
CSE333, Autumn 2025L12: C++ Heap

C++ Class Details, Heap
CSE 333 Spring 2025

Instructors: Naomi Alterman, Chris Thachuk

Teaching Assistants:

Ann Baturytski Derek de Leuw Blake Diaz

Rishabh Jain Chendur Jel Jayavelu Lucas Kwan

Irene Xin Jie Lau Nathan Li Maya Odenheim

Advay Patil Selim Saridede Deeksha Vatwani

Angela Wu Jiexiao Xu

CSE333, Autumn 2025L12: C++ Heap

2

pollev.com/naomila

Where are you so far on Homework 2?

A. Haven’t started yet
B. Working on Part A (File Parser)
C. Working on Part B (File Crawler and Indexer)
D. Working on Part C (Query Processor)
E. Done!
F. Prefer not to say

CSE333, Autumn 2025L12: C++ Heap

Administrivia

❖ Exercise 9 out now, due Wednesday 10a

❖ HW2 due on Thursday 11:59p

3

CSE333, Autumn 2025L12: C++ Heap

Lecture Outline

❖ Class Details

▪ Filling in some gaps from last time

❖ Using the Heap

▪ new / delete / delete[]

4

CSE333, Autumn 2025L12: C++ Heap

Rule of Three

❖ If you define any of:

1) Destructor

2) Copy Constructor

3) Assignment (operator=)

❖ Then you should normally define all three

▪ Can explicitly ask for default synthesized versions (C++11 & later):

5

class Point {

 public:

 Point() = default; // the default ctor

 ~Point() = default; // the default dtor

 Point(const Point& copyme) = default; // the default cctor

 Point& operator=(const Point& rhs) = default; // the default "="

 ...

CSE333, Autumn 2025L12: C++ Heap

Avoiding pain

❖ C++ style guide tip:
▪ If possible, disable the copy constructor and assignment operator if not needed –

avoids implicit invocation and excessive copying. C++11 and later have direct
syntax to indicate this:

6

class Point {

 public:

 Point(const int x, const int y) : x_(x), y_(y) { } // ctor

 ...

 Point(const Point& copyme) = delete; // declare cctor and "=" as

 Point& operator=(const Point& rhs) = delete; // as deleted (C++11)

 private:

 ...

}; // class Point

Point w; // compiler error (no default constructor)

Point x(1, 2); // OK!

Point y = w; // compiler error (no copy constructor)

y = x; // compiler error (no assignment operator)

Point_2011.h

CSE333, Autumn 2025L12: C++ Heap

If you’re dealing with old code…

❖ In pre-C++11 code the copy constructor and assignment

were often disabled by making them private and not

implementing them (you may see this)…

7

class Point {

 public:

 Point(const int x, const int y) : x_(x), y_(y) { } // ctor

 ...

 private:

 Point(const Point& copyme); // disable cctor (no def.)

 Point& operator=(const Point& rhs); // disable "=" (no def.)

 ...

}; // class Point

Point w; // compiler error (no default constructor)

Point x(1, 2); // OK!

Point y = w; // compiler error (no copy constructor)

y = x; // compiler error (no assignment operator)

Point.h

CSE333, Autumn 2025L12: C++ Heap

struct vs. class

❖ In C, a struct can only contain data fields
▪ Has no methods and all fields are always accessible

▪ In struct foo, the foo is a “struct tag”, not an ordinary data type

❖ In C++, struct and class are (nearly) the same!
▪ Both define a new type (the struct or class name)

▪ Both can have methods and member visibility (public/private/protected)

▪ Only real (minor) difference: members are default public in a struct and default private in a
class

– Best to always explicitly write public or private to make intent clear

❖ Common style/usage convention:
▪ Use struct for simple bundles of data

• Convenience constructors can make sense though

▪ Use class for abstractions with data + functions

8

CSE333, Autumn 2025L12: C++ Heap

Access Control

❖ Access modifiers for members:

▪ public: accessible to all parts of the program

▪ private: accessible to the member functions of the class

• Private to class, not object instances

▪ protected: accessible to member functions of the class and any derived classes

(subclasses – more to come, later)

❖ Reminders:

▪ Access modifiers apply to all members that follow until another access modifier is reached

