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Where are you so far on Homework 2?

A. Haven’t started yet
B. Working on Part A (File Parser)
C. Working on Part B (File Crawler and Indexer)
D. Working on Part C (Query Processor)
E. Done!
F. Prefer not to say
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Administrivia

❖ Exercise 9 out now, due Wednesday 10a

❖ HW2 due on Thursday 11:59p
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Lecture Outline

❖ Class Details

▪ Filling in some gaps from last time

❖ Using the Heap

▪ new / delete / delete[]
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Rule of Three

❖ If you define any of:

1) Destructor

2) Copy Constructor

3) Assignment (operator=)

❖ Then you should normally define all three

▪ Can explicitly ask for default synthesized versions (C++11 & later):
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class Point {

 public:

  Point() = default;                            // the default ctor

  ~Point() = default;                           // the default dtor

  Point(const Point& copyme) = default;         // the default cctor

  Point& operator=(const Point& rhs) = default; // the default "="

  ...
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Avoiding pain

❖ C++ style guide tip:
▪ If possible, disable the copy constructor and assignment operator if not needed – 

avoids implicit invocation and excessive copying.  C++11 and later have direct 
syntax to indicate this:
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class Point {

 public:

  Point(const int x, const int y) : x_(x), y_(y) { }  // ctor

  ...

  Point(const Point& copyme) = delete;   // declare cctor and "=" as

  Point& operator=(const Point& rhs) = delete; // as deleted (C++11)

 private:

  ...

};  // class Point

Point w;        // compiler error (no default constructor)

Point x(1, 2);  // OK!

Point y = w;    // compiler error (no copy constructor)

y = x;          // compiler error (no assignment operator)

Point_2011.h
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If you’re dealing with old code…

❖ In pre-C++11 code the copy constructor and assignment 

were often disabled by making them private and not 

implementing them (you may see this)…
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class Point {

 public:

  Point(const int x, const int y) : x_(x), y_(y) { }  // ctor

  ...

 private:

  Point(const Point& copyme);          // disable cctor (no def.)

  Point& operator=(const Point& rhs);  // disable "=" (no def.)

  ...

};  // class Point

Point w;        // compiler error (no default constructor)

Point x(1, 2);  // OK!

Point y = w;    // compiler error (no copy constructor)

y = x;          // compiler error (no assignment operator)

Point.h
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struct vs. class

❖ In C, a struct can only contain data fields
▪ Has no methods and all fields are always accessible

▪ In struct foo, the foo is a “struct tag”, not an ordinary data type

❖ In C++, struct and class are (nearly) the same!
▪ Both define a new type (the struct or class name)

▪ Both can have methods and member visibility (public/private/protected)

▪ Only real (minor) difference: members are default public in a struct and default private in a 
class

– Best to always explicitly write public or private to make intent clear

❖ Common style/usage convention:
▪ Use struct for simple bundles of data

• Convenience constructors can make sense though

▪ Use class for abstractions with data + functions
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Access Control

❖ Access modifiers for members:

▪ public: accessible to all parts of the program

▪ private: accessible to the member functions of the class

• Private to class, not object instances

▪ protected: accessible to member functions of the class and any derived classes 

(subclasses – more to come, later)

❖ Reminders:

▪ Access modifiers apply to all members that follow until another access modifier is reached

▪ If no access modifier is specified, struct members default to public and class 

members default to private
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Nonmember Functions

❖ “Nonmember functions” are just normal functions that 
happen to use some class
▪ Called like a regular function instead of as a member of a class 

object instance

• This gets a little weird when we talk about operators…

▪ These do not have access to the class’ private members

❖ Useful nonmember functions are often included as part of 
the interface to a class
▪ Declaration goes in header file, but outside of class definition

• But inside the same namespace as the class, if it has one

▪ Super useful for class-related things like overloaded operators 
(operator+, etc.), stream I/O (operator<<), etc. …
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Review: Operator Overloading

❖ Can overload operators using member functions

▪ Restriction: left-hand side argument must be the class you are implementing

❖ Can overload operators using nonmember functions 

▪ No restriction on arguments (can specify any two)

• Our only option when the left-hand side is a class or type you do not have control over, like 

ostream or istream or int, etc.

▪ But no access to private data or function members
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Complex operator+(const Complex &a, const Complex &b) { ... }

Complex& operator+=(const Complex &a) { ... }
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friend Nonmember Functions

❖ A class can give a nonmember function (or class) access to its 
non-public members by declaring it as a friend within its 
definition
▪ friend function is not a class member, but has access privileges as if it 

were

▪ friend functions are usually unnecessary if your class includes 
appropriate “getter” public functions
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class Complex {

  ...

  friend std::istream& operator>>(std::istream& in, Complex& a);

  ...

