CSE333, Autumn 2025

WA/ UNIVERSITY of WASHINGTON L14: C++STL

C++ Standard Template Library
CSE 333 Autumn 2025

Instructors: Naomi Alterman, Chris Thachuk

Teaching Assistants:

Ann Baturytski Derek de Leuw Blake Diaz
Rishabh Jain Chendur Jel Jayavelu Lucas Kwan
Irene Xin Jie Lau Nathan Li Maya Odenheim
Advay Patil Selim Saridede Deeksha Vatwani

Angela Wu Jiexiao Xu

WA/ UNIVERSITY of WASHINGTON L14: C++STL CSE333, Autumn 2025

0 PO" EVGI‘YWheI‘e pollev.com/naomila

Which topic are you feeling the shakiest
about, going into the midterm?

A.

C++ class constructors, may they RIP
POSIX 1/0O, oh my

. The Dreaded Makefile

The HEAP!!

Something totally different

nmoDOw

CSE333, Autumn 2025

WA/ UNIVERSITY of WASHINGTON L14: C++STL

C++’s Standard Library

+» C++’s Standard Library consists of four major pieces:
1) The entire C standard library
2) C++’s input/output stream library
- std::cin, std::cout, stringstreams, fstreams, etc.
3) C++'s standard template library (STL) =
- Containers, iterators, algorithms (sort, find, etc.), numerics

4) C++'s miscellaneous library

- Strings, exceptions, memory allocation, localization

WA/ UNIVERSITY of WASHINGTON L14: C++STL CSE333, Autumn 2025

STL Containers &

+» A container is an object that stores (in memory) a collection of other objects
(elements)

" Implemented using class templates, so hugely flexible
" More info in C++ Primer §9.2, 11.2

+« Several different classes of container

= Sequence containers (vector, deque, 1ist, ...)

= Associative containers (set, map, multiset, multimap, bitset, ...)

= Differ in algorithmic cost and supported operations

WA/ UNIVERSITY of WASHINGTON L14: C++STL CSE333, Autumn 2025

STL Containers ==

+» STL containers store by value, not by reference
" When you insert an object, the container makes a copy

" |f the container needs to rearrange objects, it makes copies
- e.g. if yousorta vector, it will make many, many copies
- e.g. if you insert into a map, that may trigger several copies
" What if you don’t want this (disabled copy constructor or copying is expensive)?

- You can insert a wrapper object with a pointer to the object

— WEe’ll learn about these “smart pointers” soon

WA/ UNIVERSITY of WASHINGTON L14: C++STL CSE333, Autumn 2025

Our Amoeba Class

+ Toy class to examine now STL works
+» A single instance represents a single Amoeba

+ (with a namel!l)

o Charles lives (and dies) at a fixed
address in memory

Charles

Amoeba ¢ (“Charlegs”)

WA/ UNIVERSITY of WASHINGTON L14: C++STL CSE333, Autumn 2025

Our Amoeba Class

+» The copy constructor means the Amoeba divided, and now has a child

% The child has the same name (but it’s the next generation)

W W

Charles

Charles
The Second

Amoeba c (“"Charles”);
Amoeba c2 (c) ;

WA/ UNIVERSITY of WASHINGTON L14: C++STL CSE333, Autumn 2025

Our Amoeba Class

+» The assignment operator means the left-hand Amoeba has been adopted by
the right-hand Amoeba. It takes on the right-hand’s name, and the right-hand’s
generation + 1. Just like a biological child would.

+» But it also remembers its previous identity (roots are important!).

Amoeba c¢ (“Charles”);
. . Amoeba b (“Beatrice”);

W

Charles

w Beatrice

WA/ UNIVERSITY of WASHINGTON L14: C++STL CSE333, Autumn 2025

Our Amoeba Class

+» The assignment operator means the left-hand Amoeba has been adopted by
the right-hand Amoeba. It takes on the right-hand’s name, and the right-hand’s
generation + 1. Just like a biological child would.

» But it also remembers its previous identity (roots are important!).

