CSE333, Autumn 2025

WA/ UNIVERSITY of WASHINGTON L11: C++ Classes, Constructor, and Copies (Oh My!)

C++ Classes, Constructors and Copies (oh my!)
CSE 333 Autumn 2025

Instructors: Naomi Alterman, Chris Thachuk

Teaching Assistants:

Ann Baturytski Derek de Leuw Blake Diaz
Rishabh Jain Chendur Jel Jayavelu Lucas Kwan
Irene Xin Jie Lau Nathan Li Maya Odenheim
Advay Patil Selim Saridede Deeksha Vatwani

Angela Wu Jiexiao Xu

WA/ UNIVERSITY of WASHINGTON L11: C++ Classes, Constructor, and Copies (Oh My!) CSE333, Autumn 2025

Vibe check

+» PollEv.com/naomila

+» How are you feeling about C++ right
about now?

OOHOO

https://pollev.com/naomila
https://pollev.com/naomila
https://pollev.com/naomila

WA/ UNIVERSITY of WASHINGTON L11: C++ Classes, Constructor, and Copies (Oh My!) CSE333, Autumn 2025

Administrivia

+» Naomi’s office hours moving to Wednesdays 2:30-3:30p
+ No exercise 9 yet (out on Monday)

« A bunch of deadlines coming up in the next few weeks, plan ahead!!!
= EXO9 (it’s a big one), EX10, HW2, midterm

WA/ UNIVERSITY of WASHINGTON L11: C++ Classes, Constructor, and Copies (Oh My!) CSE333, Autumn 2025

Lecture Outline

+~ Classes

+» Constructors

« Copy Constructors
+» Assignment

« Destructors

» An extended example

WA/ UNIVERSITY of WASHINGTON L11: C++ Classes, Constructor, and Copies (Oh My!) CSE333, Autumn 2025

Classes

+ Class definition syntax (in a . h file):

(class Name {
public:
// public member definitions & declarations go here

private:
// private member definitions & declarations go here
}Y: // class Name

_ J

= Members can be functions (methods) or data (variables)

+ Class member function definition syntax (in a . cc file):

retType Name: :MethodName (typel paraml, .., typeN paramN) {
// body statements
}

® (1) define within the class definition or (2) declare within the class definition and then
define elsewhere

WA/ UNIVERSITY of WASHINGTON L11: C++ Classes, Constructor, and Copies (Oh My!) CSE333, Autumn 2025

Class Organization

+ Class definition is part of interface and should go in . h file

= Private members still must be included in definition (!)

+ Usually put member function definitions into companion . cc file with
implementation details
® These files can also include non-member functions that use the class

= Common exception: setter and getter methods

« Unlike Java, you can name files anything you want

= Typically Name.cc and Name.hforclass Name

WA/ UNIVERSITY of WASHINGTON L11: C++ Classes, Constructor, and Copies (Oh My!) CSE333, Autumn 2025

Big ol’ example

Point.h Point.cc
[4ifndef POINT H Y (#include <cmath> B

#define POINT H #include "Point.h"
class Point { // NOTE: THIS FILE HAS WEIRD AND BAD CODING STYLE!
public: // We just want to illustrate some language features for you (:

Point (const int x, const int y); Point::Point (const int x, const int y) {

int get x() const { return x ; } x = x;

int get y() const { return y ; } tEis—>y = v;

double Distance (const Pointé& p) const; } -

void SetLocation(const int x,

const int y); double Point::Distance(const Point& p) const {
. double distance = (x_ - p.get x()) *

IRERVERESE (x_ - p.get_x());

}nt x_s distance += (y - p.y) * (y_ - p.y);

int y_; return sqrt(distance);
}i }
#endif // POINT H_ void Point::SetLocation(const int x, const int y) {

X = X;
Y = Y
. J }
. y,

WA/ UNIVERSITY of WASHINGTON L11: C++ Classes, Constructor, and Copies (Oh My!) CSE333, Autumn 2025

Const & Classes

+ Like other data types, objects can be declared as const:
" Once a const object has been constructed, its member variables can’t be changed

" Can only invoke member functions that are labeled const

« You can declare a member function of a class as const

" This means that if cannot modify the object it was called on

- The compiler will treat member variables as const inside the function at compile time

= |f a member function doesn’t modify the object, mark it const!

WA/ UNIVERSITY of WASHINGTON L11: C++ Classes, Constructor, and Copies (Oh My!)