▪ If no access modifier is specified, struct members default to public and class

members default to private

9

CSE333, Autumn 2025L12: C++ Heap

Nonmember Functions

❖ “Nonmember functions” are just normal functions that
happen to use some class
▪ Called like a regular function instead of as a member of a class

object instance

• This gets a little weird when we talk about operators…

▪ These do not have access to the class’ private members

❖ Useful nonmember functions are often included as part of
the interface to a class
▪ Declaration goes in header file, but outside of class definition

• But inside the same namespace as the class, if it has one

▪ Super useful for class-related things like overloaded operators
(operator+, etc.), stream I/O (operator<<), etc. …

10

CSE333, Autumn 2025L12: C++ Heap

Review: Operator Overloading

❖ Can overload operators using member functions

▪ Restriction: left-hand side argument must be the class you are implementing

❖ Can overload operators using nonmember functions

▪ No restriction on arguments (can specify any two)

• Our only option when the left-hand side is a class or type you do not have control over, like

ostream or istream or int, etc.

▪ But no access to private data or function members

11

Complex operator+(const Complex &a, const Complex &b) { ... }

Complex& operator+=(const Complex &a) { ... }

CSE333, Autumn 2025L12: C++ Heap

friend Nonmember Functions

❖ A class can give a nonmember function (or class) access to its
non-public members by declaring it as a friend within its
definition
▪ friend function is not a class member, but has access privileges as if it

were

▪ friend functions are usually unnecessary if your class includes
appropriate “getter” public functions

12

class Complex {

 ...

 friend std::istream& operator>>(std::istream& in, Complex& a);

 ...

}; // class Complex

std::istream& operator>>(std::istream& in, Complex& a) {

 ...

}

Complex.h

Complex.cc

CSE333, Autumn 2025L12: C++ Heap

When to use Nonmember and friend

❖ Member functions:
▪ Operators that modify the object being called on

• e.g., assignment (operator= and operator+=, operator-=)

▪ “Core” non-operator functionality that is part of the class interface

❖ Nonmember functions:
▪ Used for commutative operators

• e.g., so v1 + v2 is invoked as operator+(v1, v2)instead of
v1.operator+(v2)

▪ If operating on two types and the class is on the right-hand side

• e.g., cin >> complex;

▪ Other functions that do not need to be or cannot be class members

• e.g., cout << complex;

▪ Returning a “new” object, not modifying an existing one

▪ Only grant friend permission if you NEED to

13

CSE333, Autumn 2025L12: C++ Heap

Namespaces

❖ Each namespace is a separate scope

▪ Useful for avoiding symbol collisions

❖ Namespace definition:

▪ namespace name {

 // declarations go here

}

▪ Creates a new namespace name if it did not exist, otherwise adds to the existing

namespace (!)

• This means that components (classes, functions, etc.) of a namespace can be defined in multiple

source files

– All of the standard library is in namespace std but it has many source files

14

namespace name {

 // declarations go here

}

CSE333, Autumn 2025L12: C++ Heap

Classes vs. Namespaces

❖ They seems somewhat similar, but classes are not namespaces:

▪ There are no instances/objects of a namespace; a namespace is just a group of logically-

related things (classes, functions, etc.)

▪ To access a member of a namespace, you must use the fully qualified name (i.e.

nsp_name::member)

• Unless you are using that namespace or individual member item

• You only used the fully qualified name of a class member when you are defining it outside of the

scope of the class definition

15

CSE333, Autumn 2025L12: C++ Heap

Lecture Outline

❖ Class Details

▪ Filling in some gaps from last time

❖ Using the Heap

▪ new / delete / delete[]

16

CSE333, Autumn 2025L12: C++ Heap

C++11 nullptr

❖ C and C++ have long used NULL as a pointer value that references nothing

❖ C++11 introduced a new literal for this: nullptr

▪ New reserved word

▪ Interchangeable with NULL for all practical purposes, but it has type T* for any/every T,

and is not an integer value

• Avoids funny edge cases, especially with function overloading (f(int) vs f(T*); see C++

references for details)

• Still can convert to/from integer 0 for tests, assignment, etc.

