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Administrivia

❖ Homework 2 due next Thursday (10/23)
▪ File system crawler, indexer, and search engine

▪ Demo in section this week

▪ Note: libhw1.a (yours or ours) and the .h files from hw1 need 
to be in right directory (~yourgit/hw1/)

▪ Note: use Ctrl-D to exit searchshell, test on directory of small 
self-made files

❖ A bit of a breather on exercises

▪ No new exercise out today!
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Lecture Outline

❖ C++ References

❖ const in C++

❖ C++ Classes Intro
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Pointers Reminder

❖ A pointer is a variable containing an address

▪ Modifying the pointer doesn’t modify what it points to, but you 
can access/modify what it points to by dereferencing

▪ These work the same in C and C++
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int main(int argc, char** argv) {

  int x = 5, y = 10;

  int* z = &x;

  *z += 1;  

   x += 1;  

   z = &y;  

  *z += 1;  

  return EXIT_SUCCESS;

}

pointer.cc

x 5

y 10

z

Note: Arrow points 
to next instruction.
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Pointers Reminder

❖ A pointer is a variable containing an address

▪ Modifying the pointer doesn’t modify what it points to, but you 
can access/modify what it points to by dereferencing

▪ These work the same in C and C++

5

int main(int argc, char** argv) {

  int x = 5, y = 10;

  int* z = &x;

  *z += 1;  

   x += 1;  

   z = &y;  

  *z += 1;  

  return EXIT_SUCCESS;

}

pointer.cc

x 5

y 10

z 0x7fff…a4

Note: Arrow points 
to next instruction.
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Pointers Reminder

❖ A pointer is a variable containing an address

▪ Modifying the pointer doesn’t modify what it points to, but you 
can access/modify what it points to by dereferencing

▪ These work the same in C and C++
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int main(int argc, char** argv) {

  int x = 5, y = 10;

  int* z = &x;

  *z += 1;  // sets x to 6

   x += 1;  

   z = &y;  

  *z += 1;  

  return EXIT_SUCCESS;

}

pointer.cc

x 6

y 10

z 0x7fff…a4

Note: Arrow points 
to next instruction.
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Pointers Reminder

❖ A pointer is a variable containing an address

▪ Modifying the pointer doesn’t modify what it points to, but you 
can access/modify what it points to by dereferencing

▪ These work the same in C and C++
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int main(int argc, char** argv) {

  int x = 5, y = 10;

  int* z = &x;

  *z += 1;  // sets x to 6

   x += 1;  // sets x (and *z) to 7

   z = &y;  

  *z += 1;  

  return EXIT_SUCCESS;

}

pointer.cc

x 7

y 10

z 0x7fff…a4

Note: Arrow points 
to next instruction.
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Pointers Reminder

❖ A pointer is a variable containing an address

▪ Modifying the pointer doesn’t modify what it points to, but you 
can access/modify what it points to by dereferencing

▪ These work the same in C and C++
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int main(int argc, char** argv) {

  int x = 5, y = 10;

  int* z = &x;

  *z += 1;  // sets x to 6

   x += 1;  // sets x (and *z) to 7

   z = &y;  // sets z to the address of y

  *z += 1;  

  return EXIT_SUCCESS;

}

pointer.cc

x 7

y 10

z 0x7fff…a0

Note: Arrow points 
to next instruction.
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Pointers Reminder

❖ A pointer is a variable containing an address

▪ Modifying the pointer doesn’t modify what it points to, but you 
can access/modify what it points to by dereferencing

▪ These work the same in C and C++
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int main(int argc, char** argv) {

  int x = 5, y = 10;

  int* z = &x;

  *z += 1;  // sets x to 6

   x += 1;  // sets x (and *z) to 7

   z = &y;  // sets z to the address of y

  *z += 1;  // sets y (and *z) to 11

  return EXIT_SUCCESS;

}

pointer.cc

x 7

y 11

z 0x7fff…a0

Note: Arrow points 
to next instruction.
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References

