
CSE333, Autumn 2025L10: References, Const, Classes

C++ References, Const, Classes
CSE 333 Autumn 2025

Instructors: Naomi Alterman, Chris Thachuk

Teaching Assistants:

Ann Baturytski Derek de Leuw Blake Diaz

Rishabh Jain Chendur Jel Jayavelu Lucas Kwan

Irene Xin Jie Lau Nathan Li Maya Odenheim

Advay Patil Selim Saridede Deeksha Vatwani

Angela Wu Jiexiao Xu

CSE333, Autumn 2025L10: References, Const, Classes

Administrivia

❖ Homework 2 due next Thursday (10/23)
▪ File system crawler, indexer, and search engine

▪ Demo in section this week

▪ Note: libhw1.a (yours or ours) and the .h files from hw1 need
to be in right directory (~yourgit/hw1/)

▪ Note: use Ctrl-D to exit searchshell, test on directory of small
self-made files

❖ A bit of a breather on exercises

▪ No new exercise out today!

2

CSE333, Autumn 2025L10: References, Const, Classes

Lecture Outline

❖ C++ References

❖ const in C++

❖ C++ Classes Intro

3

CSE333, Autumn 2025L10: References, Const, Classes

Pointers Reminder

❖ A pointer is a variable containing an address

▪ Modifying the pointer doesn’t modify what it points to, but you
can access/modify what it points to by dereferencing

▪ These work the same in C and C++

4

int main(int argc, char** argv) {

 int x = 5, y = 10;

 int* z = &x;

 *z += 1;

 x += 1;

 z = &y;

 *z += 1;

 return EXIT_SUCCESS;

}

pointer.cc

x 5

y 10

z

Note: Arrow points
to next instruction.

CSE333, Autumn 2025L10: References, Const, Classes

Pointers Reminder

❖ A pointer is a variable containing an address

▪ Modifying the pointer doesn’t modify what it points to, but you
can access/modify what it points to by dereferencing

▪ These work the same in C and C++

5

int main(int argc, char** argv) {

 int x = 5, y = 10;

 int* z = &x;

 *z += 1;

 x += 1;

 z = &y;

 *z += 1;

 return EXIT_SUCCESS;

}

pointer.cc

x 5

y 10

z 0x7fff…a4

Note: Arrow points
to next instruction.

CSE333, Autumn 2025L10: References, Const, Classes

Pointers Reminder

❖ A pointer is a variable containing an address

▪ Modifying the pointer doesn’t modify what it points to, but you
can access/modify what it points to by dereferencing

▪ These work the same in C and C++

6

int main(int argc, char** argv) {

 int x = 5, y = 10;

 int* z = &x;

 *z += 1; // sets x to 6

 x += 1;

 z = &y;

 *z += 1;

 return EXIT_SUCCESS;

}

pointer.cc

x 6

y 10

z 0x7fff…a4

Note: Arrow points
to next instruction.

CSE333, Autumn 2025L10: References, Const, Classes

Pointers Reminder

❖ A pointer is a variable containing an address

▪ Modifying the pointer doesn’t modify what it points to, but you
can access/modify what it points to by dereferencing

▪ These work the same in C and C++

7

int main(int argc, char** argv) {

 int x = 5, y = 10;

 int* z = &x;

 *z += 1; // sets x to 6

 x += 1; // sets x (and *z) to 7

 z = &y;

 *z += 1;

 return EXIT_SUCCESS;

}

pointer.cc

x 7

y 10

z 0x7fff…a4

Note: Arrow points
to next instruction.

CSE333, Autumn 2025L10: References, Const, Classes

Pointers Reminder

❖ A pointer is a variable containing an address

▪ Modifying the pointer doesn’t modify what it points to, but you
can access/modify what it points to by dereferencing

▪ These work the same in C and C++

8

int main(int argc, char** argv) {

 int x = 5, y = 10;

 int* z = &x;

 *z += 1; // sets x to 6

 x += 1; // sets x (and *z) to 7

 z = &y; // sets z to the address of y

 *z += 1;

 return EXIT_SUCCESS;

}

pointer.cc

x 7

y 10

z 0x7fff…a0

Note: Arrow points
to next instruction.

