
CSE333, Autumn 2025L11: C++ Classes, Constructor, and Copies (Oh My!)

C++ Classes, Constructors and Copies (oh my!)
CSE 333 Autumn 2025

Instructors: Naomi Alterman, Chris Thachuk

Teaching Assistants:

Ann Baturytski Derek de Leuw Blake Diaz

Rishabh Jain Chendur Jel Jayavelu Lucas Kwan

Irene Xin Jie Lau Nathan Li Maya Odenheim

Advay Patil Selim Saridede Deeksha Vatwani

Angela Wu Jiexiao Xu

CSE333, Autumn 2025L11: C++ Classes, Constructor, and Copies (Oh My!)

Vibe check

❖ PollEv.com​/naomila

❖ How are you feeling about C++ right

about now?

2

https://pollev.com/naomila
https://pollev.com/naomila
https://pollev.com/naomila

CSE333, Autumn 2025L11: C++ Classes, Constructor, and Copies (Oh My!)

Administrivia

❖ Naomi’s office hours moving to Wednesdays 2:30-3:30p

❖ No exercise 9 yet (out on Monday)

❖ A bunch of deadlines coming up in the next few weeks, plan ahead!!!

▪ EX9 (it’s a big one), EX10, HW2, midterm

3

CSE333, Autumn 2025L11: C++ Classes, Constructor, and Copies (Oh My!)

Lecture Outline

❖ Classes

❖ Constructors

❖ Copy Constructors

❖ Assignment

❖ Destructors

❖ An extended example

4

CSE333, Autumn 2025L11: C++ Classes, Constructor, and Copies (Oh My!)

Classes

❖ Class definition syntax (in a .h file):

▪ Members can be functions (methods) or data (variables)

❖ Class member function definition syntax (in a .cc file):

▪ (1) define within the class definition or (2) declare within the class definition and then

define elsewhere
5

class Name {

 public:

 // public member definitions & declarations go here

 private:

 // private member definitions & declarations go here

}; // class Name

retType Name::MethodName(type1 param1, …, typeN paramN) {

 // body statements

}

CSE333, Autumn 2025L11: C++ Classes, Constructor, and Copies (Oh My!)

Class Organization

❖ Class definition is part of interface and should go in .h file

▪ Private members still must be included in definition (!)

❖ Usually put member function definitions into companion .cc file with

implementation details

▪ These files can also include non-member functions that use the class

▪ Common exception: setter and getter methods

❖ Unlike Java, you can name files anything you want

▪ Typically Name.cc and Name.h for class Name

6

CSE333, Autumn 2025L11: C++ Classes, Constructor, and Copies (Oh My!)

Big ol’ example

7

#ifndef POINT_H_

#define POINT_H_

class Point {

 public:

 Point(const int x, const int y);

 int get_x() const { return x_; }

 int get_y() const { return y_; }

 double Distance(const Point& p) const;

 void SetLocation(const int x,

 const int y);

 private:

 int x_;

 int y_;

};

#endif // POINT_H_

Point.h
#include <cmath>

#include "Point.h"

// NOTE: THIS FILE HAS WEIRD AND BAD CODING STYLE!

// We just want to illustrate some language features for you (:

Point::Point(const int x, const int y) {

 x_ = x;

 this->y_ = y;

}

double Point::Distance(const Point& p) const {

 double distance = (x_ - p.get_x()) *

 (x_ - p.get_x());

 distance += (y_ - p.y_) * (y_ - p.y_);

 return sqrt(distance);

}

void Point::SetLocation(const int x, const int y) {

 x_ = x;

 y_ = y;

}

Point.cc

CSE333, Autumn 2025L11: C++ Classes, Constructor, and Copies (Oh My!)

Const & Classes

❖ Like other data types, objects can be declared as const:

▪ Once a const object has been constructed, its member variables can’t be changed

▪ Can only invoke member functions that are labeled const

❖ You can declare a member function of a class as const

▪ This means that if cannot modify the object it was called on

• The compiler will treat member variables as const inside the function at compile time

▪ If a member function doesn’t modify the object, mark it const!

8

CSE333, Autumn 2025L11: C++ Classes, Constructor, and Copies (Oh My!)

