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Which topic are you feeling the shakiest
about, going into the midterm?

A.

C++ class constructors, may they RIP
POSIX 1/0O, oh my

. The Dreaded Makefile

The HEAP!!

Something totally different

nmoDOw
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C++’s Standard Library

+» C++’s Standard Library consists of four major pieces:
1) The entire C standard library
2) C++’s input/output stream library
- std::cin, std::cout, stringstreams, fstreams, etc.
3) C++'s standard template library (STL) =
- Containers, iterators, algorithms (sort, find, etc.), numerics

4) C++'s miscellaneous library

- Strings, exceptions, memory allocation, localization
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STL Containers &

+» A container is an object that stores (in memory) a collection of other objects
(elements)

" Implemented using class templates, so hugely flexible
" More info in C++ Primer §9.2, 11.2

+« Several different classes of container

= Sequence containers (vector, deque, 1ist, ...)

= Associative containers (set, map, multiset, multimap, bitset, ...)

= Differ in algorithmic cost and supported operations
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STL Containers ==

+» STL containers store by value, not by reference
" When you insert an object, the container makes a copy

" |f the container needs to rearrange objects, it makes copies
- e.g. if yousorta vector, it will make many, many copies
- e.g. if you insert into a map, that may trigger several copies
" What if you don’t want this (disabled copy constructor or copying is expensive)?

- You can insert a wrapper object with a pointer to the object

— WEe’ll learn about these “smart pointers” soon
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Our Amoeba Class

+ Toy class to examine now STL works
+» A single instance represents a single Amoeba

+ (with a namel!l)

o Charles lives (and dies) at a fixed
address in memory

Charles

Amoeba ¢ (“Charlegs”)
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Our Amoeba Class

+» The copy constructor means the Amoeba divided, and now has a child

% The child has the same name (but it’s the next generation)

W W

Charles

Charles
The Second

Amoeba c (“"Charles”);
Amoeba c2 (c) ;



WA/ UNIVERSITY of WASHINGTON L14: C++STL CSE333, Autumn 2025

Our Amoeba Class

+» The assignment operator means the left-hand Amoeba has been adopted by
the right-hand Amoeba. It takes on the right-hand’s name, and the right-hand’s
generation + 1. Just like a biological child would.

+» But it also remembers its previous identity (roots are important!).

Amoeba c¢ (“Charles”);
. . Amoeba b (“Beatrice”);

W

Charles

w Beatrice
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Our Amoeba Class

+» The assignment operator means the left-hand Amoeba has been adopted by
the right-hand Amoeba. It takes on the right-hand’s name, and the right-hand’s
generation + 1. Just like a biological child would.

» But it also remembers its previous identity (roots are important!).

Amoeba c¢ (“Charles”);
. . Amoeba b (“Beatrice”);

) b = ¢;

Charles

w Charles the Second
(formerly Beatrice)
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STL vector

+ A generic, dynamically resizable array

=" http://www.cplusplus.com/reference/vecor/vector/

" Elements are store in contiguous memory locations

- Elements can be accessed using pointer arithmetic if you’d like

- Random access is O(1) time
= Adding/removing from the end is cheap (amortized constant time)

" |nserting/deleting from the middle or start is expensive (linear time)
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vector/Amoeba Example

vectorfun.cc
N

r. )
#include <iostream>
#include <vector>
#include "Amoeba.h"

using namespace std;

int main(int argc, char** argv) {
Amoeba a("Allen"), b("Barb"), c("Carol");
vector<Amoeba> wvec;

cout << "vec.push back " << a << endl;
vec.push back (a) ;
cout << "vec.push back " << b << endl;
vec.push back (b) ;
cout << "vec.push back " << ¢ << endl;
vec.push back (c) ;

cout << "vec[0]" << endl << vec[0] << endl;
cout << "vec[2]" << endl << vec[?Z] << endl;

return EXIT SUCCESS;

J y
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Why All the Copying?