CSE333, Autumn 2025L10: References, Const, Classes

Pointers Reminder

❖ A pointer is a variable containing an address

▪ Modifying the pointer doesn’t modify what it points to, but you
can access/modify what it points to by dereferencing

▪ These work the same in C and C++

9

int main(int argc, char** argv) {

 int x = 5, y = 10;

 int* z = &x;

 *z += 1; // sets x to 6

 x += 1; // sets x (and *z) to 7

 z = &y; // sets z to the address of y

 *z += 1; // sets y (and *z) to 11

 return EXIT_SUCCESS;

}

pointer.cc

x 7

y 11

z 0x7fff…a0

Note: Arrow points
to next instruction.

CSE333, Autumn 2025L10: References, Const, Classes

References

❖ A reference is an alias for another variable

▪ Alias: another name that is bound to the aliased variable

• Mutating a reference is mutating the aliased variable

▪ Introduced in C++ as part of the language

10

int main(int argc, char** argv) {

 int x = 5, y = 10;

 int& z = x;

 z += 1;

 x += 1;

 z = y;

 z += 1;

 return EXIT_SUCCESS;

}

reference.cc

x 5

y 10

Note: Arrow points
to next instruction.

CSE333, Autumn 2025L10: References, Const, Classes

References

❖ A reference is an alias for another variable

▪ Alias: another name that is bound to the aliased variable

• Mutating a reference is mutating the aliased variable

▪ Introduced in C++ as part of the language

11

int main(int argc, char** argv) {

 int x = 5, y = 10;

 int& z = x; // binds the name "z" to x

 z += 1;

 x += 1;

 z = y;

 z += 1;

 return EXIT_SUCCESS;

}

reference.cc

x, z 5

y 10

Note: Arrow points
to next instruction.

CSE333, Autumn 2025L10: References, Const, Classes

References

❖ A reference is an alias for another variable

▪ Alias: another name that is bound to the aliased variable

• Mutating a reference is mutating the aliased variable

▪ Introduced in C++ as part of the language

12

int main(int argc, char** argv) {

 int x = 5, y = 10;

 int& z = x; // binds the name "z" to x

 z += 1; // sets z (and x) to 6

 x += 1;

 z = y;

 z += 1;

 return EXIT_SUCCESS;

}

reference.cc

x, z 6

y 10

Note: Arrow points
to next instruction.

CSE333, Autumn 2025L10: References, Const, Classes

References

❖ A reference is an alias for another variable

▪ Alias: another name that is bound to the aliased variable

• Mutating a reference is mutating the aliased variable

▪ Introduced in C++ as part of the language

13

int main(int argc, char** argv) {

 int x = 5, y = 10;

 int& z = x; // binds the name "z" to x

 z += 1; // sets z (and x) to 6

 x += 1; // sets x (and z) to 7

 z = y;

 z += 1;

 return EXIT_SUCCESS;

}

reference.cc

x, z 7

y 10

Note: Arrow points
to next instruction.

CSE333, Autumn 2025L10: References, Const, Classes

References

❖ A reference is an alias for another variable

▪ Alias: another name that is bound to the aliased variable

• Mutating a reference is mutating the aliased variable

▪ Introduced in C++ as part of the language

14

int main(int argc, char** argv) {

 int x = 5, y = 10;

 int& z = x; // binds the name "z" to x

 z += 1; // sets z (and x) to 6

 x += 1; // sets x (and z) to 7

 z = y; // sets z (and x) to the value of y

 z += 1;

 return EXIT_SUCCESS;

}

reference.cc

x, z 10

y 10

Note: Arrow points
to next instruction.

CSE333, Autumn 2025L10: References, Const, Classes

References

❖ A reference is an alias for another variable

▪ Alias: another name that is bound to the aliased variable

• Mutating a reference is mutating the aliased variable

▪ Introduced in C++ as part of the language

15

int main(int argc, char** argv) {

 int x = 5, y = 10;

 int& z = x; // binds the name "z" to x

 z += 1; // sets z (and x) to 6

 x += 1; // sets x (and z) to 7

 z = y; // sets z (and x) to the value of y

 z += 1; // sets z (and x) to 11

 return EXIT_SUCCESS;

}

reference.cc

x, z 11

y 10

Note: Arrow points
to next instruction.