Class Usage (.cc file)

9

#include <iostream>

#include <cstdlib>

#include "Point.h"

using namespace std;

int main(int argc, char** argv) {

 // allocate two Points on the Stack, call the default ctor for each

 Point p1(1, 2);

 Point p2(4, 6);

 cout << "p1 is: (" << p1.get_x() << ", ";

 cout << p1.get_y() << ")" << endl;

 cout << "p2 is: (" << p2.get_x() << ", ";

 cout << p2.get_y() << ")" << endl;

 cout << "dist : " << p1.Distance(p2) << endl;

 return EXIT_SUCCESS;

}

usepoint.cc

CSE333, Autumn 2025L11: C++ Classes, Constructor, and Copies (Oh My!)

Lecture Outline

❖ Classes

❖ Constructors

❖ Copy Constructors

❖ Assignment

❖ Destructors

❖ An extended example

10

CSE333, Autumn 2025L11: C++ Classes, Constructor, and Copies (Oh My!)

Constructors

❖ A constructor (ctor) initializes a newly-instantiated object

▪ A class can have multiple constructors that differ in parameter count and type

▪ Written with the class name as the method name and no return type (!) :

❖ C++ will automatically create a synthesized default constructor if you have no

user-defined constructors

• Takes no arguments

• Calls the default ctors on all non-“plain old data” (non-POD) member variables

• Leaves the “plain old data” uninitialized (!)

• Will fail if you have non-initialized const or reference data members

Point(const int x, const int y);

11

CSE333, Autumn 2025L11: C++ Classes, Constructor, and Copies (Oh My!)

Synthesized Default Constructor

12

class SimplePoint {

 public:

 // no constructors declared!

 int get_x() const { return x_; } // inline member function

 int get_y() const { return y_; } // inline member function

 double Distance(const SimplePoint& p) const;

 void SetLocation(const int x, const int y);

 private:

 int x_; // data member

 int y_; // data member

}; // class SimplePoint SimplePoint.h

#include "SimplePoint.h"

... // definitions for Distance() and SetLocation()

int main(int argc, char** argv) {

 SimplePoint x; // invokes synthesized default constructor

 return 0;

}

SimplePoint.cc

CSE333, Autumn 2025L11: C++ Classes, Constructor, and Copies (Oh My!)

Synthesized Default Constructor

❖ If you define any constructors, C++ assumes you have defined all the ones you

intend to be available and will not add any others

13

#include "SimplePoint.h"

// defining a constructor with two arguments

SimplePoint::SimplePoint(const int x, const int y) {

 x_ = x;

 y_ = y;

}

void foo() {

 SimplePoint x; // compiler error: if you define any

 // ctors, C++ will NOT synthesize a

 // default constructor for you.

 SimplePoint y(1, 2); // works: invokes the 2-int-arguments

 // constructor

}

CSE333, Autumn 2025L11: C++ Classes, Constructor, and Copies (Oh My!)

Multiple Constructors (overloading)

#include "SimplePoint.h"

// default constructor

SimplePoint::SimplePoint() {

 x_ = 0;

 y_ = 0;

}

// constructor with two arguments

SimplePoint::SimplePoint(const int x, const int y) {

 x_ = x;

 y_ = y;

}

void foo() {

 SimplePoint x; // invokes the default constructor

 SimplePoint a[3]; // invokes the default ctor 3 times

 // (fails if no default ctor)

 SimplePoint y(1, 2); // invokes the 2-int-arguments ctor

}

14

CSE333, Autumn 2025L11: C++ Classes, Constructor, and Copies (Oh My!)

Initialization Lists

❖ C++ lets you optionally declare an initialization list as part

of a constructor definition

▪ Initializes fields according to parameters in the list

▪ The following two are (nearly) identical:

15

// constructor with an initialization list

Point::Point(const int x, const int y) : x_(x), y_(y) {

 std::cout << "Point constructed: (" << x_ << ",";

 std::cout << y_<< ")" << std::endl;

}

Point::Point(const int x, const int y) {

 x_ = x;

 y_ = y;

 std::cout << "Point constructed: (" << x_ << ",";

 std::cout << y_<< ")" << std::endl;

}

CSE333, Autumn 2025L11: C++ Classes, Constructor, and Copies (Oh My!)

Initialization vs. Construction

▪ Data members in initializer list are initialized in the order they are defined in the class, not

by the initialization list ordering (!)

• Data members that don’t appear in the initialization list are default initialized/constructed before

body is executed

▪ Initialization preferred to assignment to avoid extra steps of default initialization

(construction) followed by assignment

▪ (and no, real code should never mix the two styles this way ☺)
16

class Point3D {

 public:

 // constructor with 3 int arguments

 Point3D(const int x, const int y, const int z) : y_(y), x_(x) {

 z_ = z;

 }

 private:

 int x_, y_, z_; // data members

}; // class Point3D

First, initialization list is applied.

