WA/ UNIVERSITY of WASHINGTON L12: C++ Heap CSE333, Autumn 2025

C++ Class Details, Heap
CSE 333 Spring 2025

Instructors: Naomi Alterman, Chris Thachuk

Teaching Assistants:

Ann Baturytski Derek de Leuw Blake Diaz
Rishabh Jain Chendur Jel Jayavelu Lucas Kwan
Irene Xin Jie Lau Nathan Li Maya Odenheim
Advay Patil Selim Saridede Deeksha Vatwani

Angela Wu Jiexiao Xu

WA/ UNIVERSITY of WASHINGTON L12: C++ Heap CSE333, Autumn 2025

0 PO" EVGI‘YWheI‘e pollev.com/naomila

Where are you so far on Homework 2?

Working on Part A (File Parser)
Working on Part B (File Crawler and Indexer)

. Working on Part C (Query Processor)
Done!

Prefer not to say

nmmooOo®mpP

WA/ UNIVERSITY of WASHINGTON L12: C++ Heap CSE333, Autumn 2025

Administrivia

+» Exercise 9 out now, due Wednesday 10a
+» HW2 due on Thursday 11:59p

WA/ UNIVERSITY of WASHINGTON L12: C++ Heap CSE333, Autumn 2025

Lecture Outline

+ Class Details

" Filling in some gaps from last time
+» Using the Heap

" new/delete/delete]]

WA/ UNIVERSITY of WASHINGTON

L12: C++ Heap

Rule of Three

If you define any of:
1) Destructor
2) Copy Constructor

3) Assignment (operator=)

+ Then you should normally define all three

= Can explicitly ask for default synthesized versions (C++11 & later):

rclass Point {
public:
Point ()

~Point ()

default;
default;
Point (const Pointé& copyme)
Pointé& operator=(const Pointé& rhs)

the default
the default
the default
the default

default;
default; //

ctor
dtor
cctor

m_um

CSE333, Autumn 2025

L12: C++ Heap

CSE333, Autumn 2025

WA/ UNIVERSITY of WASHINGTON

Avoiding pain

+» C++ style guide tip:

= |f possible, disable the copy constructor and assignment operator if not needed —
avoids implicit invocation and excessive copying. C++11 and later have direct

syntax to indicate this: Point 2011.h
(class Point {)
public:
Point (const int x, const int vy) (x), y . (y) { Yy // ctor
Point (const Pointé& copyme) = delete; // declare cctor and "=" as

Pointé& operator=(const Pointé& rhs)
private:

}Y; // class Point

= delete;

// as deleted (C++11)

y = X;
\

compiler error (no default constructor)

compiler error (no copy constructor)
compiler error (no assignment operator)

Point w; //
Point x(1, 2); // OK!
Point y = w; //

//

WA/ UNIVERSITY of WASHINGTON L12: C++ Heap CSE333, Autumn 2025

If you’re dealing with old code...

+ In pre-C++11 code the copy constructor and assignment
were often disabled by making them private and not

implementing them (you may see this)... boint h
(class Point {)
public:
Point (const int x, const int y) : x (x), v (y) { } // ctor
private:
Point (const Pointé& copyme) ; // disable cctor (no def.)
Point& operator=(const Pointé& rhs); // disable "=" (no def.)

}; // class Point

Point w; // compiler error (no default constructor)
Point x(1, 2); // OK!
Point y = w; // compiler error (no copy constructor)

Vv = X; // compiler error (no assignment operator)
L

WA/ UNIVERSITY of WASHINGTON L12: C++ Heap CSE333, Autumn 2025

structvs. class

+ InC,a struct can only contain data fields
= Has no methods and all fields are always accessible
" Instruct foo,the fooisa “struct tag”, not an ordinary data type

% In C++, struct and class are (nearly) the same!
= Both define a new type (the struct or class name)
= Both can have methods and member visibility (public/private/protected)

® Only real (minor) difference: members are default publicin a st ruct and default private in a
class

— Best to always explicitly write public or private to make intent clear

+» Common style/usage convention:
= Use struct for simple bundles of data
- Convenience constructors can make sense though
= Use class for abstractions with data + functions

WA/ UNIVERSITY of WASHINGTON L12: C++ Heap CSE333, Autumn 2025

Access Control

+» Access modifiers for members:
" public: accessible to all parts of the program

" private: accessible to the member functions of the class

- Private to class, not object instances

" protected: accessible to member functions of the class and any derived classes
(subclasses — more to come, later)

+ Reminders:

= Access modifiers apply to all members that follow until another access modifier is reached

= |If no access modifier is specified, st ruct members default to publicand class
members default to private

WA/ UNIVERSITY of WASHINGTON L12: C++ Heap

Nonmember Functions

+« “Nonmember functions” are just normal functions that
happen to use some class

" Called like a regular function instead of as a member of a class
object instance

- This gets a little weird when we talk about operators...

