std*7

. AR
" No slicing! © Stk DiidendSiock

= sort () doesthe wrong thing ® — sds on adreses by default
" You have to remember to delete your objects before

destroying the container ®
- Unless you use smart pointers! <5, vechr <==-karec1~p+f‘<5f°¢>>

18
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Lecture Outline

+» C++ Inheritance

J/
>

= Abstract Classes

= Static Dispatch

= Constructors and Destructors
= Assignment

C++ Casting

L)

*

C++ Conversions

J
>

Reference: C++ Primer §4.11.3, 19.2.1

D)

>
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Explicit Casting in C

+ Simple syntax:[lhs = (new_ type) rhs;]
+ Used to:

= Convert between pointers of arbitrary type ((vord ¥) '“Y*f’h*

- Doesn’t change the data, but treats it differently

= Forcibly convert a primitive type to another  (float) my-?n“f’
- Actually changes the representation

+ You can still use C-style casting in C++, but sometimes the
intent is not clear
o $ou should not use C-style casting in C++.

20
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Casting in C++ STYLE

« C++ provides an alternative casting style that is more
informative:

" statlic cast<to type>(expression)
" dynamic cast<to type>(expression)
" const cast<to type>(expression)

" reinterpret cast<to type>(expression)

+ Always use these in C++ code
" |ntentis clearer

= Easier to find in code via searching

21
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static_cast

7
0‘0

7
0’0

, Gy uﬁil‘de‘f:ﬁ'\ﬂd Convess 10N
statlc cast canconvert:

L16: C++ Inheritance Il, Casts

" Pointers to classes of related type

- Compiler error if classes are not related
- Dangerous to cast down a class hierarchy

= Casting between void* and T*

" Non-pointer conversion
- e.g., floattoint

staticcast.cc

[ class A { ]
®

public:
int x;

b g

class B {

public: (E)\\
float x;
I S
S
class C : public {
public:
char x;

I 2 J

static castis
checked at compile time

statizc - cost <2
change the dsta

|
reFfE.ser-.ﬁd hial

void Foo () {
B b;

//
A *
//
B*
//
C*

C ¢c;

compiler error (“”Wlajf"ﬁ)
aptr = static cast<A*>(&b);
0k (would have been Jone inmplicitly )
bptr = static cast<B*>(&c);
compiles, but dangerous
cptr = static cast<C*>(&b);

22
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dynamiccast.cc

- class Base {
dynamic cast o
virtual void Foo () { }
. float x;
+ dynamic cast can convert: )
= Pointers to classeg of related type class Derl : public Base |
= References to classes of related type public:
, : — — char x;
+ dynamic castischecked atboth |,
compile time and (oie el |
run time Base b; Derl d;
= Casts between // OK (run-time check passes)
unrelated classes fail Base* bptr = dynamic cast<Base*>(&d) ;
atconprethne assert (bptr !'!= nullptr);
® (Casts from base to // OK (run-time check passes)

derived fail at run

) _ ] assert (dptr
time if the pointed-to

Derl* dptr =

dynamic cast<Derl*> (bptr) ;
!= nullptr);

object is not the // Run-time check fails, returns nullptr

. bptr = &b;
derived type prr — &

assert (dptr

dptr = dynamic cast<Derl*> (bptr) :;
!= nullptr);
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const_cast
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+ const cast adds or strips,const-nes

= Dangerous (!)

[ void Foo(int* x) {
*xX++4;
}

volid Bar(const int* x)
Foo (x) ;

}

(
int x = 7;
Bar (&x);

return EXIT SUCCESS;

Foo (const cast<int*>(x

{
// compiler error
)); // succeeds

int main(int argc, char** argv) {

CSE333, Fall 2025
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reinterpret cast

+ reinterpret cast casts between incompatible types

= Low-level reinterpretation of the bit pattern
" e.g., storing a pointerinan int, orvice-versa

- Works as long as the integral type is “wide” enough
" Converting between incompatible pointers

- Dangerous (!)

- This is used (carefully) in hw3

= Use any other C++ cast if you can!

25
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Casting Style Considerations £y

« From the “Casting” and “Run-Time Type Information
(RTTI)” sections of the Google C++ Style Guide:
= When the logic of a program guarantees that a given instance of a

base class is, in fact, an instance of a particular derived class, then
a dynamic cast may be used freely on the object.

- Usuallyonecanusea static cast asan alternative in such
situations

" Onlyuse reinterpret cast if you know what you are doing
and you understand the aliasing issues

- For unsafe conversions of pointer types to and from integer and other
pointer types, including void*

26
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Lecture Outline

J/
>

» C++ Inheritance

= Abstract Classes

= Static Dispatch

= Constructors and Destructors
= Assignment

C++ Casting

L)

*

C++ Conversions

J
>

Reference: C++ Primer §4.11.3, 19.2.1

D)

>
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Implicit Conversion

+ The compiler tries to infer some kinds of conversions

= When types are not equal and you don’t specify an explicit cast,
the compiler looks for an acceptable implicit conversion

rvoid Bar (std::string x);

volid Foo () {
int x = 5.7; // conversion, float -> int
char ¢ = x; // conversion, 1int -> char
Bar("hi") ; // conversion, (const char*) -> string

}

\ J

28
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Sneaky Implicit Conversions

%+ (const char*)to string conversion?

= |f a class has a constructor with a single parameter, the compiler

will exploit it to perform implicit conversions

= At most, one user-defined implicit conversion will happen

- Cando int = Foo, butnot int » Foo =» Baz

rclass Foo {

public:
Foo(int x1i) : x(xi) { }
int x;

b

int Bar(Foo f) {
return f.x;

int main(int argc, char** argv) { {T
return Bar(5); // equivalent to return Bar (Foo(5)) ;

}

} Congtrudt
imv[}”“'HT

CSE333, Fall 2025

Jlrlnunked
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Avoiding Sneaky Implicits

+ Declare one-argument constructors as explicit if you
want to disable them from being used as an implicit
conversion path

= Usually a good idea

rclass Foo {

public:
explicit Foo(int x1i) : x(xi) { }
int x;

b

int Bar (Foo f) {
return f.x;

}

int main(int argc, char** argv) {
return Bar(5); // compiler error — ho lsnger allowed , st Conld

) st do~ Bar( Fus(5)) fnafmJl

\,

30
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Extra Exercise #1

« Design a class hierarchy to represent shapes
= e.g., Circle, Triangle, Square

+» Implement methods that:

Construct shapes

Move a shape (i.e., add (x,y) to the shape position)
Returns the centroid of the shape

Returns the area of the shape

Print (), which prints out the details of a shape

CSE333, Fall 2025
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Extra Exercise #2

+ Implement a program that uses Extra Exercise #1 (shapes
class hierarchy):

L)

® Constructs a vector of shapes
= Sorts the vector according to the area of the shape
" Prints out each member of the vector

*

- Notes:

D)

L)

= Avoid slicing!

" Make sure the sorting works properly!

32
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