Amoeba c¢ (“Charles”);
. . Amoeba b (“Beatrice”);

) b = ¢;

Charles

w Charles the Second
(formerly Beatrice)

WA/ UNIVERSITY of WASHINGTON L14: C++STL CSE333, Autumn 2025

STL vector

+ A generic, dynamically resizable array

=" http://www.cplusplus.com/reference/vecor/vector/

" Elements are store in contiguous memory locations

- Elements can be accessed using pointer arithmetic if you’d like

- Random access is O(1) time
= Adding/removing from the end is cheap (amortized constant time)

" |nserting/deleting from the middle or start is expensive (linear time)

10

http://www.cplusplus.com/reference/vecor/vector/
http://www.cplusplus.com/reference/vecor/vector/

WA/ UNIVERSITY of WASHINGTON L14: C++STL CSE333, Autumn 2025

vector/Amoeba Example

vectorfun.cc
N

r.)
#include <iostream>
#include <vector>
#include "Amoeba.h"

using namespace std;

int main(int argc, char** argv) {
Amoeba a("Allen"), b("Barb"), c("Carol");
vector<Amoeba> wvec;

cout << "vec.push back " << a << endl;
vec.push back (a) ;
cout << "vec.push back " << b << endl;
vec.push back (b) ;
cout << "vec.push back " << ¢ << endl;
vec.push back (c) ;

cout << "vec[0]" << endl << vec[0] << endl;
cout << "vec[2]" << endl << vec[?Z] << endl;

return EXIT SUCCESS;

J y

11

WA/ UNIVERSITY of WASHINGTON

L14: C++ STL

CSE333, Autumn 2025

Why All the Copying?

+» What’s going on here?

+» Answer: a C++ vector (like Java’s ArrayList) is initially small, but grows if
needed as elements are added

" Implemented by allocating a new, larger underlying array, copy existing elements to new
array, and then replace previous array with new one

« And vector starts out really small by default, so it needs to grow almost
immediately!

= But you can specify an initial capacity if “really small” is an inefficient initial size (use
“reserve” member function)

= Example: see vectorcap.cc

12

WA/ UNIVERSITY of WASHINGTON L14: C++STL

STL 1terator

+» Each container class has an associated iterator class (e.g.
vector<int>::iterator) used to iterate through elements of the
container

= http://www.cplusplus.com/reference/iterator/iterator/

= |terator range is from begin uptoend i.e., [begin, end)
- end is one past the last container element!
= Some container iterators support more operations than others

- All can be incremented (++), copied, copy-constructed

Some can be dereferenced on RHS (e.g. x = *it;)

Some can be dereferenced on LHS (e.g. *it = x;)

Some can be decremented (—-)

Some support random access ([], +, —, +=, —=, <, > operators)

CSE333, Autumn 2025

13

http://www.cplusplus.com/reference/iterator/iterator/
http://www.cplusplus.com/reference/iterator/iterator/

WA/ UNIVERSITY of WASHINGTON L14: C++STL

iterator Example

vectoriterator.cc

o

#include <vector>
#include "Amoeba.h"
using namespace std;

int main(int argc, char** argv) {

vector<Amoeba> vec;

vec.push back (a);
vec.push back (b) ;
vec.push back (c);

cout << "Iterating:" << endl;
vector<Amoeba>::iterator it;

cout << *it << endl;
}
cout << "Done iterating!" << endl;
return EXIT SUCCESS;

for (it = vec.begin(); it < vec.end();

Amoeba a("Allen"), b("Barb"), c("Carol");

it++)

N

CSE333, Autumn 2025

14

WA/ UNIVERSITY of WASHINGTON L14: C++STL CSE333, Autumn 2025

Type Inference (C++11)

« The auto keyword can be used to infer types

= Simplifies your life if, for example, functions return complicated types

" The expression using auto must contain explicit initialization for it to work

for (vector<Amoeba>::iterator it = vec.begin(); it < vec.end(); it++) {
cout << *it << endl;

for (auto it = vec.begin(); it < vec.end(); it++) {
cout << *it << endl;

}

}

15

WA/ UNIVERSITY of WASHINGTON

L14: C++ STL

Range for Statement (C++11)

« Syntactic sugar similar to Java’s foreach

" General format:

(for (declaration
statements

}

\.

expression)

{

N\

" declaration defines loop variable

" expressionisan object representing a sequence

- Strings, initializer lists, arrays with an explicit length defined, STL containers that support

iterators

.