+» What’s going on here?

+» Answer: a C++ vector (like Java’s ArrayList) is initially small, but grows if
needed as elements are added

" Implemented by allocating a new, larger underlying array, copy existing elements to new
array, and then replace previous array with new one

« And vector starts out really small by default, so it needs to grow almost
immediately!

= But you can specify an initial capacity if “really small” is an inefficient initial size (use
“reserve” member function)

= Example: see vectorcap.cc

12
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STL 1terator

+» Each container class has an associated iterator class (e.g.
vector<int>::iterator) used to iterate through elements of the
container

= http://www.cplusplus.com/reference/iterator/iterator/

= |terator range is from begin uptoend i.e., [begin, end)
- end is one past the last container element!
= Some container iterators support more operations than others

- All can be incremented (++), copied, copy-constructed

Some can be dereferenced on RHS (e.g. x = *it;)

Some can be dereferenced on LHS (e.g. *it = x;)

Some can be decremented (—-)

Some support random access ([ ], +, —, +=, —=, <, > operators)

CSE333, Autumn 2025
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iterator Example

vectoriterator.cc

o

#include <vector>
#include "Amoeba.h"
using namespace std;

int main(int argc, char** argv) {

vector<Amoeba> vec;

vec.push back (a);
vec.push back (b) ;
vec.push back (c);

cout << "Iterating:" << endl;
vector<Amoeba>::iterator it;

cout << *it << endl;
}
cout << "Done iterating!" << endl;
return EXIT SUCCESS;

for (it = vec.begin(); it < vec.end();

Amoeba a("Allen"), b("Barb"), c("Carol");

it++)

N

CSE333, Autumn 2025
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Type Inference (C++11)

« The auto keyword can be used to infer types

= Simplifies your life if, for example, functions return complicated types

" The expression using auto must contain explicit initialization for it to work

for (vector<Amoeba>::iterator it = vec.begin(); it < vec.end(); it++) {
cout << *it << endl;

for (auto it = vec.begin(); it < vec.end(); it++) {
cout << *it << endl;

}

}

15
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Range for Statement (C++11)

« Syntactic sugar similar to Java’s foreach

" General format:

(for ( declaration
statements

}

\.

expression )

{

N\

" declaration defines loop variable

" expressionisan object representing a sequence

- Strings, initializer lists, arrays with an explicit length defined, STL containers that support

iterators

.

7

// Prints out a string, one
// character per line
std::string str("hello");

for ( auto c : str ) {
std: :cout << ¢ << std::endl;

}

~\

CSE333, Autumn 2025
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Updated iterator Example

vectoriterator_2011.cc
N

o

#include <vector>
#include "Amoeba.h"
using namespace std;

int main(int argc, char** argv) {
Amoeba a("Allen"), b ("Barb"), c("Carol");
vector<Amoeba> vec;

vec.push back (a);
vec.push back (b) ;
vec.push back(c);

cout << "Iterating:" << endl;

for (auto & p : vec) { // p 1s a reference (alias) of vec elem
cout << p << endl; // element here; not a new copy

}

cout << "Done iterating!" << endl;

return EXIT SUCCESS;

17
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STL Algorithms

+» A set of functions to be used on ranges of elements

" Range: any sequence that can be accessed through iterators or pointers, like arrays or
some of the containers

" General form: |algorithm (begin, end, ...);

+ Algorithms operate directly on range elements rather than the containers they
live in
= Make use of elements’ copy ctor, =, ==, |5, <

= Some do not modify elements

- e.g. find, count, for_each, min_element, binary_search
= Some do modify elements

- e.g. sort, transform, copy, swap

18
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Algorithms Example

vectoralgos.cc
N

(4include <vector>
#include <algorithm>
#include "Amoeba.h"
using namespace std;

void PrintOut (const Amoeba& p) {
cout << " printout: " << p << endl;
}

int main(int argc, char** argv) {
Amoeba a("Allen"), b("Barb"), c("Carol");
vector<Amoeba> wvec;

vec.push back (c) ;

vec.push back (a) ;

vec.push back (b) ;

cout << "sort:" << endl;

sort (vec.begin (), vec.end()):;

cout << "done sort!" << endl;

for each(vec.begin(), vec.end(), &PrintOut);
return EXIT SUCCESS;