Class Usage (. cc file)

usepoint.cc

(#include <iostream>
#include <cstdlib>
#include "Point.h"

using namespace std;

int main(int argc, char** argv) {
// allocate two Points on the Stack, call the default ctor for each
Point pl (1, 2);
Point p2 (4, ©);

cout << "pl is: (" << pl.get x() << ", ";
cout << pl.get y() << ")" << endl;
cout << "p2 is: (" << pZ.get x() << ", ";
cout << p2.get_y () << ")" << endl;
cout << "dist : " << pl.Distance(p2) << endl;
return EXIT SUCCESS;
i y

CSE333, Autumn 2025

WA/ UNIVERSITY of WASHINGTON L11: C++ Classes, Constructor, and Copies (Oh My!) CSE333, Autumn 2025

Lecture Outline

2 Classes

+» Constructors

«» Copy Constructors
+» Assignment

«» Destructors

» An extended example

10

WA/ UNIVERSITY of WASHINGTON

L11: C++ Classes, Constructor, and Copies (Oh My!)

CSE333, Autumn 2025

Constructors

% A constructor (ctor) initializes a newly-instantiated object

= A class can have multiple constructors that differ in parameter count and type

= Written with the class name as the method name and no return type (!) :

Point (const int x, const 1nt y);

+» C++ will automatically create a synthesized default constructor if you have no
user-defined constructors

- Takes no arguments

- Calls the default ctors on all non-“plain old data” (non-POD) member variables
- Leaves the “plain old data” uninitialized (!)

- Will fail if you have non-initialized const or reference data members

11

CSE333, Autumn 2025

WA/ UNIVERSITY of WASHINGTON L11: C++ Classes, Constructor, and Copies (Oh My!)

Synthesized Default Constructor

(class SimplePoint {

public:
// no constructors declared!
int get x() const { return x ; } // inline member function
int get y() const { return y ; } // inline member function
double Distance (const SimplePointé& p) const;
void SetLocation (const int x, const int y);

private:
int x ; // data member
int y ; // data member

\}; // class SimplePoint SimpIePoint.h)

[: " . : " : 1 |
#include "SimplePoint.h S|mp|ePo|nt,cc

// definitions for Distance () and SetLocation ()

int main(int argc, char** argv) {
SimplePoint x; // invokes synthesized default constructor

return 0;

12

WA/ UNIVERSITY of WASHINGTON L11: C++ Classes, Constructor, and Copies (Oh My!)

Synthesized Default Constructor

CSE333, Autumn 2025

+ If you define any constructors, C++ assumes you have defined all the ones you

intend to be available and will not add any others

[#include "SimplePoint.h"

// defining a constructor with two arguments
SimplePoint::SimplePoint (const int x, const int y)

// constructor

{

X = x;
Y T Ys

}

void foo () {
SimplePoint x; // compiler error: 1if you define any

// ctors, C++ will NOT synthesize a
// default constructor for you.

SimplePoint y (1, 2); // works: 1invokes the 2-int-arguments

13

WA/ UNIVERSITY of WASHINGTON L11: C++ Classes, Constructor, and Copies (Oh My!) CSE333, Autumn 2025

Multiple Constructors (overloading)

(#include "SimplePoint.h"

// default constructor
SimplePoint::SimplePoint () {
x = 0;
y_ = 0;
}

// constructor with two arguments
SimplePoint::SimplePoint (const int x, const int y) {

X = %;
Y = Ys

}

void foo () {
SimplePoint x; // invokes the default constructor
SimplePoint al[3]; // invokes the default ctor 3 times

// (fails 1f no default ctor)

SimplePoint y (1, 2); // invokes the 2-int-arguments ctor

14

WA/ UNIVERSITY of WASHINGTON L11: C++ Classes, Constructor, and Copies (Oh My!) CSE333, Autumn 2025

Initialization Lists

+» C++ lets you optionally declare an initialization list as part
of a constructor definition
" |nitializes fields according to parameters in the list

" The following two are (nearly) identical:

rPoint::Point(const int x, const int y) {

X_:X,'
Y = Ys
std::cout << "Point constructed: (" << x << ",";
std::cout << y << ")" << std::endl;
L})

r// constructor with an initialization 1list

Point::Point (const int x, const int y) : x (x), y_(y)
std::cout << "Point constructed: (" << x << ",";
std::cout << y << ")" << std::endl;

L})

15

WA/ UNIVERSITY of WASHINGTON L11: C++ Classes, Constructor, and Copies (Oh My!) CSE333, Autumn 2025

Initialization vs. Construction

((class Point3D { : e e _ .)
. First, initialization list is applied.
public:
// constructor with 3 int arguments
Poiniﬂiiconst int x, const int y, const int:ﬂ(E:E;jy), X;zgz>{
/ \ Next, constructor body is executed.
private:
int x , vy, z ; // data members
\}; // class Point3D)

= Data members in initializer list are initialized in the order they are defined in the class, not
by the initialization list ordering (!)
- Data members that don’t appear in the initialization list are default initialized/constructed before
body is executed
= |nitialization preferred to assignment to avoid extra steps of default initialization
(construction) followed by assignment

= (and no, real code should never mix the two styles this way ©)
16

WA/ UNIVERSITY of WASHINGTON L11: C++ Classes, Constructor, and Copies (Oh My!) CSE333, Autumn 2025

Lecture Outline

2 Classes

« Constructors

« Copy Constructors
+» Assignment

«» Destructors

» An extended example

17

CSE333, Autumn 2025

WA/ UNIVERSITY of WASHINGTON L11: C++ Classes, Constructor, and Copies (Oh My!)