▪ Advice: prefer nullptr in C++11 code

• Though NULL will also be around for a long, long time

17

CSE333, Autumn 2025L12: C++ Heap

new/delete

❖ To allocate on the heap using C++, you use the new keyword instead of

malloc() from stdlib.h

▪ int *num = new int; Point *pt = new Point;

▪ Key detail: new knows how to call class constructors. malloc()does not

❖ To deallocate a heap-allocated object or primitive, use the delete keyword

instead of free() from stdlib.h

▪ delete calls class destructors. free() does not.

❖ Don’t mix and match!
• Never free() something allocated with new

• Never delete something allocated with malloc()

• Careful if you’re using a legacy C code library or module in C++

18

CSE333, Autumn 2025L12: C++ Heap

new/delete Example

#include "Point.h"

using namespace std;

... // definitions of AllocateInt() and AllocatePoint()

int main() {

 Point* x = AllocatePoint(1, 2);

 int* y = AllocateInt(3);

 cout << "x's x_ coord: " << x->get_x() << endl;

 cout << "y: " << y << ", *y: " << *y << endl;

 delete x;

 delete y;

 return EXIT_SUCCESS;

}

int* AllocateInt(int x) {

 int* heapy_int = new int;

 *heapy_int = x;

 return heapy_int;

}

Point* AllocatePoint(int x, int y) {

 Point* heapy_pt = new Point(x,y);

 return heapy_pt;

}

heappoint.cc

19

CSE333, Autumn 2025L12: C++ Heap

new/delete Behavior

❖ new behavior:

▪ When allocating you can specify a constructor or initial value

• e.g., new Point(1, 2), new int(333)

▪ If no initialization specified, it will use default constructor for objects and uninitialized

(“mystery”) data for primitives

▪ You don’t need to check that new returns nullptr

• When an error is encountered, an exception is thrown (that we won’t worry about)

❖ delete behavior:

▪ If you delete already deleted memory, then you will get undefined behavior (same as

when you double free in C)

20

CSE333, Autumn 2025L12: C++ Heap

Dynamically Allocated Arrays

❖ To dynamically allocate an array:

▪ Default initialize:

❖ To dynamically deallocate an array:

▪ Use delete[] name;

▪ It is an incorrect to use “delete name;” on an array

• The compiler probably won’t catch this, though (!) because it can’t always tell if name* was

allocated with new type[size];

or new type;

– Especially inside a function where a pointer parameter could point to a single item or an array and

there’s no way to tell which!

• Result of wrong delete is undefined behavior

type* name = new type[size];

delete[] name;

21

CSE333, Autumn 2025L12: C++ Heap

Arrays Example (primitive)

#include "Point.h"

using namespace std;

int main() {

 int stack_int;

 int* heap_int = new int;

 int* heap_init_int = new int(12);

 int stack_arr[10];

 int* heap_arr = new int[10];

 int* heap_init_arr = new int[10](); // uncommon usage

 int* heap_init_error = new int[10](12); // bad syntax

 int* heap_init_error = new int[10]{12}; // C++11 allows (uncommon)

 delete heap_int; //

 delete heap_init_int; //

 delete heap_arr; //

 delete[] heap_init_arr; //

 return 0;

}

22

arrays.cc

ok

ok

error – must be delete[]

ok

CSE333, Autumn 2025L12: C++ Heap

Arrays Example (class objects)

#include "Point.h"

using namespace std;

int main() {

 ...

 Point stack_point(1, 2);

 Point* heap_point = new Point(1, 2);

 Point* err_pt_arr = new Point[10];// bug-no Point() ctr

 Point* err2_pt_arr = new Point[10](1,2); // bad syntax

 Point* err2_pt_arr = new Point[10]{1,2}; // C++11 allows (uncommon)

 ...

 delete heap_point;

 ...

 return 0;

}

23

arrays.cc

CSE333, Autumn 2025L12: C++ Heap

malloc vs. new

malloc() new

What is it? a function an operator or keyword

How often used (in C)? often never

How often used (in C++)? rarely often

Allocated memory for anything
arrays, structs, objects,

primitives

Returns
a void*

(should be cast)
appropriate pointer type

(doesn’t need a cast)

When out of memory returns NULL throws an exception

Deallocating free() delete or delete[]

24

CSE333, Autumn 2025L12: C++ Heap

Dynamically Allocated Class Members

❖ What will happen when we invoke

bar()?

▪ Vote at http://PollEv.com/naomila

▪ If there is an error,

how would you fix it?