19
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STL1ist

+~ A generic doubly-linked list

= http://www.cplusplus.com/reference/list/list/

= Elements are not stored in contiguous memory locations
- Does not support random access (e.g. cannotdo 1ist [5])
" Some operations are much more efficient than vectors
- Constant time insertion, deletion anywhere in list
- Can iterate forward or backwards
" Has a built-in sort member function

- Doesn’t copy! Manipulates list structure instead of element values

21
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list Example

listexample.cc
N

(#include <list>
#include <algorithm>
#include "Amoeba.h"
using namespace std;

void PrintOut (const Amoeba& p) {
cout << " printout: " << p << endl;

}

int main(int argc, char** argv) {
Amoeba a("Allen"), b ("Barb"), c("Carol");
list<Amoeba> 1st;

lst.push back (c);

lst.push back (a);

lst.push back (b);

cout << "sort:" << endl;

lst.sort () ;

cout << "done sort!" << endl;

for each(lst.begin(), lst.end(), &PrintOut);
return EXIT SUCCESS;

22
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STL map

+» One of C++’s associative containers: a key/value table, implemented as a
search tree

" https://cplusplus.com/reference/map/map/

" General form: [map<key type, value type> name;

= Keys must be unique
- multimap allows duplicate keys

= Efficient lookup (O(log n)) and insertion (O(log n))
« Access valuevianame[key] or .at (key)

" Elements are type pair<key type, value type> andare stored in sorted order
(key is field first, valueis field second)

- Key type must support less-than operator (<)

23
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map Example mapexample.cc

{ )

(void PrintOut (const pair<Amoeba, Amoeba>& p)
cout << "printout: [" << p.first << "," << p.second << "]" << endl;
}

int main(int argc, char** argv) {
Amoeba a("Alvin"), b("Barb"), c("Chloe");
Amoeba d("Daryl"), e("Ellen"), f£("Fei");
map<Amoeba, Amoeba> table;
map<Amoeba, Amoeba>::iterator it;

table.insert (pair<Amoeba, Amoeba>(a, b))

table[c] = d;
table[e] = £f;
cout << "tablel[e]:" << table[e] << endl;

it = table.find(c) ;

cout << "PrintOut (*1it), where it = table.find(c)" << endl;
PrintOut (*it) ;

cout << "iterating:" << endl;
for each(table.begin(), table.end(), &PrintOut);

return EXIT SUCCESS;

24
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Unordered Containers (C++11)

+ unordered map, unordered set
" Andrelated classes unordered multimap, unordered multiset

= Average case for key access is O(1)

- But range iterators can be less efficient than ordered map/set

= See C++ Primer, online references for details

25
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Extra Exercise #1

% Using the Amoeba . h/. cc files from lecture:
" Construct a vector of lists of Amoebas
 j.e.a vector container with each element beinga 1ist of Amoebas

= QObserve how many copies happen ©
- Use the sort algorithm to sort the vector

« Usethe list.sort () function to sort each list

26



WA/ UNIVERSITY of WASHINGTON L14: C++STL

Extra Exercise #2

+ Take one of the books from HW2’s test tree and:
= Read in the book, split it into words (you can use your hw?2)

" For each word, insert the word into an STL map
- The key is the word, the value is an integer

- The value should keep track of how many times you’ve seen the word, so each time you
encounter the word, increment its map element

« Thus, build a histogram of word count
" Print out the histogram in order, sorted by word count

= Bonus: Plot the histogram on a log-log scale (use Excel, gnuplot, etc.)

- x-axis: log(word number), y-axis: log(word count)

CSE333, Autumn 2025
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