7

// Prints out a string, one
// character per line
std::string str("hello");

for (auto c : str) {
std: :cout << ¢ << std::endl;

}

~\

CSE333, Autumn 2025

16

WA/ UNIVERSITY of WASHINGTON L14: C++STL CSE333, Autumn 2025

Updated iterator Example

vectoriterator_2011.cc
N

o

#include <vector>
#include "Amoeba.h"
using namespace std;

int main(int argc, char** argv) {
Amoeba a("Allen"), b ("Barb"), c("Carol");
vector<Amoeba> vec;

vec.push back (a);
vec.push back (b) ;
vec.push back(c);

cout << "Iterating:" << endl;

for (auto & p : vec) { // p 1s a reference (alias) of vec elem
cout << p << endl; // element here; not a new copy

}

cout << "Done iterating!" << endl;

return EXIT SUCCESS;

17

WA/ UNIVERSITY of WASHINGTON

L14: C++ STL

CSE333, Autumn 2025

STL Algorithms

+» A set of functions to be used on ranges of elements

" Range: any sequence that can be accessed through iterators or pointers, like arrays or
some of the containers

" General form: |algorithm (begin, end, ...);

+ Algorithms operate directly on range elements rather than the containers they
live in
= Make use of elements’ copy ctor, =, ==, |5, <

= Some do not modify elements

- e.g. find, count, for_each, min_element, binary_search
= Some do modify elements

- e.g. sort, transform, copy, swap

18

WA/ UNIVERSITY of WASHINGTON L14: C++STL CSE333, Autumn 2025

Algorithms Example

vectoralgos.cc
N

(4include <vector>
#include <algorithm>
#include "Amoeba.h"
using namespace std;

void PrintOut (const Amoeba& p) {
cout << " printout: " << p << endl;
}

int main(int argc, char** argv) {
Amoeba a("Allen"), b("Barb"), c("Carol");
vector<Amoeba> wvec;

vec.push back (c) ;

vec.push back (a) ;

vec.push back (b) ;

cout << "sort:" << endl;

sort (vec.begin (), vec.end()):;

cout << "done sort!" << endl;

for each(vec.begin(), vec.end(), &PrintOut);
return EXIT SUCCESS;

19

WA/ UNIVERSITY of WASHINGTON L14: C++STL CSE333, Autumn 2025

STL1ist

+~ A generic doubly-linked list

= http://www.cplusplus.com/reference/list/list/

= Elements are not stored in contiguous memory locations
- Does not support random access (e.g. cannotdo 1ist [5])
" Some operations are much more efficient than vectors
- Constant time insertion, deletion anywhere in list
- Can iterate forward or backwards
" Has a built-in sort member function

- Doesn’t copy! Manipulates list structure instead of element values

21

http://www.cplusplus.com/reference/list/list/
http://www.cplusplus.com/reference/list/list/

WA/ UNIVERSITY of WASHINGTON L14: C++STL CSE333, Autumn 2025

list Example

listexample.cc
N

(#include <list>
#include <algorithm>
#include "Amoeba.h"
using namespace std;

void PrintOut (const Amoeba& p) {
cout << " printout: " << p << endl;

}

int main(int argc, char** argv) {
Amoeba a("Allen"), b ("Barb"), c("Carol");
list<Amoeba> 1st;

lst.push back (c);

lst.push back (a);

lst.push back (b);

cout << "sort:" << endl;

lst.sort () ;

cout << "done sort!" << endl;

for each(lst.begin(), lst.end(), &PrintOut);
return EXIT SUCCESS;

22

WA/ UNIVERSITY of WASHINGTON L14: C++STL CSE333, Autumn 2025

STL map

+» One of C++’s associative containers: a key/value table, implemented as a
search tree