};  // class Complex

std::istream& operator>>(std::istream& in, Complex& a) {

  ...

}

Complex.h

Complex.cc
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When to use Nonmember and friend

❖ Member functions:
▪ Operators that modify the object being called on

• e.g., assignment (operator= and operator+=, operator-=)

▪ “Core” non-operator functionality that is part of the class interface

❖ Nonmember functions:
▪ Used for commutative operators

• e.g., so v1 + v2 is invoked as operator+(v1, v2)instead of 
v1.operator+(v2)

▪ If operating on two types and the class is on the right-hand side

• e.g., cin >> complex;

▪ Other functions that do not need to be or cannot be class members

• e.g., cout << complex;

▪ Returning a “new” object, not modifying an existing one

▪ Only grant friend permission if you NEED to

13
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Namespaces

❖ Each namespace is a separate scope

▪ Useful for avoiding symbol collisions

❖ Namespace definition:

▪ namespace name {

  // declarations go here

}

▪ Creates a new namespace name if it did not exist, otherwise adds to the existing 

namespace (!)

• This means that components (classes, functions, etc.) of a namespace can be defined in multiple 

source files

– All of the standard library is in namespace std but it has many source files
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namespace name {

  // declarations go here

}
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Classes vs. Namespaces

❖ They seems somewhat similar, but classes are not namespaces:

▪ There are no instances/objects of a namespace; a namespace is just a group of logically-

related things (classes, functions, etc.)

▪ To access a member of a namespace, you must use the fully qualified name (i.e. 

nsp_name::member)

• Unless you are using that namespace or individual member item

• You only used the fully qualified name of a class member when you are defining it outside of the 

scope of the class definition
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Lecture Outline

❖ Class Details

▪ Filling in some gaps from last time

❖ Using the Heap

▪ new / delete / delete[]
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C++11 nullptr

❖ C and C++ have long used NULL as a pointer value that references nothing

❖ C++11 introduced a new literal for this: nullptr

▪ New reserved word

▪ Interchangeable with NULL for all practical purposes, but it has type T* for any/every T, 

and is not an integer value

• Avoids funny edge cases, especially with function overloading (f(int) vs f(T*); see C++ 

references for details)

• Still can convert to/from integer 0 for tests, assignment, etc.

▪ Advice: prefer nullptr in C++11 code

• Though NULL will also be around for a long, long time
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new/delete

❖ To allocate on the heap using C++, you use the new keyword instead of 

malloc() from stdlib.h

▪ int *num = new int; Point *pt = new Point; 

▪ Key detail: new knows how to call class constructors. malloc()does not

❖ To deallocate a heap-allocated object or primitive, use the delete keyword 

instead of free() from stdlib.h

▪ delete calls class destructors. free() does not.

❖ Don’t mix and match!
• Never free() something allocated with new

• Never delete something allocated with malloc()

• Careful if you’re using a legacy C code library or module in C++

18
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new/delete Example

#include "Point.h"

using namespace std;

...  // definitions of AllocateInt() and AllocatePoint()

int main() {

  Point* x = AllocatePoint(1, 2);

  int* y = AllocateInt(3);

  cout << "x's x_ coord: " << x->get_x() << endl;

  cout << "y: " << y << ", *y: " << *y << endl;

  delete x;

  delete y;

  return EXIT_SUCCESS;

}

int* AllocateInt(int x) {

  int* heapy_int = new int;

  *heapy_int = x;

  return heapy_int;

}

Point* AllocatePoint(int x, int y) {

  Point* heapy_pt = new Point(x,y);

  return heapy_pt;

}

heappoint.cc

19
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new/delete Behavior

❖ new behavior:

▪ When allocating you can specify a constructor or initial value

• e.g., new Point(1, 2), new int(333)

▪ If no initialization specified, it will use default constructor for objects and uninitialized 

(“mystery”) data for primitives

▪ You don’t need to check that new returns nullptr

• When an error is encountered, an exception is thrown (that we won’t worry about)

❖ delete behavior:

▪ If you delete already deleted memory, then you will get undefined behavior (same as 

when you double free in C)

20
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Dynamically Allocated Arrays

❖ To dynamically allocate an array:

▪ Default initialize:

❖ To dynamically deallocate an array:

▪ Use delete[] name;

▪ It is an incorrect to use “delete name;” on an array

• The compiler probably won’t catch this, though (!) because it can’t always tell if name* was 

allocated with new type[size]; 

or new type;

– Especially inside a function where a pointer parameter could point to a single item or an array and 

there’s no way to tell which!