Copy Constructors

% C++ has the notion of a copy constructor (cctor)

= Used to create a new object as a copy of an existing object

Point::Point (const int x, const int y) : x (x), vy (y) { }

// copy constructor
Point::Point (const Pointé& copyme) {

X = copyme.xX ;
y = copyme.y ;
}
void foo () {

Point pl (1, 2); // invokes the 2-int-arguments constructor

Point p2(pl):; // invokes the copy constructor
// could also be written as "Point p2 = pl;"

" |nitializer lists can also be used in copy constructors (preferred)

18

WA/ UNIVERSITY of WASHINGTON L11: C++ Classes, Constructor, and Copies (Oh My!)

When Do Copies Happen?

+ The copy constructor is invoked if:

" You initialize an object from
another object of the same

type:

" You pass a non-reference
object as a value parameter
to a function:

" You return a non-reference

object value from a function:

Point pl; // default ctor
Point p2(pl):; // copy ctor
Point p3 = p2; // copy ctor

rvoid foo (Point arg) { ... }
Point pt; // default ctor
foo (pt) ; // copy ctor
\,
.
Point foo () {
Point pt; // default ctor

return pt; // copy ctor

U

CSE333, Autumn 2025

19

WA/ UNIVERSITY of WASHINGTON L11: C++ Classes, Constructor, and Copies (Oh My!) CSE333, Autumn 2025

Compiler Optimization

«» The compiler sometimes uses a “return by value optimization” or
“move semantics” to eliminate unnecessary copies

= Sometimes you might not see a constructor get invoked when you might expect
it

[Point foo() f{)
Point pt; // default ctor
return pt; // copy ctor? optimized?
}
Point ptl(1l, 2); // two-ints—-argument ctor
Point pt2 = ptl; // copy ctor
Point pt3 = foo(); // copy ctor? optimized?
. J

20

WA/ UNIVERSITY of WASHINGTON L11: C++ Classes, Constructor, and Copies (Oh My!) CSE333, Autumn 2025

Synthesized Copy Constructor

+ If you don’t define your own copy constructor, C++ will synthesize
one for you
= |t will do a shallow copy of all of the fields (i.e. member variables) of your class

= Sometimes the right thing; sometimes the wrong thing

[#include "SimplePoint.h"
. // definitions for Distance () and SetLocation ()

int main(int argc, char** argv) {
SimplePoint ptl;
SimplePoint pt2(ptl); // invokes synthesized copy constructor

return 0;

}

\ J

21

WA/ UNIVERSITY of WASHINGTON L11: C++ Classes, Constructor, and Copies (Oh My!) CSE333, Autumn 2025

Lecture Outline

+ Classes

+» Constructors

« Copy Constructors
+» Assignment

« Destructors

» An extended example

22

WA/ UNIVERSITY of WASHINGTON

“="|s the assignment operator

L11: C++ Classes, Constructor, and Copies (Oh My!)

Assignment ain’t Construction

= Assigns values to an existing, already constructed object

\.

rPoint ptl;
Point pt2 (1,
Point pt3(pt2);
Point pt4

default ctor

two-ints—-argument ctor

copy ctor

CSE333, Autumn 2025

L11: C++ Classes, Constructor, and Copies (Oh My!)

WA/ UNIVERSITY of WASHINGTON

Assignment ain’t Construction

“="|s the assignment operator

= Assigns values to an existing, already constructed object

Point ptl;
Point pt2 (1,
Point pt3(pt2);
Point pt4

default ctor

CSE333, Autumn 2025

two-ints—-argument ctor

copy ctor
copy ctor

// assignment operator

= How can you tell the difference between assignment operator= and a copy constructor
that uses =?

- Answer: are you creating/initializing a new object? If so, it’s a copy constructor; if you are just
updating an existing object it’s assignment

WA/ UNIVERSITY of WASHINGTON L11: C++ Classes, Constructor, and Copies (Oh My!) CSE333, Autumn 2025

Overloading the “=" Operator

+ You can choose to define the “=" operator

" But there are some rules you should follow:

Point& Point::operator=(const Point& rhs) {
if (this != &rhs) { // (1) always check against this
X = rhs.x ;
y = rhs.y ;
}
return *this; // (2) always return *this from op=
}
Point c; // default constructor
a =Db = c; // works because = return *this
a = (b =¢c); // equiv. to above (= is right-associative)
(a = b) = c; // "works" because = returns a non-const

25

WA/ UNIVERSITY of WASHINGTON L11: C++ Classes, Constructor, and Copies (Oh My!)

