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Vibe check

+» PollEv.com/naomila

+» How are you feeling about C++ right
about now?

OOHOO



https://pollev.com/naomila
https://pollev.com/naomila
https://pollev.com/naomila
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Administrivia

+» Naomi’s office hours moving to Wednesdays 2:30-3:30p
+ No exercise 9 yet (out on Monday)

« A bunch of deadlines coming up in the next few weeks, plan ahead!!!
= EXO9 (it’s a big one), EX10, HW2, midterm
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Lecture Outline

+~ Classes

+» Constructors

« Copy Constructors
+» Assignment

« Destructors

» An extended example
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Classes

+ Class definition syntax (in a . h file):

(class Name {
public:
// public member definitions & declarations go here

private:
// private member definitions & declarations go here
}Y: // class Name

\_ J

= Members can be functions (methods) or data (variables)

+ Class member function definition syntax (in a . cc file):

retType Name: :MethodName (typel paraml, .., typeN paramN) {
// body statements
}

® (1) define within the class definition or (2) declare within the class definition and then
define elsewhere
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Class Organization

+ Class definition is part of interface and should go in . h file

= Private members still must be included in definition (!)

+ Usually put member function definitions into companion . cc file with
implementation details
® These files can also include non-member functions that use the class

= Common exception: setter and getter methods

« Unlike Java, you can name files anything you want

= Typically Name.cc and Name.hforclass Name
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Big ol’ example

Point.h Point.cc
[ 4ifndef POINT H Y ( #include <cmath> B

#define POINT H #include "Point.h"
class Point { // NOTE: THIS FILE HAS WEIRD AND BAD CODING STYLE!
public: // We just want to illustrate some language features for you (:

Point (const int x, const int y); Point::Point (const int x, const int y) {

int get x() const { return x ; } x = x;

int get y() const { return y ; } tEis—>y = v;

double Distance (const Pointé& p) const; } -

void SetLocation(const int x,

const int y); double Point::Distance(const Point& p) const {
. double distance = (x_ - p.get x()) *

IRERVERESE (x_ - p.get_x());

}nt x_s distance += (y - p.y ) * (y_ - p.y );

int y_; return sqrt(distance);
}i }
#endif // POINT H_ void Point::SetLocation(const int x, const int y) {

X = X;
Y = Y
. J }
. y,
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Const & Classes

+ Like other data types, objects can be declared as const:
" Once a const object has been constructed, its member variables can’t be changed

" Can only invoke member functions that are labeled const

« You can declare a member function of a class as const

" This means that if cannot modify the object it was called on

- The compiler will treat member variables as const inside the function at compile time

= |f a member function doesn’t modify the object, mark it const!
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Class Usage (. cc file)

usepoint.cc

(#include <iostream>
#include <cstdlib>
#include "Point.h"

using namespace std;

int main(int argc, char** argv) {
// allocate two Points on the Stack, call the default ctor for each
Point pl (1, 2);
Point p2 (4, ©);

cout << "pl is: (" << pl.get x() << ", ";
cout << pl.get y() << ")" << endl;
cout << "p2 is: (" << pZ.get x() << ", ";
cout << p2.get_y () << ")" << endl;
cout << "dist : " << pl.Distance(p2) << endl;
return EXIT SUCCESS;
i y

CSE333, Autumn 2025
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Lecture Outline

2 Classes

+» Constructors

«» Copy Constructors
+» Assignment

«» Destructors

» An extended example

10
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Constructors

% A constructor (ctor) initializes a newly-instantiated object

= A class can have multiple constructors that differ in parameter count and type

= Written with the class name as the method name and no return type (!) :

Point (const int x, const 1nt y);

+» C++ will automatically create a synthesized default constructor if you have no
user-defined constructors

- Takes no arguments

- Calls the default ctors on all non-“plain old data” (non-POD) member variables
- Leaves the “plain old data” uninitialized (!)

