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Vibe check

❖ PollEv.com​/naomila

❖ How are you feeling about C++ right 

about now?
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Administrivia

❖ Naomi’s office hours moving to Wednesdays 2:30-3:30p

❖ No exercise 9 yet (out on Monday)

❖ A bunch of deadlines coming up in the next few weeks, plan ahead!!! 

▪ EX9 (it’s a big one), EX10, HW2, midterm
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Lecture Outline

❖ Classes

❖ Constructors

❖ Copy Constructors

❖ Assignment

❖ Destructors

❖ An extended example
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Classes

❖ Class definition syntax (in a .h file):

▪ Members can be functions (methods) or data (variables)

❖ Class member function definition syntax (in a .cc file):

▪ (1) define within the class definition or (2) declare within the class definition and then 

define elsewhere
5

class Name {

 public:

  // public member definitions & declarations go here

 private:

  // private member definitions & declarations go here

};  // class Name

retType Name::MethodName(type1 param1, …, typeN paramN) {

  // body statements

}
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Class Organization

❖ Class definition is part of interface and should go in .h file

▪ Private members still must be included in definition (!)

❖ Usually put member function definitions into companion .cc file with 

implementation details

▪ These files can also include non-member functions that use the class

▪ Common exception:  setter and getter methods

❖ Unlike Java, you can name files anything you want

▪ Typically Name.cc and Name.h for class Name
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Big ol’ example
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#ifndef POINT_H_

#define POINT_H_

class Point {

 public:

  Point(const int x, const int y);

  int get_x() const { return x_; }

  int get_y() const { return y_; }

  double Distance(const Point& p) const;

  void SetLocation(const int x,

                   const int y);

 private:

  int x_;

  int y_;

};

#endif  // POINT_H_

Point.h
#include <cmath>

#include "Point.h"

// NOTE: THIS FILE HAS WEIRD AND BAD CODING STYLE!

// We just want to illustrate some language features for you (:

Point::Point(const int x, const int y) {

  x_ = x;

  this->y_ = y;

}

double Point::Distance(const Point& p) const {

  double distance = (x_ - p.get_x()) *

                        (x_ - p.get_x());

  distance += (y_ - p.y_) * (y_ - p.y_);

  return sqrt(distance);

}

void Point::SetLocation(const int x, const int y) {

  x_ = x;

  y_ = y;

}

Point.cc
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Const & Classes

❖ Like other data types, objects can be declared as const:

▪ Once a const object has been constructed, its member variables can’t be changed

▪ Can only invoke member functions that are labeled const

❖ You can declare a member function of a class as const

▪ This means that if cannot modify the object it was called on

• The compiler will treat member variables as const inside the function at compile time

▪ If a member function doesn’t modify the object, mark it const!
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Class Usage (.cc file)

9

#include <iostream>

#include <cstdlib>

#include "Point.h"

using namespace std;

int main(int argc, char** argv) {

  // allocate two Points on the Stack, call the default ctor for each

  Point p1(1, 2);

  Point p2(4, 6);

  cout << "p1 is: (" << p1.get_x() << ", ";

  cout << p1.get_y() << ")" << endl;

  cout << "p2 is: (" << p2.get_x() << ", ";

  cout << p2.get_y() << ")" << endl;

  cout << "dist : " << p1.Distance(p2) << endl;

  return EXIT_SUCCESS;

}

usepoint.cc
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Lecture Outline

❖ Classes

❖ Constructors

❖ Copy Constructors

❖ Assignment

❖ Destructors

❖ An extended example
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Constructors

❖ A constructor (ctor) initializes a newly-instantiated object

▪ A class can have multiple constructors that differ in parameter count and type

▪ Written with the class name as the method name and no return type (!) :

❖ C++ will automatically create a synthesized default constructor if you have no 

user-defined constructors

• Takes no arguments

• Calls the default ctors on all non-“plain old data” (non-POD) member variables

• Leaves the “plain old data” uninitialized (!)