" https://cplusplus.com/reference/map/map/

" General form: [map<key type, value type> name;

= Keys must be unique
- multimap allows duplicate keys

= Efficient lookup (O(log n)) and insertion (O(log n))
« Access valuevianame[key] or .at (key)

" Elements are type pair<key type, value type> andare stored in sorted order
(key is field first, valueis field second)

- Key type must support less-than operator (<)

23

https://cplusplus.com/reference/map/map/
https://cplusplus.com/reference/map/map/

WA/ UNIVERSITY of WASHINGTON L14: C++STL CSE333, Autumn 2025

map Example mapexample.cc

{)

(void PrintOut (const pair<Amoeba, Amoeba>& p)
cout << "printout: [" << p.first << "," << p.second << "]" << endl;
}

int main(int argc, char** argv) {
Amoeba a("Alvin"), b("Barb"), c("Chloe");
Amoeba d("Daryl"), e("Ellen"), f£("Fei");
map<Amoeba, Amoeba> table;
map<Amoeba, Amoeba>::iterator it;

table.insert (pair<Amoeba, Amoeba>(a, b))

table[c] = d;
table[e] = £f;
cout << "tablel[e]:" << table[e] << endl;

it = table.find(c) ;

cout << "PrintOut (*1it), where it = table.find(c)" << endl;
PrintOut (*it) ;

cout << "iterating:" << endl;
for each(table.begin(), table.end(), &PrintOut);

return EXIT SUCCESS;

24

WA/ UNIVERSITY of WASHINGTON L14: C++STL CSE333, Autumn 2025

Unordered Containers (C++11)

+ unordered map, unordered set
" Andrelated classes unordered multimap, unordered multiset

= Average case for key access is O(1)

- But range iterators can be less efficient than ordered map/set

= See C++ Primer, online references for details

25

WA/ UNIVERSITY of WASHINGTON L14: C++STL CSE333, Autumn 2025

Extra Exercise #1

% Using the Amoeba . h/. cc files from lecture:
" Construct a vector of lists of Amoebas
 j.e.a vector container with each element beinga 1ist of Amoebas

= QObserve how many copies happen ©
- Use the sort algorithm to sort the vector

« Usethe list.sort () function to sort each list

26

WA/ UNIVERSITY of WASHINGTON L14: C++STL

Extra Exercise #2

+ Take one of the books from HW2’s test tree and:
= Read in the book, split it into words (you can use your hw?2)

" For each word, insert the word into an STL map
- The key is the word, the value is an integer

- The value should keep track of how many times you’ve seen the word, so each time you
encounter the word, increment its map element

« Thus, build a histogram of word count
" Print out the histogram in order, sorted by word count

= Bonus: Plot the histogram on a log-log scale (use Excel, gnuplot, etc.)

- x-axis: log(word number), y-axis: log(word count)

CSE333, Autumn 2025

27

	Slide 1: C++ Standard Template Library CSE 333 Autumn 2025
	Slide 2: Which topic are you feeling the shakiest about, going into the midterm?
	Slide 3: C++’s Standard Library
	Slide 4: STL Containers 😄
	Slide 5: STL Containers 😔
	Slide 6: Our Amoeba Class
	Slide 7: Our Amoeba Class
	Slide 8: Our Amoeba Class
	Slide 9: Our Amoeba Class
	Slide 10: STL vector
	Slide 11: vector/Amoeba Example
	Slide 12: Why All the Copying?
	Slide 13: STL iterator
	Slide 14: iterator Example
	Slide 15: Type Inference (C++11)
	Slide 16: Range for Statement (C++11)
	Slide 17: Updated iterator Example
	Slide 18: STL Algorithms
	Slide 19: Algorithms Example
	Slide 21: STL list
	Slide 22: list Example
	Slide 23: STL map
	Slide 24: map Example
	Slide 25: Unordered Containers (C++11)
	Slide 26: Extra Exercise #1
	Slide 27: Extra Exercise #2