- Will fail if you have non-initialized const or reference data members

11
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Synthesized Default Constructor

(class SimplePoint {

public:
// no constructors declared!
int get x() const { return x ; } // inline member function
int get y() const { return y ; } // inline member function
double Distance (const SimplePointé& p) const;
void SetLocation (const int x, const int y);

private:
int x ; // data member
int y ; // data member

\}; // class SimplePoint SimpIePoint.h)

[ : " . : " : 1 |
#include "SimplePoint.h S|mp|ePo|nt,cc

// definitions for Distance () and SetLocation ()

int main(int argc, char** argv) {
SimplePoint x; // invokes synthesized default constructor

return 0;

12
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Synthesized Default Constructor

CSE333, Autumn 2025

+ If you define any constructors, C++ assumes you have defined all the ones you

intend to be available and will not add any others

[ #include "SimplePoint.h"

// defining a constructor with two arguments
SimplePoint::SimplePoint (const int x, const int y)

// constructor

{

X = x;
Y T Ys

}

void foo () {
SimplePoint x; // compiler error: 1if you define any

// ctors, C++ will NOT synthesize a
// default constructor for you.

SimplePoint y (1, 2); // works: 1invokes the 2-int-arguments

13
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Multiple Constructors (overloading)

(#include "SimplePoint.h"

// default constructor
SimplePoint::SimplePoint () {
x = 0;
y_ = 0;
}

// constructor with two arguments
SimplePoint::SimplePoint (const int x, const int y) {

X = %;
Y = Ys

}

void foo () {
SimplePoint x; // invokes the default constructor
SimplePoint al[3]; // invokes the default ctor 3 times

// (fails 1f no default ctor)

SimplePoint y (1, 2); // invokes the 2-int-arguments ctor

14



WA/ UNIVERSITY of WASHINGTON L11: C++ Classes, Constructor, and Copies (Oh My!) CSE333, Autumn 2025

Initialization Lists

+» C++ lets you optionally declare an initialization list as part
of a constructor definition
" |nitializes fields according to parameters in the list

" The following two are (nearly) identical:

rPoint::Point(const int x, const int y) {

X_:X,'
Y = Ys
std::cout << "Point constructed: (" << x << ",";
std::cout << y << ")" << std::endl;
L} )

r// constructor with an initialization 1list

Point::Point (const int x, const int y) : x (x), y_(y)
std::cout << "Point constructed: (" << x << ",";
std::cout << y << ")" << std::endl;

L} )

15



WA/ UNIVERSITY of WASHINGTON L11: C++ Classes, Constructor, and Copies (Oh My!) CSE333, Autumn 2025

Initialization vs. Construction

((class Point3D { : e e _ . )
. First, initialization list is applied.
public:
// constructor with 3 int arguments
Poiniﬂiiconst int x, const int y, const int:ﬂ(E:E;jy), X;zgz>{
/ \ Next, constructor body is executed.
private:
int x , vy, z ; // data members
\}; // class Point3D )

= Data members in initializer list are initialized in the order they are defined in the class, not
by the initialization list ordering (!)
- Data members that don’t appear in the initialization list are default initialized/constructed before
body is executed
= |nitialization preferred to assignment to avoid extra steps of default initialization
(construction) followed by assignment

= (and no, real code should never mix the two styles this way ©)
16
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Lecture Outline

2 Classes

« Constructors

« Copy Constructors
+» Assignment

«» Destructors

» An extended example

17
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Copy Constructors

% C++ has the notion of a copy constructor (cctor)

= Used to create a new object as a copy of an existing object

Point::Point (const int x, const int y) : x (x), vy (y) { }

// copy constructor
Point::Point (const Pointé& copyme) {

X = copyme.xX ;
y = copyme.y ;
}
void foo () {

Point pl (1, 2); // invokes the 2-int-arguments constructor

Point p2(pl):; // invokes the copy constructor
// could also be written as "Point p2 = pl;"

" |nitializer lists can also be used in copy constructors (preferred)

18
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When Do Copies Happen?

+ The copy constructor is invoked if:

" You initialize an object from
another object of the same

type:

" You pass a non-reference
object as a value parameter
to a function:

" You return a non-reference

object value from a function:

Point pl; // default ctor
Point p2(pl):; // copy ctor
Point p3 = p2; // copy ctor

rvoid foo (Point arg) { ... }
Point pt; // default ctor
foo (pt) ; // copy ctor
\,
.
Point foo () {
Point pt; // default ctor

return pt; // copy ctor

U

CSE333, Autumn 2025
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Compiler Optimization

«» The compiler sometimes uses a “return by value optimization” or
“move semantics” to eliminate unnecessary copies

= Sometimes you might not see a constructor get invoked when you might expect
it

[ Point foo() f{ )
Point pt; // default ctor
return pt; // copy ctor? optimized?
}
Point ptl(1l, 2); // two-ints—-argument ctor
Point pt2 = ptl; // copy ctor
Point pt3 = foo(); // copy ctor? optimized?
. J