" These do not have access to the class’ private members

+» Useful nonmember functions are often included as part of
the interface to a class
= Declaration goes in header file, but outside of class definition
- But inside the same namespace as the class, if it has one

= Super useful for class-related things like overloaded operators
(operator+, etc.), stream |I/O (operator<<), etc. ...

CSE333, Autumn 2025

10

WA/ UNIVERSITY of WASHINGTON L12: C++ Heap CSE333, Autumn 2025

Review: Operator Overloading

+~ Can overload operators using member functions

= Restriction: left-hand side argument must be the class you are implementing

Complex& operator+=(const Complex &a) { ... }

+» Can overload operators using nonmember functions

" No restriction on arguments (can specify any two)

- Our only option when the left-hand side is a class or type you do not have control over, like
ostreamor istreamor int, etc.

= But no access to private data or function members

Complex operator+ (const Complex &a, const Complex &b) { ... }

11

L12: C++ Heap CSE333, Autumn 2025

WA/ UNIVERSITY of WASHINGTON

friend Nonmember Functions

+» A class can give a nonmember function (or class) access to its
non-public members by declaring it as a £riend within its
definition
= friend function is not a class member, but has access privileges as if it
were

= friend functions are usually unnecessary if your class includes

appropriate “getter” public functions
Complex.h

(class Complex { N

friend std::istream& operator>>(std::istream& in, Complexé& a);

L }; // class Complex)

(std::istreams operator>>(std::istream& in, Complexé& a) {

} J
Complex.cc 1

\.

WA/ UNIVERSITY of WASHINGTON L12: C++ Heap

When to use Nonmember and £friend

+ Member functions:
= QOperators that modify the object being called on
- e.g., assighnment (operator=and operator+=, operator-=)

= “Core” non-operator functionality that is part of the class interface

+ Nonmember functions:

= Used for commutative operators

- e.g.,sovl + v2 isinvoked as operator+(vl, wv2)instead of
vl.operator+ (v2)

If operating on two types and the class is on the right-hand side

« e.g.,cin >> complex;

= Other functions that do not need to be or cannot be class members
- e.g., cout << complex;

= Returning a “new” object, not modifying an existing one

" Only grant friend permission if you NEED to

CSE333, Autumn 2025

13

WA/ UNIVERSITY of WASHINGTON

Namespaces

L12: C++ Heap

» Each namespace is a separate scope

= Useful for avoiding symbol collisions

+~ Namespace definition:

P
" | namespace name ({

// declarations go here

}

_

J

" Creates a new namespace name if it did not exist, otherwise adds to the existing

namespace (!)

- This means that components (classes, functions, etc.) of a namespace can be defined in multiple

source files

— All of the standard library is in namespace std but it has many source files

CSE333, Autumn 2025

WA/ UNIVERSITY of WASHINGTON L12: C++ Heap CSE333, Autumn 2025

Classes vs. Namespaces

+ They seems somewhat similar, but classes are not namespaces:

" There are no instances/objects of a namespace; a namespace is just a group of logically-
related things (classes, functions, etc.)

" To access a member of a namespace, you must use the fully qualified name (i.e.
nsp_ name: :member)

« Unless you are using that namespace or individual member item

« You only used the fully qualified name of a class member when you are defining it outside of the
scope of the class definition

15

WA/ UNIVERSITY of WASHINGTON L12: C++ Heap CSE333, Autumn 2025

Lecture Outline

« Class Details

® Filling in some gaps from last time
+» Using the Heap
" new/delete/delete]]

16

CSE333, Autumn 2025

WA/ UNIVERSITY of WASHINGTON L12: C++ Heap

C++1ll nullptr

« Cand C++ have long used NULL as a pointer value that references nothing

% C++11 introduced a new literal for this: nul lptr

= New reserved word

" |nterchangeable with NULL for all practical purposes, but it has type T* for any/every T,
and is not an integer value

-« Avoids funny edge cases, especially with function overloading (£ (int) vs £ (T*); see C++
references for details)

- Still can convert to/from integer 0 for tests, assighment, etc.