CSE333, Autumn 2025L10: References, Const, Classes

Pass-By-Reference

❖ C++ allows you to use real pass-by-reference

▪ Client passes in an argument with normal syntax

• Function uses reference parameters with normal syntax

• Modifying a reference parameter modifies the caller’s argument!

16

void Swap(int& x, int& y) {

 int tmp = x;

 x = y;

 y = tmp;

}

int main(int argc, char** argv) {

 int a = 5, b = 10;

 Swap(a, b);

 cout << "a: " << a << "; b: " << b << endl;

 return EXIT_SUCCESS;

}

passbyreference.cc

(main) a 5

(main) b 10

Note: Arrow points
to next instruction.

CSE333, Autumn 2025L10: References, Const, Classes

Pass-By-Reference

❖ C++ allows you to use real pass-by-reference

▪ Client passes in an argument with normal syntax

• Function uses reference parameters with normal syntax

• Modifying a reference parameter modifies the caller’s argument!

17

void Swap(int& x, int& y) {

 int tmp = x;

 x = y;

 y = tmp;

}

int main(int argc, char** argv) {

 int a = 5, b = 10;

 Swap(a, b);

 cout << "a: " << a << "; b: " << b << endl;

 return EXIT_SUCCESS;

}

passbyreference.cc

(main) a
(Swap) x

5

(main) b
(Swap) y

10

Note: Arrow points
to next instruction.

(Swap) tmp

CSE333, Autumn 2025L10: References, Const, Classes

Pass-By-Reference

❖ C++ allows you to use real pass-by-reference

▪ Client passes in an argument with normal syntax

• Function uses reference parameters with normal syntax

• Modifying a reference parameter modifies the caller’s argument!

18

void Swap(int& x, int& y) {

 int tmp = x;

 x = y;

 y = tmp;

}

int main(int argc, char** argv) {

 int a = 5, b = 10;

 Swap(a, b);

 cout << "a: " << a << "; b: " << b << endl;

 return EXIT_SUCCESS;

}

passbyreference.cc

(main) a
(Swap) x

5

(main) b
(Swap) y

10

Note: Arrow points
to next instruction.

(Swap) tmp 5

CSE333, Autumn 2025L10: References, Const, Classes

Pass-By-Reference

❖ C++ allows you to use real pass-by-reference

▪ Client passes in an argument with normal syntax

• Function uses reference parameters with normal syntax

• Modifying a reference parameter modifies the caller’s argument!

19

void Swap(int& x, int& y) {

 int tmp = x;

 x = y;

 y = tmp;

}

int main(int argc, char** argv) {

 int a = 5, b = 10;

 Swap(a, b);

 cout << "a: " << a << "; b: " << b << endl;

 return EXIT_SUCCESS;

}

passbyreference.cc

(main) a
(Swap) x

10

(main) b
(Swap) y

10

Note: Arrow points
to next instruction.

(Swap) tmp 5

CSE333, Autumn 2025L10: References, Const, Classes

Pass-By-Reference

❖ C++ allows you to use real pass-by-reference

▪ Client passes in an argument with normal syntax

• Function uses reference parameters with normal syntax

• Modifying a reference parameter modifies the caller’s argument!

20

void Swap(int& x, int& y) {

 int tmp = x;

 x = y;

 y = tmp;

}

int main(int argc, char** argv) {

 int a = 5, b = 10;

 Swap(a, b);

 cout << "a: " << a << "; b: " << b << endl;

 return EXIT_SUCCESS;

}

passbyreference.cc

(main) a
(Swap) x

10

(main) b
(Swap) y

5

Note: Arrow points
to next instruction.

(Swap) tmp 5

CSE333, Autumn 2025L10: References, Const, Classes

Pass-By-Reference

❖ C++ allows you to use real pass-by-reference

▪ Client passes in an argument with normal syntax

• Function uses reference parameters with normal syntax

• Modifying a reference parameter modifies the caller’s argument!