• Will fail if you have non-initialized const or reference data members

Point(const int x, const int y);
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Synthesized Default Constructor
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class SimplePoint {

 public:

  // no constructors declared!

  int get_x() const { return x_; }     // inline member function

  int get_y() const { return y_; }     // inline member function

  double Distance(const SimplePoint& p) const;

  void SetLocation(const int x, const int y);

 private:

  int x_;  // data member

  int y_;  // data member

};  // class SimplePoint SimplePoint.h

#include "SimplePoint.h"

... // definitions for Distance() and SetLocation()

int main(int argc, char** argv) {

  SimplePoint x;  // invokes synthesized default constructor

  return 0;

}

SimplePoint.cc
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Synthesized Default Constructor

❖ If you define any constructors, C++ assumes you have defined all the ones you 

intend to be available and will not add any others

13

#include "SimplePoint.h"

// defining a constructor with two arguments

SimplePoint::SimplePoint(const int x, const int y) {

  x_ = x;

  y_ = y;

} 

void foo() {

  SimplePoint x;        // compiler error:  if you define any 

                        // ctors, C++ will NOT synthesize a 

                        // default constructor for you.

  SimplePoint y(1, 2);  // works:  invokes the 2-int-arguments

                        // constructor

}
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Multiple Constructors (overloading)

#include "SimplePoint.h"

// default constructor

SimplePoint::SimplePoint() {

  x_ = 0;

  y_ = 0;

}

// constructor with two arguments

SimplePoint::SimplePoint(const int x, const int y) {

  x_ = x;

  y_ = y;

} 

void foo() {

  SimplePoint x;        // invokes the default constructor

  SimplePoint a[3];     // invokes the default ctor 3 times

                        //   (fails if no default ctor)

  SimplePoint y(1, 2);  // invokes the 2-int-arguments ctor

}
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Initialization Lists

❖ C++ lets you optionally declare an initialization list as part 

of a constructor definition

▪ Initializes fields according to parameters in the list

▪ The following two are (nearly) identical:

15

// constructor with an initialization list

Point::Point(const int x, const int y) : x_(x), y_(y) {

  std::cout << "Point constructed: (" << x_ << ",";

  std::cout << y_<< ")" << std::endl;

}

Point::Point(const int x, const int y) {

  x_ = x;

  y_ = y;

  std::cout << "Point constructed: (" << x_ << ",";

  std::cout << y_<< ")" << std::endl;

}
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Initialization vs. Construction

▪ Data members in initializer list are initialized in the order they are defined in the class, not 

by the initialization list ordering (!)

• Data members that don’t appear in the initialization list are default initialized/constructed before 

body is executed

▪ Initialization preferred to assignment to avoid extra steps of default initialization 

(construction) followed by assignment

▪ (and no, real code should never mix the two styles this way ☺)
16

class Point3D {

 public:

  // constructor with 3 int arguments

  Point3D(const int x, const int y, const int z) : y_(y), x_(x) {

    z_ = z;

  }

 private:

  int x_, y_, z_;  // data members

};  // class Point3D

First, initialization list is applied.

Next, constructor body is executed.
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Lecture Outline

❖ Classes

❖ Constructors

❖ Copy Constructors

❖ Assignment

❖ Destructors

❖ An extended example
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Copy Constructors

❖ C++ has the notion of a copy constructor (cctor)

▪ Used to create a new object as a copy of an existing object

18

Point::Point(const int x, const int y) : x_(x), y_(y) { }

// copy constructor

Point::Point(const Point& copyme) {

  x_ = copyme.x_;

  y_ = copyme.y_;

}

void foo() {

  Point p1(1, 2);  // invokes the 2-int-arguments constructor

  Point p2(p1);    // invokes the copy constructor

                   // could also be written as "Point p2 = p1;"

}

▪ Initializer lists can also be used in copy constructors (preferred)
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When Do Copies Happen?

❖ The copy constructor is invoked if:

▪ You initialize an object from 

another object of the same 

type:

▪ You pass a non-reference 

object as a value parameter 

to a function:

▪ You return a non-reference

object value from a function:

19

void foo(Point arg) { ... }

Point pt;      // default ctor

foo(pt);       // copy ctor

Point p1;      // default ctor

Point p2(p1);   // copy ctor

Point p3 = p2;  // copy ctor

Point foo() {

  Point pt;    // default ctor

  return pt;   // copy ctor

}
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Compiler Optimization

❖ The compiler sometimes uses a “return by value optimization” or 

“move semantics” to eliminate unnecessary copies

▪ Sometimes you might not see a constructor get invoked when you might expect 

it
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Point foo() {

  Point pt;        // default ctor

  return pt;       // copy ctor? optimized?

