
CSE333, Fall 2025L16: C++ Inheritance II, Casts

C++ Inheritance II, Casts (Wrap-up)
CSE 333 Autumn 2025

Instructors: Naomi Alterman, Chris Thachuk

Teaching Assistants:

Ann Baturytski Derek de Leuw Blake Diaz

Rishabh Jain Chendur Jel Jayavelu Lucas Kwan

Irene Xin Jie Lau Nathan Li Maya Odenheim

Advay Patil Selim Saridede Deeksha Vatwani

Angela Wu Jiexiao Xu

CSE333, Fall 2025L16: C++ Inheritance II, Casts

Relevant Course Information

❖ Exercise 12 is due Monday (11/3)

❖ Homework 3 is due in roughly two weeks (11/13)
▪ Suggestion: write index files to /tmp/, which is a local scratch

disk and is very fast, but please clean up when you’re done

▪ Demo walkthrough of HW3 during section this week + bonus O/H

❖ Graded midterms out Monday

2

CSE333, Fall 2025L16: C++ Inheritance II, Casts

Lecture Outline

❖ C++ Inheritance

▪ Abstract Classes

▪ Static Dispatch

▪ Constructors and Destructors

▪ Assignment

❖ C++ Casting

❖ C++ Conversions

❖ Reference: C++ Primer, Chapter 15

3

CSE333, Fall 2025L16: C++ Inheritance II, Casts

Abstract Classes

❖ Sometimes we want to include a function in a class but
only implement it in derived classes

▪ In Java, we would use an abstract method

▪ In C++, we use a “pure virtual” function

• Example: virtual string noise() = 0;

❖ A class containing any pure virtual methods is abstract

▪ You can’t create instances of an abstract class

▪ Extend abstract classes and override methods to use them

❖ A class containing only pure virtual methods is the same
as a Java interface

▪ Pure type specification without implementations

4

virtual string Noise() = 0;

CSE333, Fall 2025L16: C++ Inheritance II, Casts

Reminder: virtual is “sticky”

❖ If X::F() is declared virtual, then a vtable will be
created for class X and for all of its subclasses

▪ The vtables will include function pointers for (the correct) F

❖ F() will be called using dynamic dispatch even if
overridden in a derived class without the virtual
keyword
▪ Good style to help the reader and avoid bugs by using override

• Style guide controversy, if you use override should you use
virtual in derived classes? Recent style guides say just use
override, but you’ll sometimes see both, particularly in older code

5

CSE333, Fall 2025L16: C++ Inheritance II, Casts

What happens if we omit “virtual”?

❖ By default, without virtual, methods are dispatched
statically
▪ At compile time, the compiler writes in a call to the address of

the class’ method in the .text segment

• Based on the compile-time visible type of the callee

▪ This is different than Java

6

class Derived : public Base { ... };

int main(int argc, char** argv) {

 Derived d;

 Derived* dp = &d;

 Base* bp = &d;

 dp->Foo();

 bp->Foo();

 return EXIT_SUCCESS;

}

Derived::Foo()

...

Base::Foo()

...

CSE333, Fall 2025L16: C++ Inheritance II, Casts

Static Dispatch Example

❖ Removed virtual on methods:

7

DividendStock dividend();

DividendStock* ds = ÷nd;

Stock* s = ÷nd;

// Invokes DividendStock::GetMarketValue()

ds->GetMarketValue();

// Invokes Stock::GetMarketValue()

s->GetMarketValue();

// invokes Stock::GetProfit().

// Stock::GetProfit() invokes Stock::GetMarketValue().

s->GetProfit();

// invokes Stock::GetProfit(), since that method is inherited.

// Stock::GetProfit() invokes Stock::GetMarketValue().

ds->GetProfit();

double Stock::GetMarketValue() const;

double Stock::GetProfit() const;

Stock.h

CSE333, Fall 2025L16: C++ Inheritance II, Casts

Why Not Always Use virtual?

❖ Two (fairly uncommon) reasons:

▪ Efficiency:

• Non-virtual function calls are a tiny bit faster (no indirect lookup)

• A class with no virtual functions has objects without a vptr field

▪ Control:

• If F() calls G() in class X and G is not virtual, we’re guaranteed to
call X::G() and not G() in some subclass

– Particularly useful for framework design

❖ In Java, all methods are virtual, except static class
methods, which aren’t associated with objects

❖ In C++ and C#, you can pick what you want
▪ Omitting virtual can cause obscure bugs

▪ (Most of the time, you want member function to be virtual)
8

CSE333, Fall 2025L16: C++ Inheritance II, Casts

Mixed Dispatch

❖ Which function is called is a mix of both compile time and
runtime decisions as well as how you call the function
▪ If called on an object (e.g., obj.Fcn()), usually optimized into a

hard-coded function call at compile time

▪ If called via a pointer or reference:
PromisedT* ptr = new ActualT;

ptr->Fcn(); // which version is called?