21

void Swap(int& x, int& y) {

 int tmp = x;

 x = y;

 y = tmp;

}

int main(int argc, char** argv) {

 int a = 5, b = 10;

 Swap(a, b);

 cout << "a: " << a << "; b: " << b << endl;

 return EXIT_SUCCESS;

}

passbyreference.cc

(main) a 10

(main) b 5

Note: Arrow points
to next instruction.

CSE333, Autumn 2025L10: References, Const, Classes

What is your anticipated lecture/section
attendance modality?

A. Output "(1,2,3)"

B. Output "(3,2,3)"

C. Compiler error
about arguments
to Foo (in main)

D. Compiler error
about body of Foo

E. We’re lost…

22

pollev.com/cse333

What will happen when we try to compile and
run this code? poll1.cc

void Foo(int& x, int* y, int z) {

 z = *y;

 x += 2;

 y = &x;

}

int main(int argc, char** argv) {

 int a = 1;

 int b = 2;

 int& c = a;

 Foo(a, &b, c);

 std::cout << "(" << a << ", " << b

 << ", " << c << ")" << std::endl;

 return EXIT_SUCCESS;

}

CSE333, Autumn 2025L10: References, Const, Classes

Lecture Outline

❖ C++ References

❖ const in C++

❖ C++ Classes Intro

23

CSE333, Autumn 2025L10: References, Const, Classes

const

❖ const: this cannot be changed/mutated

▪ Used much more in C++ than in C

▪ Signal of intent to compiler; meaningless at hardware level

• Results in compile-time errors

24

void BrokenPrintSquare(const int& i) {

 i = i*i; // compiler error here!

 std::cout << i << std::endl;

}

int main(int argc, char** argv) {

 int j = 2;

 BrokenPrintSquare(j);

 return EXIT_SUCCESS;

}

brokenpassbyrefconst.cc

CSE333, Autumn 2025L10: References, Const, Classes

const and Pointers

❖ Pointers can change data in two different contexts:

1) You can change the value of the pointer

2) You can change the thing the pointer points to
(via dereference)

❖ const can be used to prevent either/both of these
behaviors!
▪ const next to pointer name means you can’t change the value of

the pointer

▪ const next to data type pointed to means you can’t use this
pointer to change the thing being pointed to

▪ Tip: read variable declaration from right-to-left

25

CSE333, Autumn 2025L10: References, Const, Classes

const and Pointers

❖ The syntax with pointers is confusing:

26

int main(int argc, char** argv) {

 int x = 5; // int

 const int y = 6; // (const int)

 y++;

 const int* z = &y; // pointer to a (const int)

 *z += 1;

 z++;

 int* const w = &x; // (const pointer) to a (variable int)

 *w += 1;

 w++;

 const int* const v = &x; // (const pointer) to a (const int)

 *v += 1;

 v++;

 return EXIT_SUCCESS;

}

constmadness.cc

CSE333, Autumn 2025L10: References, Const, Classes

const and Pointers

❖ The syntax with pointers is confusing:

27

int main(int argc, char** argv) {

 int x = 5; // int

 const int y = 6; // (const int)

 y++; // compiler error

 const int* z = &y; // pointer to a (const int)

 *z += 1; // compiler error

 z++; // ok

 int* const w = &x; // (const pointer) to a (variable int)

 *w += 1; // ok

 w++; // compiler error

 const int* const v = &x; // (const pointer) to a (const int)

 *v += 1; // compiler error

 v++; // compiler error

 return EXIT_SUCCESS;

}

constmadness.cc

CSE333, Autumn 2025L10: References, Const, Classes

const Parameters

❖ A const parameter
cannot be mutated inside
the function
▪ Therefore it does not

matter if the argument can
be mutated or not

❖ A non-const parameter
may be mutated inside
the function

▪ Compiler won’t let you
pass in const parameters

28

void Foo(const int* y) {

 std::cout << *y << std::endl;

}

void Bar(int* y) {

 std::cout << *y << std::endl;

}

int main(int argc, char** argv) {

 const int a = 10;

 int b = 20;

 Foo(&a); // OK

 Foo(&b); // OK

 Bar(&a); // not OK – error

 Bar(&b); // OK

 return EXIT_SUCCESS;

}

STYLE
TIP

Make parameters const when you can!