❖ A reference is an alias for another variable

▪ Alias: another name that is bound to the aliased variable

• Mutating a reference is mutating the aliased variable

▪ Introduced in C++ as part of the language
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int main(int argc, char** argv) {

  int x = 5, y = 10;

  int& z = x; 

  z += 1;  

  x += 1;  

  z  = y;  

  z += 1;  

  return EXIT_SUCCESS;

}

reference.cc

x 5

y 10

Note: Arrow points 
to next instruction.
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References

❖ A reference is an alias for another variable

▪ Alias: another name that is bound to the aliased variable

• Mutating a reference is mutating the aliased variable

▪ Introduced in C++ as part of the language
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int main(int argc, char** argv) {

  int x = 5, y = 10;

  int& z = x;  // binds the name "z" to x

  z += 1;  

  x += 1;  

  z  = y;  

  z += 1;  

  return EXIT_SUCCESS;

}

reference.cc

x, z 5

y 10

Note: Arrow points 
to next instruction.
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References

❖ A reference is an alias for another variable

▪ Alias: another name that is bound to the aliased variable

• Mutating a reference is mutating the aliased variable

▪ Introduced in C++ as part of the language
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int main(int argc, char** argv) {

  int x = 5, y = 10;

  int& z = x;  // binds the name "z" to x

  z += 1;  // sets z (and x) to 6

  x += 1;  

  z  = y;  

  z += 1;  

  return EXIT_SUCCESS;

}

reference.cc

x, z 6

y 10

Note: Arrow points 
to next instruction.
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References

❖ A reference is an alias for another variable

▪ Alias: another name that is bound to the aliased variable

• Mutating a reference is mutating the aliased variable

▪ Introduced in C++ as part of the language
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int main(int argc, char** argv) {

  int x = 5, y = 10;

  int& z = x;  // binds the name "z" to x

  z += 1;  // sets z (and x) to 6

  x += 1;  // sets x (and z) to 7

  z  = y;  

  z += 1;  

  return EXIT_SUCCESS;

}

reference.cc

x, z 7

y 10

Note: Arrow points 
to next instruction.
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References

❖ A reference is an alias for another variable

▪ Alias: another name that is bound to the aliased variable

• Mutating a reference is mutating the aliased variable

▪ Introduced in C++ as part of the language

14

int main(int argc, char** argv) {

  int x = 5, y = 10;

  int& z = x;  // binds the name "z" to x

  z += 1;  // sets z (and x) to 6

  x += 1;  // sets x (and z) to 7

  z  = y;  // sets z (and x) to the value of y

  z += 1;  

  return EXIT_SUCCESS;

}

reference.cc

x, z 10

y 10

Note: Arrow points 
to next instruction.
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References

❖ A reference is an alias for another variable

▪ Alias: another name that is bound to the aliased variable

• Mutating a reference is mutating the aliased variable

▪ Introduced in C++ as part of the language
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int main(int argc, char** argv) {

  int x = 5, y = 10;

  int& z = x;  // binds the name "z" to x

  z += 1;  // sets z (and x) to 6

  x += 1;  // sets x (and z) to 7

  z  = y;  // sets z (and x) to the value of y

  z += 1;  // sets z (and x) to 11

  return EXIT_SUCCESS;

}

reference.cc

x, z 11

y 10

Note: Arrow points 
to next instruction.
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Pass-By-Reference

❖ C++ allows you to use real pass-by-reference

▪ Client passes in an argument with normal syntax

• Function uses reference parameters with normal syntax

• Modifying a reference parameter modifies the caller’s argument!
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void Swap(int& x, int& y) {

  int tmp = x;

  x = y;

  y = tmp;

}

int main(int argc, char** argv) {

  int a = 5, b = 10;

  Swap(a, b);

  cout << "a: " << a << "; b: " << b << endl;

  return EXIT_SUCCESS;

}

passbyreference.cc

(main) a 5

(main) b 10

Note: Arrow points 
to next instruction.
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Pass-By-Reference

❖ C++ allows you to use real pass-by-reference

▪ Client passes in an argument with normal syntax

• Function uses reference parameters with normal syntax

• Modifying a reference parameter modifies the caller’s argument!
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void Swap(int& x, int& y) {

  int tmp = x;

  x = y;

  y = tmp;

}

int main(int argc, char** argv) {

  int a = 5, b = 10;

  Swap(a, b);

  cout << "a: " << a << "; b: " << b << endl;

  return EXIT_SUCCESS;

}

passbyreference.cc

(main) a
(Swap) x

5

(main) b
(Swap) y

10

Note: Arrow points 
to next instruction.