A. Bad dereference

B. Bad delete

C. Memory leak

D. “Works” fine

E. We’re lost…

Foo::Foo(int val) { Init(val); }

Foo::~Foo() { delete foo_ptr_; }

void Foo::Init(int val) {

 foo_ptr_ = new int;

 *foo_ptr_ = val;

}

Foo& Foo::operator=(const Foo& rhs) {

 delete foo_ptr_;

 Init(*(rhs.foo_ptr_));

 return *this;

}

void bar() {

 Foo a(10);

 Foo b(20);

 a = a;

}

25

http://pollev.com/naomila

CSE333, Autumn 2025L12: C++ Heap

Dynamically Allocated Class Members

❖ What will happen when we invoke

bar()?

▪ Vote at http://PollEv.com/naomila

▪ If there is an error,

how would you fix it?

A. Bad dereference

B. Bad delete

C. Memory leak

D. “Works” fine

E. We’re lost…

Foo::Foo(int val) { Init(val); }

Foo::~Foo() { delete foo_ptr_; }

void Foo::Init(int val) {

 foo_ptr_ = new int;

 *foo_ptr_ = val;

}

Foo& Foo::operator=(const Foo& rhs) {

 if (&rhs != this) {

 delete foo_ptr_;

 Init(*(rhs.foo_ptr_));

 }

 return *this;

}

void Bar() {

 Foo a(10);

 Foo b = a;

}
26

http://pollev.com/naomila

CSE333, Autumn 2025L12: C++ Heap

Heap Member Example

❖ Let’s build a class to simulate some of the functionality of the C++ string

▪ Internal representation: c-string to hold characters

❖ What might we want to implement in the class?

27

CSE333, Autumn 2025L12: C++ Heap

Str Class Walkthrough

28

#include <iostream>

using namespace std;

class Str {

 public:

 Str(); // default ctor

 Str(const char* s); // c-string ctor

 Str(const Str& s); // copy ctor

 ~Str(); // dtor

 int length() const; // return length of string

 char* c_str() const; // return a copy of st_ on heap

 void append(const Str& s);

 Str& operator=(const Str& s); // string assignment

 friend std::ostream& operator<<(std::ostream& out, const Str& s);

 private:

 char* st_; // c-string on heap (terminated by '\0')

}; // class Str

Str.h

CSE333, Autumn 2025L12: C++ Heap

Str Example Walkthrough

See:

Str.h

Str.cc

strtest.cc

❖ Look carefully at assignment operator=

▪ self-assignment test is especially important here

30

CSE333, Autumn 2025L12: C++ Heap

Extra Exercise #1

❖ Write a C++ function that:

▪ Uses new to dynamically allocate an array of strings and uses delete[] to free it

▪ Uses new to dynamically allocate an array of pointers to strings

• Assign each entry of the array to a string allocated using new

▪ Cleans up before exiting

• Use delete to delete each allocated string

• Uses delete[] to delete the string pointer array

• (whew!)

31

	Slide 1: C++ Class Details, Heap CSE 333 Spring 2025
	Slide 2: Where are you so far on Homework 2?
	Slide 3: Administrivia
	Slide 4: Lecture Outline
	Slide 5: Rule of Three
	Slide 6: Avoiding pain
	Slide 7: If you’re dealing with old code…
	Slide 8: struct vs. class
	Slide 9: Access Control
	Slide 10: Nonmember Functions
	Slide 11: Review: Operator Overloading
	Slide 12: friend Nonmember Functions
	Slide 13: When to use Nonmember and friend
	Slide 14: Namespaces
	Slide 15: Classes vs. Namespaces
	Slide 16: Lecture Outline
	Slide 17: C++11 nullptr
	Slide 18: new/delete
	Slide 19: new/delete Example
	Slide 20: new/delete Behavior
	Slide 21: Dynamically Allocated Arrays
	Slide 22: Arrays Example (primitive)
	Slide 23: Arrays Example (class objects)
	Slide 24: malloc vs. new
	Slide 25: Dynamically Allocated Class Members
	Slide 26: Dynamically Allocated Class Members
	Slide 27: Heap Member Example
	Slide 28: Str Class Walkthrough
	Slide 30: Str Example Walkthrough
	Slide 31: Extra Exercise #1