CSE333, Autumn 2025L10: References, Const, Classes

What is your anticipated lecture/section
attendance modality?

A. Output "(2,4,0)"

B. Output "(2,4,3)"

C. Compiler error
about arguments
to Foo (in main)

D. Compiler error
about body of Foo

E. We’re lost…

29

pollev.com/cse333

What will happen when we try to compile and
run this code?

void Foo(int* const x,

 int& y, int z) {

 *x += 1;

 y *= 2;

 z -= 3;

}

int main(int argc, char** argv) {

 const int a = 1;

 int b = 2, c = 3;

 Foo(&a, b, c);

 std::cout << "(" << a << "," << b

 << "," << c << ")" << std::endl;

 return EXIT_SUCCESS;

}

poll2.cc

CSE333, Autumn 2025L10: References, Const, Classes

When to Use References?

❖ A stylistic choice, not mandated by the C++ language

❖ Google C++ style guide suggests:

▪ Input parameters:
• Either use values (for primitive types like int or small

structs/objects)
• Or use const references (for complex struct/object instances)

▪ Output parameters:
• Use const pointers

– Unchangeable pointers referencing changeable data

▪ Ordering:
• List input parameters first, then output parameters last

30

void CalcArea(const int& width, const int& height,

 int* const area) {

 *area = width * height;

} styleguide.cc

STYLE
TIP

ordinary int (not int&)
probably better here,
but shows how const

ref can be used

ordinary int (not int&)
probably better here,
but shows how const

ref can be used

CSE333, Autumn 2025L10: References, Const, Classes

Lecture Outline

❖ C++ References

❖ const in C++

❖ C++ Classes Intro

31

CSE333, Autumn 2025L10: References, Const, Classes

Classes

❖ Class definition syntax (in a .h file):

▪ Members can be functions (methods) or data (variables)

❖ Class member function definition syntax (in a .cc file):

▪ (1) define within the class definition or (2) declare within the class
definition and then define elsewhere

32

class Name {

 public:

 // public member definitions & declarations go here

 private:

 // private member definitions & declarations go here

}; // class Name

retType Name::MethodName(type1 param1, …, typeN paramN) {

 // body statements

}

CSE333, Autumn 2025L10: References, Const, Classes

Class Organization

❖ It’s a little more complex than in C when modularizing
with struct definition:

▪ Class definition is part of interface and should go in .h file

• Private members still must be included in definition (!)

▪ Usually put member function definitions into companion .cc file

with implementation details

• Common exception: setter and getter methods

▪ These files can also include non-member functions that use the
class

❖ Unlike Java, you can name files anything you want
▪ Typically Name.cc and Name.h for class Name

33

CSE333, Autumn 2025L10: References, Const, Classes

Const & Classes

❖ Like other data types, objects can be declared as const:

▪ Once a const object has been constructed, its member variables
can’t be changed

▪ Can only invoke member functions that are labeled const

❖ You can declare a member function of a class as const

▪ This means that it cannot modify the object it was called on

• The compiler will treat member variables as const inside the
function at compile time

▪ If a member function doesn’t modify the object, mark it const!

34

CSE333, Autumn 2025L10: References, Const, Classes

Class Definition (.h file)

35

#ifndef POINT_H_

#define POINT_H_

class Point {

 public:

 Point(const int x, const int y); // constructor

 int get_x() const { return x_; } // inline member function

 int get_y() const { return y_; } // inline member function

 double Distance(const Point& p) const; // member function

 void SetLocation(const int x, const int y); // member function

 private:

 int x_; // data member

 int y_; // data member

}; // class Point

#endif // POINT_H_

Point.h

STYLE
TIP

CSE333, Autumn 2025L10: References, Const, Classes

Class Member Definitions (.cc file)