(Swap) tmp
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Pass-By-Reference

❖ C++ allows you to use real pass-by-reference

▪ Client passes in an argument with normal syntax

• Function uses reference parameters with normal syntax

• Modifying a reference parameter modifies the caller’s argument!
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void Swap(int& x, int& y) {

  int tmp = x;

  x = y;

  y = tmp;

}

int main(int argc, char** argv) {

  int a = 5, b = 10;

  Swap(a, b);

  cout << "a: " << a << "; b: " << b << endl;

  return EXIT_SUCCESS;

}

passbyreference.cc

(main) a
(Swap) x

5

(main) b
(Swap) y

10

Note: Arrow points 
to next instruction.

(Swap) tmp 5
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Pass-By-Reference

❖ C++ allows you to use real pass-by-reference

▪ Client passes in an argument with normal syntax

• Function uses reference parameters with normal syntax

• Modifying a reference parameter modifies the caller’s argument!

19

void Swap(int& x, int& y) {

  int tmp = x;

  x = y;

  y = tmp;

}

int main(int argc, char** argv) {

  int a = 5, b = 10;

  Swap(a, b);

  cout << "a: " << a << "; b: " << b << endl;

  return EXIT_SUCCESS;

}

passbyreference.cc

(main) a
(Swap) x

10

(main) b
(Swap) y

10

Note: Arrow points 
to next instruction.

(Swap) tmp 5
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Pass-By-Reference

❖ C++ allows you to use real pass-by-reference

▪ Client passes in an argument with normal syntax

• Function uses reference parameters with normal syntax

• Modifying a reference parameter modifies the caller’s argument!
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void Swap(int& x, int& y) {

  int tmp = x;

  x = y;

  y = tmp;

}

int main(int argc, char** argv) {

  int a = 5, b = 10;

  Swap(a, b);

  cout << "a: " << a << "; b: " << b << endl;

  return EXIT_SUCCESS;

}

passbyreference.cc

(main) a
(Swap) x

10

(main) b
(Swap) y

5

Note: Arrow points 
to next instruction.

(Swap) tmp 5
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Pass-By-Reference

❖ C++ allows you to use real pass-by-reference

▪ Client passes in an argument with normal syntax

• Function uses reference parameters with normal syntax

• Modifying a reference parameter modifies the caller’s argument!
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void Swap(int& x, int& y) {

  int tmp = x;

  x = y;

  y = tmp;

}

int main(int argc, char** argv) {

  int a = 5, b = 10;

  Swap(a, b);

  cout << "a: " << a << "; b: " << b << endl;

  return EXIT_SUCCESS;

}

passbyreference.cc

(main) a 10

(main) b 5

Note: Arrow points 
to next instruction.
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What is your anticipated lecture/section 
attendance modality?

A. Output "(1,2,3)"

B. Output "(3,2,3)"

C. Compiler error
about arguments
to Foo (in main)

D. Compiler error
about body of Foo

E. We’re lost…

22

pollev.com/cse333

What will happen when we try to compile and 
run this code? poll1.cc

void Foo(int& x, int* y, int z) {

  z = *y; 

  x += 2;

  y = &x;

}

int main(int argc, char** argv) {

  int a = 1;

  int b = 2;

  int& c = a;

  Foo(a, &b, c);

  std::cout << "(" << a << ", " << b

   << ", " << c << ")" << std::endl;

  return EXIT_SUCCESS;

}
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Lecture Outline

❖ C++ References

❖ const in C++

❖ C++ Classes Intro

23
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const

❖ const: this cannot be changed/mutated

▪ Used much more in C++ than in C

▪ Signal of intent to compiler; meaningless at hardware level

• Results in compile-time errors

24

void BrokenPrintSquare(const int& i) {

  i = i*i;  // compiler error here!