• Result of wrong delete is undefined behavior

type* name = new type[size];

delete[] name;

21
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Arrays Example (primitive)

#include "Point.h"

using namespace std;

int main() {

  int stack_int;

  int* heap_int = new int;

  int* heap_init_int = new int(12);

  int stack_arr[10];

  int* heap_arr = new int[10];

  int* heap_init_arr = new int[10]();  // uncommon usage

  int* heap_init_error = new int[10](12); // bad syntax

  int* heap_init_error = new int[10]{12}; // C++11 allows (uncommon)

  

  delete heap_int;         //  

  delete heap_init_int;    //

  delete heap_arr;         //

  delete[] heap_init_arr;  //

  return 0;

}
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arrays.cc

ok

ok

error – must be delete[]

ok
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Arrays Example (class objects)

#include "Point.h"

using namespace std;

int main() {

  ...

  Point stack_point(1, 2);

  Point* heap_point = new Point(1, 2);

  Point* err_pt_arr = new Point[10];// bug-no Point() ctr

  Point* err2_pt_arr = new Point[10](1,2); // bad syntax

  Point* err2_pt_arr = new Point[10]{1,2}; // C++11 allows (uncommon)

  ...

  delete heap_point;

  ...

  return 0;

}

23

arrays.cc
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malloc vs. new

malloc() new

What is it? a function an operator or keyword

How often used (in C)? often never

How often used (in C++)? rarely often

Allocated memory for anything
arrays, structs, objects, 

primitives

Returns
a void*

(should be cast)
appropriate pointer type

(doesn’t need a cast)

When out of memory returns NULL throws an exception

Deallocating free() delete or delete[]

24
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Dynamically Allocated Class Members

❖ What will happen when we invoke 

bar()?

▪ Vote at http://PollEv.com/naomila 

▪ If there is an error, 

how would you fix it?

A. Bad dereference

B. Bad delete

C. Memory leak

D. “Works” fine

E. We’re lost…

Foo::Foo(int val) { Init(val); }

Foo::~Foo() { delete foo_ptr_; }

void Foo::Init(int val) {

   foo_ptr_ = new int; 

  *foo_ptr_ = val;

}

Foo& Foo::operator=(const Foo& rhs) {

  delete foo_ptr_;

  Init(*(rhs.foo_ptr_));

  return *this; 

}

void bar() {

  Foo a(10);

  Foo b(20);

  a = a;

}

25
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Dynamically Allocated Class Members

❖ What will happen when we invoke 

bar()?

▪ Vote at http://PollEv.com/naomila 

▪ If there is an error, 

how would you fix it?

A. Bad dereference

B. Bad delete

C. Memory leak

D. “Works” fine

E. We’re lost…

Foo::Foo(int val) { Init(val); }

Foo::~Foo() { delete foo_ptr_; }

void Foo::Init(int val) {

   foo_ptr_ = new int; 

  *foo_ptr_ = val;

}

Foo& Foo::operator=(const Foo& rhs) {

  if (&rhs != this) { 

    delete foo_ptr_;

    Init(*(rhs.foo_ptr_));

  }

  return *this; 

}

void Bar() {

  Foo a(10);

  Foo b = a;

}
26
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Heap Member Example

❖ Let’s build a class to simulate some of the functionality of the C++ string

▪ Internal representation: c-string to hold characters

❖ What might we want to implement in the class?
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Str Class Walkthrough

28

#include <iostream>

using namespace std;

class Str {

 public:

  Str();               // default ctor

  Str(const char* s);  // c-string ctor

  Str(const Str& s);   // copy ctor

  ~Str();              // dtor

  int length() const;  // return length of string

  char* c_str() const; // return a copy of st_ on heap

  void append(const Str& s);

  Str& operator=(const Str& s);  // string assignment

  friend std::ostream& operator<<(std::ostream& out, const Str& s);

 private:

  char* st_;  // c-string on heap (terminated by '\0')

};  // class Str

Str.h
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Str Example Walkthrough

See:

Str.h

Str.cc

strtest.cc

❖ Look carefully at assignment operator=

▪ self-assignment test is especially important here
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Extra Exercise #1

❖ Write a C++ function that:

▪ Uses new to dynamically allocate an array of strings and uses delete[] to free it

▪ Uses new to dynamically allocate an array of pointers to strings

• Assign each entry of the array to a string allocated using new 

▪ Cleans up before exiting

• Use delete to delete each allocated string

• Uses delete[] to delete the string pointer array

• (whew!)
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