Next, constructor body is executed.

CSE333, Autumn 2025L11: C++ Classes, Constructor, and Copies (Oh My!)

Lecture Outline

❖ Classes

❖ Constructors

❖ Copy Constructors

❖ Assignment

❖ Destructors

❖ An extended example

17

CSE333, Autumn 2025L11: C++ Classes, Constructor, and Copies (Oh My!)

Copy Constructors

❖ C++ has the notion of a copy constructor (cctor)

▪ Used to create a new object as a copy of an existing object

18

Point::Point(const int x, const int y) : x_(x), y_(y) { }

// copy constructor

Point::Point(const Point& copyme) {

 x_ = copyme.x_;

 y_ = copyme.y_;

}

void foo() {

 Point p1(1, 2); // invokes the 2-int-arguments constructor

 Point p2(p1); // invokes the copy constructor

 // could also be written as "Point p2 = p1;"

}

▪ Initializer lists can also be used in copy constructors (preferred)

CSE333, Autumn 2025L11: C++ Classes, Constructor, and Copies (Oh My!)

When Do Copies Happen?

❖ The copy constructor is invoked if:

▪ You initialize an object from

another object of the same

type:

▪ You pass a non-reference

object as a value parameter

to a function:

▪ You return a non-reference

object value from a function:

19

void foo(Point arg) { ... }

Point pt; // default ctor

foo(pt); // copy ctor

Point p1; // default ctor

Point p2(p1); // copy ctor

Point p3 = p2; // copy ctor

Point foo() {

 Point pt; // default ctor

 return pt; // copy ctor

}

CSE333, Autumn 2025L11: C++ Classes, Constructor, and Copies (Oh My!)

Compiler Optimization

❖ The compiler sometimes uses a “return by value optimization” or

“move semantics” to eliminate unnecessary copies

▪ Sometimes you might not see a constructor get invoked when you might expect

it

20

Point foo() {

 Point pt; // default ctor

 return pt; // copy ctor? optimized?

}

Point pt1(1, 2); // two-ints-argument ctor

Point pt2 = pt1; // copy ctor

Point pt3 = foo(); // copy ctor? optimized?

CSE333, Autumn 2025L11: C++ Classes, Constructor, and Copies (Oh My!)

Synthesized Copy Constructor

❖ If you don’t define your own copy constructor, C++ will synthesize

one for you

▪ It will do a shallow copy of all of the fields (i.e. member variables) of your class

▪ Sometimes the right thing; sometimes the wrong thing

21

#include "SimplePoint.h"

... // definitions for Distance() and SetLocation()

int main(int argc, char** argv) {

 SimplePoint pt1;

 SimplePoint pt2(pt1); // invokes synthesized copy constructor

 ...

 return 0;

}

CSE333, Autumn 2025L11: C++ Classes, Constructor, and Copies (Oh My!)

Lecture Outline

❖ Classes

❖ Constructors

❖ Copy Constructors

❖ Assignment

❖ Destructors

❖ An extended example

22

CSE333, Autumn 2025L11: C++ Classes, Constructor, and Copies (Oh My!)

Assignment ain’t Construction

❖ “=” is the assignment operator

▪ Assigns values to an existing, already constructed object

23

Point pt1; // default ctor

Point pt2(1, 2); // two-ints-argument ctor

Point pt3(pt2); // copy ctor

Point pt4 = p1; // copy ctor

p3 = p2; // assignment operator

CSE333, Autumn 2025L11: C++ Classes, Constructor, and Copies (Oh My!)

Assignment ain’t Construction

❖ “=” is the assignment operator

▪ Assigns values to an existing, already constructed object

▪ How can you tell the difference between assignment operator= and a copy constructor

that uses =?

• Answer: are you creating/initializing a new object? If so, it’s a copy constructor; if you are just

updating an existing object it’s assignment

24

Point pt1; // default ctor

Point pt2(1, 2); // two-ints-argument ctor

Point pt3(pt2); // copy ctor

Point pt4 = p1; // copy ctor

p3 = p2; // assignment operator

CSE333, Autumn 2025L11: C++ Classes, Constructor, and Copies (Oh My!)