  std::cout << i << std::endl;

}

int main(int argc, char** argv) {

  int j = 2;

  BrokenPrintSquare(j);

  return EXIT_SUCCESS;

}

brokenpassbyrefconst.cc
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const and Pointers

❖ Pointers can change data in two different contexts:

1) You can change the value of the pointer

2) You can change the thing the pointer points to 
(via dereference)

❖ const can be used to prevent either/both of these 
behaviors!
▪ const next to pointer name means you can’t change the value of 

the pointer

▪ const next to data type pointed to means you can’t use this 
pointer to change the thing being pointed to

▪ Tip: read variable declaration from right-to-left

25
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const and Pointers

❖ The syntax with pointers is confusing:

26

int main(int argc, char** argv) {

  int x = 5;               // int

  const int y = 6;         // (const int)

  y++;                     

  const int* z = &y;       // pointer to a (const int)

  *z += 1;                 

  z++;                     

  int* const w = &x;       // (const pointer) to a (variable int)

  *w += 1;                 

  w++;                     

  const int* const v = &x; // (const pointer) to a (const int)

  *v += 1;                 

  v++;                     

  return EXIT_SUCCESS;

}

constmadness.cc
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const and Pointers

❖ The syntax with pointers is confusing:

27

int main(int argc, char** argv) {

  int x = 5;               // int

  const int y = 6;         // (const int)

  y++;                     // compiler error

  const int* z = &y;       // pointer to a (const int)

  *z += 1;                 // compiler error

  z++;                     // ok

  int* const w = &x;       // (const pointer) to a (variable int)

  *w += 1;                 // ok

  w++;                     // compiler error

  const int* const v = &x; // (const pointer) to a (const int)

  *v += 1;                 // compiler error

  v++;                     // compiler error

  return EXIT_SUCCESS;

}

constmadness.cc
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const Parameters

❖ A const parameter 
cannot be mutated inside 
the function
▪ Therefore it does not 

matter if the argument can 
be mutated or not

❖ A non-const parameter 
may be mutated inside 
the function

▪ Compiler won’t let you 
pass in const parameters

28

void Foo(const int* y) {

  std::cout << *y << std::endl;

}

void Bar(int* y) {

  std::cout << *y << std::endl;

}

int main(int argc, char** argv) {

  const int a = 10;

  int b = 20;

  Foo(&a);   // OK

  Foo(&b);   // OK

  Bar(&a);   // not OK – error

  Bar(&b);   // OK

  return EXIT_SUCCESS;

}

STYLE
TIP

Make parameters const when you can!
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What is your anticipated lecture/section 
attendance modality?

A. Output "(2,4,0)"

B. Output "(2,4,3)"

C. Compiler error
about arguments
to Foo (in main)

D. Compiler error
about body of Foo

E. We’re lost…

29

pollev.com/cse333

What will happen when we try to compile and 
run this code?

void Foo(int* const x,

         int& y, int z) {

  *x += 1;

   y *= 2;

   z -= 3;

}

int main(int argc, char** argv) {

  const int a = 1;

  int b = 2, c = 3;

  Foo(&a, b, c);

  std::cout << "(" << a << "," << b

   << "," << c << ")" << std::endl;

  return EXIT_SUCCESS;

}

poll2.cc
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When to Use References?

❖ A stylistic choice, not mandated by the C++ language

❖ Google C++ style guide suggests:

▪ Input parameters:
• Either use values (for primitive types like int or small 

structs/objects)
• Or use const references (for complex struct/object instances)

▪ Output parameters:
• Use const pointers

– Unchangeable pointers referencing changeable data

▪ Ordering:
• List input parameters first, then output parameters last

30

void CalcArea(const int& width, const int& height,

              int* const area) {

  *area = width * height;

} styleguide.cc

STYLE
TIP

ordinary int (not int&) 
probably better here, 
but shows how const 

ref can be used

ordinary int (not int&) 
probably better here, 
but shows how const 

ref can be used
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Lecture Outline

❖ C++ References

❖ const in C++

❖ C++ Classes Intro

31
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Classes

❖ Class definition syntax (in a .h file):