36

#include <cmath>

#include "Point.h"

Point::Point(const int x, const int y) {

 x_ = x;

 this->y_ = y; // "this->" is optional unless name conflicts

}

double Point::Distance(const Point& p) const {

 // We can access p’s x_ and y_ variables either through the

 // get_x(), get_y() accessor functions or the x_, y_ private

 // member variables directly, since we’re in a member

 // function of the same class.

 double distance = (x_ - p.get_x()) * (x_ - p.get_x());

 distance += (y_ - p.y_) * (y_ - p.y_);

 return sqrt(distance);

}

void Point::SetLocation(const int x, const int y) {

 x_ = x;

 y_ = y;

}

Point.cc

CSE333, Autumn 2025L10: References, Const, Classes

Class Usage (.cc file)

37

#include <iostream>

#include <cstdlib>

#include "Point.h"

using namespace std;

int main(int argc, char** argv) {

 Point p1(1, 2); // allocate a new Point on the Stack

 Point p2(4, 6); // allocate a new Point on the Stack

 cout << "p1 is: (" << p1.get_x() << ", ";

 cout << p1.get_y() << ")" << endl;

 cout << "p2 is: (" << p2.get_x() << ", ";

 cout << p2.get_y() << ")" << endl;

 cout << "dist : " << p1.Distance(p2) << endl;

 return EXIT_SUCCESS;

}

usepoint.cc

CSE333, Autumn 2025L10: References, Const, Classes

Reading Assignment

❖ Before next time, read the sections in C++ Primer covering
class constructors, copy constructors, assignment
(operator=), and destructors

▪ Ignore “move semantics” for now

▪ The table of contents and index are your friends…

38

CSE333, Autumn 2025L10: References, Const, Classes

Extra Exercise #1

❖ Write a C++ program that:

▪ Has a class representing a 3-dimensional point

▪ Has the following methods:

• Return the inner product of two 3D points

• Return the distance between two 3D points

• Accessors and mutators for the x, y, and z coordinates

39

CSE333, Autumn 2025L10: References, Const, Classes

Extra Exercise #2

❖ Write a C++ program that:

▪ Has a class representing a 3-dimensional box

• Use your Extra Exercise #1 class to store the coordinates of the
vertices that define the box

• Assume the box has right-angles only and its faces are parallel to the
axes, so you only need 2 vertices to define it

▪ Has the following methods:

• Test if one box is inside another box

• Return the volume of a box

• Handles <<, =, and a copy constructor

• Uses const in all the right places

40

	Slide 1: C++ References, Const, Classes CSE 333 Autumn 2025
	Slide 2: Administrivia
	Slide 3: Lecture Outline
	Slide 4: Pointers Reminder
	Slide 5: Pointers Reminder
	Slide 6: Pointers Reminder
	Slide 7: Pointers Reminder
	Slide 8: Pointers Reminder
	Slide 9: Pointers Reminder
	Slide 10: References
	Slide 11: References
	Slide 12: References
	Slide 13: References
	Slide 14: References
	Slide 15: References
	Slide 16: Pass-By-Reference
	Slide 17: Pass-By-Reference
	Slide 18: Pass-By-Reference
	Slide 19: Pass-By-Reference
	Slide 20: Pass-By-Reference
	Slide 21: Pass-By-Reference
	Slide 22: What is your anticipated lecture/section attendance modality?
	Slide 23: Lecture Outline
	Slide 24: const
	Slide 25: const and Pointers
	Slide 26: const and Pointers
	Slide 27: const and Pointers
	Slide 28: const Parameters
	Slide 29: What is your anticipated lecture/section attendance modality?
	Slide 30: When to Use References?
	Slide 31: Lecture Outline
	Slide 32: Classes
	Slide 33: Class Organization
	Slide 34: Const & Classes
	Slide 35: Class Definition (.h file)
	Slide 36: Class Member Definitions (.cc file)
	Slide 37: Class Usage (.cc file)
	Slide 38: Reading Assignment
	Slide 39: Extra Exercise #1
	Slide 40: Extra Exercise #2