Overloading the “=” Operator

❖ You can choose to define the “=” operator

▪ But there are some rules you should follow:

25

Point& Point::operator=(const Point& rhs) {

 if (this != &rhs) { // (1) always check against this

 x_ = rhs.x_;

 y_ = rhs.y_;

 }

 return *this; // (2) always return *this from op=

}

Point c; // default constructor

a = b = c; // works because = return *this

a = (b = c); // equiv. to above (= is right-associative)

(a = b) = c; // "works" because = returns a non-const

CSE333, Autumn 2025L11: C++ Classes, Constructor, and Copies (Oh My!)

Synthesized Assignment Operator

❖ If you don’t define the assignment operator, C++ will

synthesize one for you

▪ It will do a shallow copy of all of the fields (i.e. member variables)

of your class

▪ Sometimes the right thing; sometimes the wrong thing

26

#include "SimplePoint.h"

... // definitions for Distance() and SetLocation()

int main(int argc, char** argv) {

 SimplePoint pt1;

 SimplePoint pt2(pt1);

 pt2 = pt1; // invokes synthesized assignment operator

 return 0;

}

CSE333, Autumn 2025L11: C++ Classes, Constructor, and Copies (Oh My!)

Lecture Outline

❖ Classes

❖ Constructors

❖ Copy Constructors

❖ Assignment

❖ Destructors

❖ An extended example

27

CSE333, Autumn 2025L11: C++ Classes, Constructor, and Copies (Oh My!)

Destructors

❖ C++ has the notion of a destructor (dtor)

▪ Invoked automatically when a class instance is deleted, goes out

of scope, etc. (even via exceptions or other causes!)

▪ Place to put your cleanup code – free any dynamic storage or

other resources owned by the object

▪ Standard C++ idiom for managing dynamic resources

• Slogan: “Resource Acquisition Is Initialization” (RAII)

28

Point::~Point() { // destructor

 // do any cleanup needed when a Point object goes away

 // (nothing to do here since we have no dynamic resources)

}

CSE333, Autumn 2025L11: C++ Classes, Constructor, and Copies (Oh My!)

Lecture Outline

❖ Classes

❖ Constructors

❖ Copy Constructors

❖ Assignment

❖ Destructors

❖ An extended example

30

CSE333, Autumn 2025L11: C++ Classes, Constructor, and Copies (Oh My!)

Complex Example Walkthrough

See:

Complex.h

Complex.cc

testcomplex.cc

❖ (Some details like friend functions and namespaces are explained in more

detail next lecture, but ideas should make sense from looking at the code and

explanations in C++ Primer.)

31

CSE333, Autumn 2025L11: C++ Classes, Constructor, and Copies (Oh My!)

Extra Exercise #1

❖ Modify your Point3D class from Lec 10 Extra #1

▪ Disable the copy constructor and assignment operator

▪ Attempt to use copy & assignment in code and see what error the compiler generates

▪ Write a CopyFrom() member function and try using it instead

• (See details about CopyFrom() in next lecture)

32

CSE333, Autumn 2025L11: C++ Classes, Constructor, and Copies (Oh My!)

Extra Exercise #2

❖ Write a C++ class that:

▪ Is given the name of a file as a constructor argument

▪ Has a GetNextWord() method that returns the next whitespace- or newline-separated

word from the file as a copy of a string object, or an empty string once you hit EOF

▪ Has a destructor that cleans up anything that needs cleaning up

33

	Slide 1: C++ Classes, Constructors and Copies (oh my!) CSE 333 Autumn 2025
	Slide 2: Vibe check
	Slide 3: Administrivia
	Slide 4: Lecture Outline
	Slide 5: Classes
	Slide 6: Class Organization
	Slide 7: Big ol’ example
	Slide 8: Const & Classes
	Slide 9: Class Usage (.cc file)
	Slide 10: Lecture Outline
	Slide 11: Constructors
	Slide 12: Synthesized Default Constructor
	Slide 13: Synthesized Default Constructor
	Slide 14: Multiple Constructors (overloading)
	Slide 15: Initialization Lists
	Slide 16: Initialization vs. Construction
	Slide 17: Lecture Outline
	Slide 18: Copy Constructors
	Slide 19: When Do Copies Happen?
	Slide 20: Compiler Optimization
	Slide 21: Synthesized Copy Constructor
	Slide 22: Lecture Outline
	Slide 23: Assignment ain’t Construction
	Slide 24: Assignment ain’t Construction
	Slide 25: Overloading the “=” Operator
	Slide 26: Synthesized Assignment Operator
	Slide 27: Lecture Outline
	Slide 28: Destructors
	Slide 30: Lecture Outline
	Slide 31: Complex Example Walkthrough
	Slide 32: Extra Exercise #1
	Slide 33: Extra Exercise #2