▪ Members can be functions (methods) or data (variables)

❖ Class member function definition syntax (in a .cc file):

▪ (1) define within the class definition or (2) declare within the class 
definition and then define elsewhere

32

class Name {

 public:

  // public member definitions & declarations go here

 private:

  // private member definitions & declarations go here

};  // class Name

retType Name::MethodName(type1 param1, …, typeN paramN) {

  // body statements

}
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Class Organization

❖ It’s a little more complex than in C when modularizing 
with struct definition:

▪ Class definition is part of interface and should go in .h file

• Private members still must be included in definition (!)

▪ Usually put member function definitions into companion .cc file 

with implementation details

• Common exception:  setter and getter methods

▪ These files can also include non-member functions that use the 
class

❖ Unlike Java, you can name files anything you want
▪ Typically Name.cc and Name.h for class Name

33
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Const & Classes

❖ Like other data types, objects can be declared as const:

▪ Once a const object has been constructed, its member variables 
can’t be changed

▪ Can only invoke member functions that are labeled const

❖ You can declare a member function of a class as const

▪ This means that it cannot modify the object it was called on

• The compiler will treat member variables as const inside the 
function at compile time

▪ If a member function doesn’t modify the object, mark it const!

34
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Class Definition (.h file)

35

#ifndef POINT_H_

#define POINT_H_

class Point {

 public:

  Point(const int x, const int y);     // constructor

  int get_x() const { return x_; }     // inline member function

  int get_y() const { return y_; }     // inline member function

  double Distance(const Point& p) const;      // member function

  void SetLocation(const int x, const int y); // member function

 private:

  int x_;  // data member

  int y_;  // data member

};  // class Point

#endif  // POINT_H_

Point.h

STYLE
TIP
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Class Member Definitions (.cc file)

36

#include <cmath>

#include "Point.h"

Point::Point(const int x, const int y) {

  x_ = x;

  this->y_ = y;  // "this->" is optional unless name conflicts

}

double Point::Distance(const Point& p) const {

  // We can access p’s x_ and y_ variables either through the

  // get_x(), get_y() accessor functions or the x_, y_ private

  // member variables directly, since we’re in a member

  // function of the same class.

  double distance = (x_ - p.get_x()) * (x_ - p.get_x());

  distance += (y_ - p.y_) * (y_ - p.y_);

  return sqrt(distance);

}

void Point::SetLocation(const int x, const int y) {

  x_ = x;

  y_ = y;

}

Point.cc
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Class Usage (.cc file)

37

#include <iostream>

#include <cstdlib>

#include "Point.h"

using namespace std;

int main(int argc, char** argv) {

  Point p1(1, 2);  // allocate a new Point on the Stack

  Point p2(4, 6);  // allocate a new Point on the Stack

  cout << "p1 is: (" << p1.get_x() << ", ";

  cout << p1.get_y() << ")" << endl;

  cout << "p2 is: (" << p2.get_x() << ", ";

  cout << p2.get_y() << ")" << endl;

  cout << "dist : " << p1.Distance(p2) << endl;

  return EXIT_SUCCESS;

}

usepoint.cc
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Reading Assignment

❖ Before next time, read the sections in C++ Primer covering 
class constructors, copy constructors, assignment 
(operator=), and destructors

▪ Ignore “move semantics” for now

▪ The table of contents and index are your friends…

38
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Extra Exercise #1

❖ Write a C++ program that:

▪ Has a class representing a 3-dimensional point

▪ Has the following methods:

• Return the inner product of two 3D points

• Return the distance between two 3D points

• Accessors and mutators for the x, y, and z coordinates

39
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Extra Exercise #2

❖ Write a C++ program that:

▪ Has a class representing a 3-dimensional box

• Use your Extra Exercise #1 class to store the coordinates of the 
vertices that define the box

• Assume the box has right-angles only and its faces are parallel to the 
axes, so you only need 2 vertices to define it

▪ Has the following methods:

• Test if one box is inside another box

• Return the volume of a box

• Handles <<, =, and a copy constructor

• Uses const in all the right places

40
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