20
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Synthesized Copy Constructor

+ If you don’t define your own copy constructor, C++ will synthesize
one for you
= |t will do a shallow copy of all of the fields (i.e. member variables) of your class

= Sometimes the right thing; sometimes the wrong thing

[ #include "SimplePoint.h"
. // definitions for Distance () and SetLocation ()

int main(int argc, char** argv) {
SimplePoint ptl;
SimplePoint pt2(ptl); // invokes synthesized copy constructor

return 0;

}

\ J

21
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Lecture Outline

+ Classes

+» Constructors

« Copy Constructors
+» Assignment

« Destructors

» An extended example

22



WA/ UNIVERSITY of WASHINGTON

“="|s the assignment operator

L11: C++ Classes, Constructor, and Copies (Oh My!)

Assignment ain’t Construction

= Assigns values to an existing, already constructed object

\.

rPoint ptl;
Point pt2 (1,
Point pt3(pt2);
Point pt4

default ctor

two-ints—-argument ctor

copy ctor

CSE333, Autumn 2025




L11: C++ Classes, Constructor, and Copies (Oh My!)

WA/ UNIVERSITY of WASHINGTON

Assignment ain’t Construction

“="|s the assignment operator

= Assigns values to an existing, already constructed object

Point ptl;
Point pt2 (1,
Point pt3(pt2);
Point pt4

default ctor
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two-ints—-argument ctor

copy ctor
copy ctor

// assignment operator

= How can you tell the difference between assignment operator= and a copy constructor
that uses =?

- Answer: are you creating/initializing a new object? If so, it’s a copy constructor; if you are just
updating an existing object it’s assignment
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Overloading the “=" Operator

+ You can choose to define the “=" operator

" But there are some rules you should follow:

Point& Point::operator=(const Point& rhs) {
if (this != &rhs) { // (1) always check against this
X = rhs.x ;
y = rhs.y ;
}
return *this; // (2) always return *this from op=
}
Point c; // default constructor
a =Db = c; // works because = return *this
a = (b =¢c); // equiv. to above (= is right-associative)
(a = b) = c; // "works" because = returns a non-const

25
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Synthesized Assighment Operator

+ If you don’t define the assignment operator, C++ will
synthesize one for you

= |t will do a shallow copy of all of the fields (i.e. member variables)
of your class

= Sometimes the right thing; sometimes the wrong thing

[ #include "SimplePoint.h"
. // definitions for Distance () and SetLocation ()

int main(int argc, char** argv) {
SimplePoint ptl;
SimplePoint pt2(ptl);
pt2 = ptl; // invokes synthesized assignment operator
return 0;

}

\,

CSE333, Autumn 2025
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Lecture Outline

+ Classes

+» Constructors

« Copy Constructors
+» Assignment

+ Destructors

» An extended example

27
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Destructors

% C++ has the notion of a destructor (dtor)

Invoked automatically when a class instance is deleted, goes out
of scope, etc. (even via exceptions or other causes!)

Place to put your cleanup code — free any dynamic storage or
other resources owned by the object

Standard C++ idiom for managing dynamic resources

- Slogan: “Resource Acquisition Is Initialization” (RAIl)

\.

(Point::~Point() { // destructor

}

// do any cleanup needed when a Point object goes away
// (nothing to do here since we have no dynamic resources)

28
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Lecture Outline

+ Classes

+» Constructors

« Copy Constructors
+» Assignment

« Destructors

» An extended example

30
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Complex Example Walkthrough

See:
Complex.h
Complex.cc

testcomplex.cc

+ (Some details like friend functions and namespaces are explained in more
detail next lecture, but ideas should make sense from looking at the code and
explanations in C++ Primer.)

31
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Extra Exercise #1

+~ Modify your Point3D class from Lec 10 Extra #1
= Disable the copy constructor and assignment operator

= Attempt to use copy & assignment in code and see what error the compiler generates

= Write a CopyFrom () member function and try using it instead

 (See details about CopyFrom () in next lecture)

CSE333, Autumn 2025
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Extra Exercise #2

+ Worite a C++ class that:
" |s given the name of a file as a constructor argument

" Has a GetNextWord () method that returns the next whitespace- or newline-separated
word from the file as a copy of a st ring object, or an empty string once you hit EOF

" Has a destructor that cleans up anything that needs cleaning up

33
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