= Advice: prefer nullptr in C++11 code

« Though NULL will also be around for a long, long time

17

WA/ UNIVERSITY of WASHINGTON L12: C++ Heap CSE333, Autumn 2025

new/delete

+ To allocate on the heap using C++, you use the new keyword instead of
malloc () fromstdlib.h

" int *num = new 1int; Point *pt = new Point;

= Key detail: new knows how to call class constructors. malloc () does not

+ To deallocate a heap-allocated object or primitive, use the de lete keyword
instead of free () fromstdlib.h

" delete callsclass destructors. free () does not.

< Don’t mix and match!

- Never free () something allocated with new
- Never delete something allocated withmalloc ()

« Careful if you’re using a legacy C code library or module in C++

18

CSE333, Autumn 2025

WA/ UNIVERSITY of WASHINGTON L12: C++ Heap

new/delete Example

(int* AllocatelInt (int x) { N (Point* AllocatePoint (int x, 1int vy) {\
int* heapy int = new int; Point* heapy pt = new Point (x,y);
*heapy int = x; return heapy pt;
return heapy int; }

\} J \. J

heappoint.cc

4 , , N
#include "Point.h"

using namespace std;

// definitions of AllocatelInt () and AllocatePoint ()

int main () {
Point* x = AllocatePoint(l, 2);
int* y = AllocatelInt(3);

cout << "x's x coord: " << x->get x() << endl;
cout << "y: " << y << ", Fy: " KL *y << endl;
delete x;

delete vy;

return EXIT SUCCESS;
19

L12: C++ Heap CSE333, Autumn 2025

WA/ UNIVERSITY of WASHINGTON

new/delete Behavior

« new behavior:
" When allocating you can specify a constructor or initial value
 e.g.,new Point(l, 2),new 1nt(333)
" |f no initialization specified, it will use default constructor for objects and uninitialized
(“mystery”) data for primitives
" You don’t need to check that new returns nul lptr
- When an error is encountered, an exception is thrown (that we won’t worry about)

« delete behavior:
" |fyou delete already deleted memory, then you will get undefined behavior (same as
when you double £ree in C)

20

WA/ UNIVERSITY of WASHINGTON L12: C++ Heap

CSE333, Autumn 2025

Dynamically Allocated Arrays

+» To dynamically allocate an array:

= Default initialize: type* name = new typel[size];

% To dynamically deallocate an array:

B Use|delete[] name;

" |tisanincorrectto use “delete name;” onanarray

- The compiler probably won’t catch this, though (!) because it can’t always tell if name* was
allocated with new typel[size];

or new type;

— Especially inside a function where a pointer parameter could point to a single item or an array and
there’s no way to tell which!

- Result of wrong de 1l ete is undefined behavior

21

WA/ UNIVERSITY of WASHINGTON

CSE333, Autumn 2025

L12: C++ Heap

Arrays Example (primitive)

delete heap int; // ok
delete heap init int; // ok
delete heap arr; // error - must be delete[]
delete[] heap init arr; //ok

return 0;

arrays.cc
4 , s N
#include "Point.h"
using namespace std;
int main () {
int stack int;
int* heap int = new int;
int* heap init int = new 1int(12);
int stack arr[10];
int* heap arr = new int[10];
int* heap init arr = new int[10](); // uncommon usage
int* heap init error = new int[10] (12); // bad syntax
int* heap init error = new int[10]{12}; // C++11l allows (uncommon)

22

WA/ UNIVERSITY of WASHINGTON

L12: C++ Heap

CSE333, Autumn 2025

Arrays Example (class objects)

arrays.cc

Point*

Point*

Point*
Point*

delete

return

r#include "Point.h"
using namespace std;

int main () {

Point stack point (1,

heap point =
err pt arr =

err2 pt arr =
err2 pt arr =

heap point;

2)
new Point (1, 2);

new Point[10];// bug-no Point () ctr

new Point[10](1,2);
new Point[10]{1,2};

// bad syntax
// C++11 allows

(uncommon)

\

23

WA/ UNIVERSITY of WASHINGTON

malloc vs. new

L12: C++ Heap

malloc () new
What is it? a function an operator or keyword
How often used (in C)? often never
How often used (in C++)? rarely often
: arrays, structs, objects,
Allocated memory for anything Y L .
primitives
. . .
RetUrns avoid approprla)te pointer type
(should be cast) (doesn’t need a cast)

When out of memory

returns NULL

throws an exception

Deallocating

free ()

deleteordelete|]

CSE333, Autumn 2025

24

WA/ UNIVERSITY of WASHINGTON

L12: C++ Heap

Dynamically Allocated Class Members

+» What will happen when we invoke
bar()?