9

CSE333, Fall 2025L16: C++ Inheritance II, Casts

Mixed Dispatch Example

10

class A {

 public:

 // m1 will use static dispatch

 void M1() { cout << "a1, "; }

 // m2 will use dynamic dispatch

 virtual void M2() { cout << "a2"; }

};

class B : public A {

 public:

 void M1() { cout << "b1, "; }

 // m2 is still virtual by default

 void M2() { cout << "b2"; }

};

void main(int argc,

 char** argv) {

 A a;

 B b;

 A* a_ptr_a = &a;

 A* a_ptr_b = &b;

 B* b_ptr_a = &a;

 B* b_ptr_b = &b;

 a_ptr_a->M1(); //

 a_ptr_a->M2(); //

 a_ptr_b->M1(); //

 a_ptr_b->M2(); //

 b_ptr_b->M1(); //

 b_ptr_b->M2(); //

}

mixed.cc

CSE333, Fall 2025L16: C++ Inheritance II, Casts

Lecture Outline

❖ C++ Inheritance

▪ Abstract Classes

▪ Static Dispatch

▪ Constructors and Destructors

▪ Assignment

❖ C++ Casting

❖ C++ Conversions

❖ Reference: C++ Primer, Chapter 15

11

CSE333, Fall 2025L16: C++ Inheritance II, Casts

Derived-Class Objects

❖ A derived object contains “subobjects” corresponding to
the data members inherited from each base class

▪ No guarantees about how these are laid out in memory (not even
contiguousness between subobjects)

❖ Conceptual structure of DividendStock object:

12

symbol_

total_shares_

total_cost_

current_price_

dividends_

members inherited
from Stock

members defined by
DividendStock

CSE333, Fall 2025L16: C++ Inheritance II, Casts

Constructors and Inheritance

❖ A derived class does not inherit the base class’
constructor

▪ The derived class must have its own constructor

▪ A synthesized default constructor for the derived class first
invokes the default constructor of the base class and then
initialize the derived class’ member variables

• Compiler error if the base class has no default constructor

▪ The base class constructor is invoked before the constructor of
the derived class

• You can use the initialization list of the derived class to specify which
base class constructor to use

13

CSE333, Fall 2025L16: C++ Inheritance II, Casts

Constructor Examples

14

class Base { // no default ctor

 public:

 Base(int yi) : y(yi) { }

 int y;

};

// Compiler error when you try to

// instantiate a Der1, as the

// synthesized default ctor needs

// to invoke Base's default ctor.

class Der1 : public Base {

 public:

 int z;

};

class Der2 : public Base {

 public:

 Der2(int yi, int zi)

 : Base(yi), z(zi) { }

 int z;

};

badctor.cc

// has default ctor

class Base {

 public:

 int y;

};

// works now

class Der1 : public Base {

 public:

 int z;

};

// still works

class Der2 : public Base {

 public:

 Der2(int zi) : z(zi) { }

 int z;

};

goodctor.cc

CSE333, Fall 2025L16: C++ Inheritance II, Casts

Destructors and Inheritance

❖ Destructor of a derived
class:

▪ First runs body of the dtor

▪ Then invokes of the dtor
of the base class

❖ Static dispatch of
destructors is almost
always a mistake!

▪ Good habit to always
define a dtor as virtual

• Empty body if there’s
no work to do

15

class Base {

 public:

 Base() { x = new int; }

 ~Base() { delete x; }

 int* x;

};

class Der1 : public Base {

 public:

 Der1() { y = new int; }

 ~Der1() { delete y; }

 int* y;

};

void Foo() {

 Base* b0ptr = new Base;

 Base* b1ptr = new Der1;

 delete b0ptr; //

 delete b1ptr; //

}

baddtor.cc

STYLE
TIP

CSE333, Fall 2025L16: C++ Inheritance II, Casts

Assignment and Inheritance

❖ C++ allows you to assign
the value of a derived
class to an instance of
a base class

▪ Known as object slicing

• It’s legal since b = d
passes type checking rules

• But b doesn’t have space
for any extra fields in d

16

class Base {

 public:

 Base(int xi) : x(xi) { }

 int x;

};

class Der1 : public Base {

 public:

 Der1(int yi) : Base(16), y(yi) { }

 int y;

};

void Foo() {

 Base b(1);

 Der1 d(2);

 d = b; //

 b = d; //

}

slicing.cc

CSE333, Fall 2025L16: C++ Inheritance II, Casts

STL and Inheritance

❖ Recall: STL containers store copies of values

▪ What happens when we want to store mixes of object types in a
single container? (e.g., Stock and DividendStock)

▪ You get sliced 

17

#include <list>

#include "Stock.h"

#include "DividendStock.h"

int main(int argc, char** argv) {

 Stock s;

 DividendStock ds;

 list<Stock> li;

 li.push_back(s); // OK

 li.push_back(ds); // OUCH!

 return EXIT_SUCCESS;

}

CSE333, Fall 2025L16: C++ Inheritance II, Casts

STL and Inheritance

❖ Instead, store pointers to heap-allocated objects in STL
containers

▪ No slicing! ☺

▪ sort() does the wrong thing 

▪ You have to remember to delete your objects before

destroying the container 

• Unless you use smart pointers!