}

Point pt1(1, 2);    // two-ints-argument ctor

Point pt2 = pt1;    // copy ctor

Point pt3 = foo();  // copy ctor? optimized?
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Synthesized Copy Constructor

❖ If you don’t define your own copy constructor, C++ will synthesize 

one for you

▪ It will do a shallow copy of all of the fields (i.e. member variables) of your class

▪ Sometimes the right thing; sometimes the wrong thing

21

#include "SimplePoint.h"

... // definitions for Distance() and SetLocation()

int main(int argc, char** argv) {

  SimplePoint pt1;

  SimplePoint pt2(pt1);  // invokes synthesized copy constructor

  ...

  return 0;

}
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Lecture Outline

❖ Classes

❖ Constructors

❖ Copy Constructors

❖ Assignment

❖ Destructors

❖ An extended example
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Assignment ain’t Construction

❖ “=” is the assignment operator

▪ Assigns values to an existing, already constructed object

23

Point pt1;        // default ctor

Point pt2(1, 2);  // two-ints-argument ctor

Point pt3(pt2);   // copy ctor 

Point pt4 = p1;   // copy ctor

p3 = p2;          // assignment operator
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Assignment ain’t Construction

❖ “=” is the assignment operator

▪ Assigns values to an existing, already constructed object

▪ How can you tell the difference between assignment operator= and a copy constructor 

that uses =?

• Answer: are you creating/initializing a new object?  If so, it’s a copy constructor; if you are just 

updating an existing object it’s assignment
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Point pt1;        // default ctor

Point pt2(1, 2);  // two-ints-argument ctor

Point pt3(pt2);   // copy ctor 

Point pt4 = p1;   // copy ctor

p3 = p2;          // assignment operator



CSE333, Autumn 2025L11:  C++ Classes, Constructor, and Copies (Oh My!)

Overloading the “=” Operator

❖ You can choose to define the “=” operator

▪ But there are some rules you should follow:

25

Point& Point::operator=(const Point& rhs) {

  if (this != &rhs) {  // (1) always check against this

    x_ = rhs.x_;

    y_ = rhs.y_;

  }

  return *this;        // (2) always return *this from op=

}

Point c;       // default constructor

a = b = c;     // works because = return *this

a = (b = c);   // equiv. to above (= is right-associative)

(a = b) = c;   // "works" because = returns a non-const
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Synthesized Assignment Operator

❖ If you don’t define the assignment operator, C++ will 

synthesize one for you

▪ It will do a shallow copy of all of the fields (i.e. member variables) 

of your class

▪ Sometimes the right thing; sometimes the wrong thing

26

#include "SimplePoint.h"

... // definitions for Distance() and SetLocation()

int main(int argc, char** argv) {

  SimplePoint pt1;

  SimplePoint pt2(pt1);

  pt2 = pt1;          // invokes synthesized assignment operator

  return 0;

}
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Lecture Outline

❖ Classes

❖ Constructors

❖ Copy Constructors

❖ Assignment

❖ Destructors

❖ An extended example
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Destructors

❖ C++ has the notion of a destructor (dtor)

▪ Invoked automatically when a class instance is deleted, goes out 

of scope, etc. (even via exceptions or other causes!)

▪ Place to put your cleanup code – free any dynamic storage or 

other resources owned by the object

▪ Standard C++ idiom for managing dynamic resources

• Slogan: “Resource Acquisition Is Initialization” (RAII)

28

Point::~Point() {   // destructor

  // do any cleanup needed when a Point object goes away

  // (nothing to do here since we have no dynamic resources)

}
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Lecture Outline

❖ Classes

❖ Constructors

❖ Copy Constructors

❖ Assignment

❖ Destructors

❖ An extended example
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Complex Example Walkthrough

See:

Complex.h

Complex.cc

testcomplex.cc

❖ (Some details like friend functions and namespaces are explained in more 

detail next lecture, but ideas should make sense from looking at the code and 

explanations in C++ Primer.)

31
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Extra Exercise #1

❖ Modify your Point3D class from Lec 10 Extra #1

▪ Disable the copy constructor and assignment operator

▪ Attempt to use copy & assignment in code and see what error the compiler generates

▪ Write a CopyFrom() member function and try using it instead

• (See details about CopyFrom() in next lecture)
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Extra Exercise #2

❖ Write a C++ class that:

▪ Is given the name of a file as a constructor argument

▪ Has a GetNextWord() method that returns the next whitespace- or newline-separated 

word from the file as a copy of a string object, or an empty string once you hit EOF

▪ Has a destructor that cleans up anything that needs cleaning up

33
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