= \/ote at http://PollEv.com/naomila

" |f thereis an error,
how would you fix it?

Bad delete
Memory leak

. “Works” fine

(

mooOwp

We’re lost...

Foo::Foo(int val) { Init(val); }
Foo::~Foo() { delete foo ptr ; }

vold Foo::Init(int wval) {
foo ptr = new int;
*foo ptr = val;

}

Foo& Foo::operator=(const Foo& rhs)
delete foo ptr ;
Init (* (rhs.foo ptr));
return *this;

}

volid bar () {
Foo a(10);
Foo b (20) ;
a = aj

{

CSE333, Autumn 2025

25

http://pollev.com/naomila

WA/ UNIVERSITY of WASHINGTON L12: C++ Heap CSE333, Autumn 2025

Dynamically Allocated Class Members

. . 4 . .)
+» What will happen when we invoke Foo::Foo(int val) { Init(val); }
Foo::~Foo () { delete foo ptr ; }
bar ()? - -
vold Foo::Init(int wval) {
= Vote at http://PollEv.com/naomila Foo BEE = new St

*foo ptr = val;

" |f thereis an error, }

how would you fix it?
Foo& Foo::operator=(const Foo& rhs) {
if (&rhs != this) {

A. delete foo ptr ;
Init (* (rhs.foo ptr));
B. Bad delete }
return *this;

C. Memory leak }
D. “Works” fine void Bar () {

’ Foo a(10);
E. We're lost... Foo b = a:

http://pollev.com/naomila

WA/ UNIVERSITY of WASHINGTON L12: C++ Heap CSE333, Autumn 2025

Heap Member Example

+ Let’s build a class to simulate some of the functionality of the C++ string

" |nternal representation: c-string to hold characters

+» What might we want to implement in the class?

27

WA/ UNIVERSITY of WASHINGTON

L12: C++ Heap

Str Class Walkthrough

Str.h

e .
#include <iostream>
using namespace std;

class Str {

public:
Str () // default ctor
Str (const char* s); // c-string ctor
Str (const Str& s); // copy ctor
~Str(); // dtor

int length() const; // return length of string
char* c_str() const; // return a copy of st on
void append (const Stré& s);

Str& operator=(const Stré& s);

private:
char* st ; // c-string on heap (terminated by
\}; // class Str

// string assignment

friend std::ostream& operator<<(std::ostreamé& out,

heap

const Stré& s);

!\O!)

CSE333, Autumn 2025

28

WA/ UNIVERSITY of WASHINGTON L12: C++ Heap CSE333, Autumn 2025

Str Example Walkthrough

See:
Str.h

Str.cc

strtest.cc

+ Look carefully at assignment operator=

= self-assignment test is especially important here

30

WA/ UNIVERSITY of WASHINGTON L12: C++ Heap CSE333, Autumn 2025

Extra Exercise #1

2 Write a C++ function that:
" Uses new to dynamically allocate an array of strings and uses delete[] to free it
= Uses new to dynamically allocate an array of pointers to strings
- Assign each entry of the array to a string allocated using new
= Cleans up before exiting
- Use delete to delete each allocated string

- Uses delete[] to delete the string pointer array

- (whew!)

31

	Slide 1: C++ Class Details, Heap CSE 333 Spring 2025
	Slide 2: Where are you so far on Homework 2?
	Slide 3: Administrivia
	Slide 4: Lecture Outline
	Slide 5: Rule of Three
	Slide 6: Avoiding pain
	Slide 7: If you’re dealing with old code…
	Slide 8: struct vs. class
	Slide 9: Access Control
	Slide 10: Nonmember Functions
	Slide 11: Review: Operator Overloading
	Slide 12: friend Nonmember Functions
	Slide 13: When to use Nonmember and friend
	Slide 14: Namespaces
	Slide 15: Classes vs. Namespaces
	Slide 16: Lecture Outline
	Slide 17: C++11 nullptr
	Slide 18: new/delete
	Slide 19: new/delete Example
	Slide 20: new/delete Behavior
	Slide 21: Dynamically Allocated Arrays
	Slide 22: Arrays Example (primitive)
	Slide 23: Arrays Example (class objects)
	Slide 24: malloc vs. new
	Slide 25: Dynamically Allocated Class Members
	Slide 26: Dynamically Allocated Class Members
	Slide 27: Heap Member Example
	Slide 28: Str Class Walkthrough
	Slide 30: Str Example Walkthrough
	Slide 31: Extra Exercise #1