18

CSE333, Fall 2025L16: C++ Inheritance II, Casts

Lecture Outline

❖ C++ Inheritance

▪ Abstract Classes

▪ Static Dispatch

▪ Constructors and Destructors

▪ Assignment

❖ C++ Casting

❖ C++ Conversions

❖ Reference: C++ Primer §4.11.3, 19.2.1

19

CSE333, Fall 2025L16: C++ Inheritance II, Casts

Explicit Casting in C

❖ Simple syntax: lhs = (new_type) rhs;

❖ Used to:

▪ Convert between pointers of arbitrary type

• Doesn’t change the data, but treats it differently

▪ Forcibly convert a primitive type to another

• Actually changes the representation

❖ You can still use C-style casting in C++, but sometimes the
intent is not clear
▪ You should not use C-style casting in C++.

20

lhs = (new_type) rhs;

CSE333, Fall 2025L16: C++ Inheritance II, Casts

Casting in C++

❖ C++ provides an alternative casting style that is more
informative:
▪ static_cast<to_type>(expression)

▪ dynamic_cast<to_type>(expression)

▪ const_cast<to_type>(expression)

▪ reinterpret_cast<to_type>(expression)

❖ Always use these in C++ code

▪ Intent is clearer

▪ Easier to find in code via searching

21

STYLE
TIP

CSE333, Fall 2025L16: C++ Inheritance II, Casts

static_cast

❖ static_cast can convert:

▪ Pointers to classes of related type

• Compiler error if classes are not related

• Dangerous to cast down a class hierarchy

▪ Casting between void* and T*

▪ Non-pointer conversion

• e.g., float to int

❖ static_cast is
checked at compile time

22

class A {

 public:

 int x;

};

class B {

 public:

 float x;

};

class C : public B {

 public:

 char x;

};

void Foo() {

 B b; C c;

 // compiler error

 A* aptr = static_cast<A*>(&b);

 // OK

 B* bptr = static_cast<B*>(&c);

 // compiles, but dangerous

 C* cptr = static_cast<C*>(&b);

}

staticcast.cc

CSE333, Fall 2025L16: C++ Inheritance II, Casts

dynamic_cast

❖ dynamic_cast can convert:

▪ Pointers to classes of related type

▪ References to classes of related type

❖ dynamic_cast is checked at both
compile time and
run time
▪ Casts between

unrelated classes fail
at compile time

▪ Casts from base to
derived fail at run
time if the pointed-to
object is not the
derived type

23

void Bar() {

 Base b; Der1 d;

 // OK (run-time check passes)

 Base* bptr = dynamic_cast<Base*>(&d);

 assert(bptr != nullptr);

 // OK (run-time check passes)

 Der1* dptr = dynamic_cast<Der1*>(bptr);

 assert(dptr != nullptr);

 // Run-time check fails, returns nullptr

 bptr = &b;

 dptr = dynamic_cast<Der1*>(bptr);

 assert(dptr != nullptr);

}

dynamiccast.cc
class Base {

 public:

 virtual void Foo() { }

 float x;

};

class Der1 : public Base {

 public:

 char x;

};

CSE333, Fall 2025L16: C++ Inheritance II, Casts

const_cast

❖ const_cast adds or strips const-ness

▪ Dangerous (!)

24

void Foo(int* x) {

 *x++;

}

void Bar(const int* x) {

 Foo(x); // compiler error

 Foo(const_cast<int*>(x)); // succeeds

}

int main(int argc, char** argv) {

 int x = 7;

 Bar(&x);

 return EXIT_SUCCESS;

}

CSE333, Fall 2025L16: C++ Inheritance II, Casts

reinterpret_cast

❖ reinterpret_cast casts between incompatible types

▪ Low-level reinterpretation of the bit pattern

▪ e.g., storing a pointer in an int, or vice-versa

• Works as long as the integral type is “wide” enough

▪ Converting between incompatible pointers

• Dangerous (!)

• This is used (carefully) in hw3

▪ Use any other C++ cast if you can!