Synthesized Assighment Operator

+ If you don’t define the assignment operator, C++ will
synthesize one for you

= |t will do a shallow copy of all of the fields (i.e. member variables)
of your class

= Sometimes the right thing; sometimes the wrong thing

[#include "SimplePoint.h"
. // definitions for Distance () and SetLocation ()

int main(int argc, char** argv) {
SimplePoint ptl;
SimplePoint pt2(ptl);
pt2 = ptl; // invokes synthesized assignment operator
return 0;

}

\,

CSE333, Autumn 2025

26

WA/ UNIVERSITY of WASHINGTON L11: C++ Classes, Constructor, and Copies (Oh My!) CSE333, Autumn 2025

Lecture Outline

+ Classes

+» Constructors

« Copy Constructors
+» Assignment

+ Destructors

» An extended example

27

L11: C++ Classes, Constructor, and Copies (Oh My!)

CSE333, Autumn 2025

WA/ UNIVERSITY of WASHINGTON

Destructors

% C++ has the notion of a destructor (dtor)

Invoked automatically when a class instance is deleted, goes out
of scope, etc. (even via exceptions or other causes!)

Place to put your cleanup code — free any dynamic storage or
other resources owned by the object

Standard C++ idiom for managing dynamic resources

- Slogan: “Resource Acquisition Is Initialization” (RAIl)

\.

(Point::~Point() { // destructor

}

// do any cleanup needed when a Point object goes away
// (nothing to do here since we have no dynamic resources)

28

WA/ UNIVERSITY of WASHINGTON L11: C++ Classes, Constructor, and Copies (Oh My!) CSE333, Autumn 2025

Lecture Outline

+ Classes

+» Constructors

« Copy Constructors
+» Assignment

« Destructors

» An extended example

30

WA/ UNIVERSITY of WASHINGTON L11: C++ Classes, Constructor, and Copies (Oh My!) CSE333, Autumn 2025

Complex Example Walkthrough

See:
Complex.h
Complex.cc

testcomplex.cc

+ (Some details like friend functions and namespaces are explained in more
detail next lecture, but ideas should make sense from looking at the code and
explanations in C++ Primer.)

31

WA/ UNIVERSITY of WASHINGTON L11: C++ Classes, Constructor, and Copies (Oh My!)

Extra Exercise #1

+~ Modify your Point3D class from Lec 10 Extra #1
= Disable the copy constructor and assignment operator

= Attempt to use copy & assignment in code and see what error the compiler generates

= Write a CopyFrom () member function and try using it instead

 (See details about CopyFrom () in next lecture)

CSE333, Autumn 2025

32

WA/ UNIVERSITY of WASHINGTON L11: C++ Classes, Constructor, and Copies (Oh My!) CSE333, Autumn 2025

Extra Exercise #2

+ Worite a C++ class that:
" |s given the name of a file as a constructor argument

" Has a GetNextWord () method that returns the next whitespace- or newline-separated
word from the file as a copy of a st ring object, or an empty string once you hit EOF

" Has a destructor that cleans up anything that needs cleaning up

33

	Slide 1: C++ Classes, Constructors and Copies (oh my!) CSE 333 Autumn 2025
	Slide 2: Vibe check
	Slide 3: Administrivia
	Slide 4: Lecture Outline
	Slide 5: Classes
	Slide 6: Class Organization
	Slide 7: Big ol’ example
	Slide 8: Const & Classes
	Slide 9: Class Usage (.cc file)
	Slide 10: Lecture Outline
	Slide 11: Constructors
	Slide 12: Synthesized Default Constructor
	Slide 13: Synthesized Default Constructor
	Slide 14: Multiple Constructors (overloading)
	Slide 15: Initialization Lists
	Slide 16: Initialization vs. Construction
	Slide 17: Lecture Outline
	Slide 18: Copy Constructors
	Slide 19: When Do Copies Happen?
	Slide 20: Compiler Optimization
	Slide 21: Synthesized Copy Constructor
	Slide 22: Lecture Outline
	Slide 23: Assignment ain’t Construction
	Slide 24: Assignment ain’t Construction
	Slide 25: Overloading the “=” Operator
	Slide 26: Synthesized Assignment Operator
	Slide 27: Lecture Outline
	Slide 28: Destructors
	Slide 30: Lecture Outline
	Slide 31: Complex Example Walkthrough
	Slide 32: Extra Exercise #1
	Slide 33: Extra Exercise #2