25

CSE333, Fall 2025L16: C++ Inheritance II, Casts

Casting Style Considerations

❖ From the “Casting” and “Run-Time Type Information
(RTTI)” sections of the Google C++ Style Guide:

▪ When the logic of a program guarantees that a given instance of a
base class is, in fact, an instance of a particular derived class, then
a dynamic_cast may be used freely on the object.

• Usually one can use a static_cast as an alternative in such
situations

▪ Only use reinterpret_cast if you know what you are doing
and you understand the aliasing issues

• For unsafe conversions of pointer types to and from integer and other
pointer types, including void*

26

STYLE
TIP

CSE333, Fall 2025L16: C++ Inheritance II, Casts

Lecture Outline

❖ C++ Inheritance

▪ Abstract Classes

▪ Static Dispatch

▪ Constructors and Destructors

▪ Assignment

❖ C++ Casting

❖ C++ Conversions

❖ Reference: C++ Primer §4.11.3, 19.2.1

27

CSE333, Fall 2025L16: C++ Inheritance II, Casts

Implicit Conversion

❖ The compiler tries to infer some kinds of conversions

▪ When types are not equal and you don’t specify an explicit cast,
the compiler looks for an acceptable implicit conversion

28

void Bar(std::string x);

void Foo() {

 int x = 5.7; // conversion, float -> int

 char c = x; // conversion, int -> char

 Bar("hi"); // conversion, (const char*) -> string

}

CSE333, Fall 2025L16: C++ Inheritance II, Casts

Sneaky Implicit Conversions

❖ (const char*) to string conversion?

▪ If a class has a constructor with a single parameter, the compiler
will exploit it to perform implicit conversions

▪ At most, one user-defined implicit conversion will happen

• Can do int → Foo, but not int → Foo → Baz

29

class Foo {

 public:

 Foo(int xi) : x(xi) { }

 int x;

};

int Bar(Foo f) {

 return f.x;

}

int main(int argc, char** argv) {

 return Bar(5); // equivalent to return Bar(Foo(5));

}

CSE333, Fall 2025L16: C++ Inheritance II, Casts

Avoiding Sneaky Implicits

❖ Declare one-argument constructors as explicit if you
want to disable them from being used as an implicit
conversion path
▪ Usually a good idea

30

class Foo {

 public:

 explicit Foo(int xi) : x(xi) { }

 int x;

};

int Bar(Foo f) {

 return f.x;

}

int main(int argc, char** argv) {

 return Bar(5); // compiler error

}

STYLE
TIP

CSE333, Fall 2025L16: C++ Inheritance II, Casts

Extra Exercise #1

❖ Design a class hierarchy to represent shapes

▪ e.g., Circle, Triangle, Square

❖ Implement methods that:
▪ Construct shapes

▪ Move a shape (i.e., add (x,y) to the shape position)

▪ Returns the centroid of the shape

▪ Returns the area of the shape

▪ Print(), which prints out the details of a shape

31

CSE333, Fall 2025L16: C++ Inheritance II, Casts

Extra Exercise #2

❖ Implement a program that uses Extra Exercise #1 (shapes
class hierarchy):

▪ Constructs a vector of shapes

▪ Sorts the vector according to the area of the shape

▪ Prints out each member of the vector

❖ Notes:

▪ Avoid slicing!

▪ Make sure the sorting works properly!

32

	Slide 1: C++ Inheritance II, Casts (Wrap-up) CSE 333 Autumn 2025
	Slide 2: Relevant Course Information
	Slide 3: Lecture Outline
	Slide 4: Abstract Classes
	Slide 5: Reminder: virtual is “sticky”
	Slide 6: What happens if we omit “virtual”?
	Slide 7: Static Dispatch Example
	Slide 8: Why Not Always Use virtual?
	Slide 9: Mixed Dispatch
	Slide 10: Mixed Dispatch Example
	Slide 11: Lecture Outline
	Slide 12: Derived-Class Objects
	Slide 13: Constructors and Inheritance
	Slide 14: Constructor Examples
	Slide 15: Destructors and Inheritance
	Slide 16: Assignment and Inheritance
	Slide 17: STL and Inheritance
	Slide 18: STL and Inheritance
	Slide 19: Lecture Outline
	Slide 20: Explicit Casting in C
	Slide 21: Casting in C++
	Slide 22: static_cast
	Slide 23: dynamic_cast
	Slide 24: const_cast
	Slide 25: reinterpret_cast
	Slide 26: Casting Style Considerations
	Slide 27: Lecture Outline
	Slide 28: Implicit Conversion
	Slide 29: Sneaky Implicit Conversions
	Slide 30: Avoiding Sneaky Implicits
	Slide 31: Extra Exercise #1
	Slide 32: Extra Exercise #2

