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Administrivia

<+ Homework 2 due next Thursday (10/23)
" File system crawler, indexer, and search engine
" Demo in section this week

"= Note: 1ibhwl . a (yours or ours) and the . h files from hw1 need
to be in right directory (~yourgit/hwl/)

" Note: use Ctrl-D to exit searchshell, test on directory of small
self-made files

« A bit of a breather on exercises

" No new exercise out today!
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Note: Arrow points

Pointers Reminder to next instruction.

+ A pointer is a variable containing an address

" Modifying the pointer doesn’t modify what it points to, but you
can access/modify what it points to by dereferencing

" These work the same in C and C++

= } .

int main(int argc, char** argv) {
int x = 5, y = 10; x 5
P int* 7z = &X;

EZ

x += 1; Yy 10
z = &y;
*xz += 1;

return EXIT_SUCCESS;

\ J
pointer.cc
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Pointers Reminder

Note: Arrow points
to next instruction.

+ A pointer is a variable containing an address

" Modifying the pointer doesn’t modify what it points to, but you
can access/modify what it points to by dereferencing

" These work the same in C and C++

. . .
int main(int argc, char** argv)
int x = 5, y = 10;

int* z = &XxX;

EZ
x += 1;

z = &y;
*xz += 1;

return EXIT_SUCCESS;

{

z Ox7f£fma4

J

pointer.cc
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Note: Arrow points

Pointers Reminder to next instruction.

+ A pointer is a variable containing an address

" Modifying the pointer doesn’t modify what it points to, but you
can access/modify what it points to by dereferencing

" These work the same in C and C++

- - ) N
int main(int argc, char** argv) {
int x = 5, y = 10; % 6
int* z = &x;
*z += 1; // sets x to 6
o y 10
z = &y;
Xz 4= 1; ___4/_\
]
return EXIT SUCCESS; z | 0x7££. a4
}
\ y

pointer.cc
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Note: Arrow points

Pointers Reminder to next instruction.

+ A pointer is a variable containing an address

" Modifying the pointer doesn’t modify what it points to, but you
can access/modify what it points to by dereferencing

" These work the same in C and C++

(int main(int argc, char** argv) { B
int x = 5, y = 10; X 7
int* z = &x;
*z += 1; // sets x to 6
x += 1; // sets x (and *z) to 7 y 10

—) 7z = &V;
*xz += 1; 4€——4§k
]
return EXIT SUCCESS; z | 0x78t.a
}
\ J

pointer.cc
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Note: Arrow points

Pointers Reminder to next instruction.

+ A pointer is a variable containing an address

" Modifying the pointer doesn’t modify what it points to, but you
can access/modify what it points to by dereferencing

" These work the same in C and C++

- ; .

int main(int argc, char** argv) {
int x = 5, y = 10; x 7
int* z = &XxX;

*z += 1; // sets x to 6

x += 1; // sets x (and *z) to 7 y 10
z = &y; // sets z to the address of y
— x 7 4= ] ; ¥‘;___‘,__\

z Ox7ﬁ¥fma0

return EXIT_SUCCESS;

\ J
pointer.cc
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Note: Arrow points

Pointers Reminder to next instruction.

+ A pointer is a variable containing an address

" Modifying the pointer doesn’t modify what it points to, but you
can access/modify what it points to by dereferencing

" These work the same in C and C++

= } .

int main(int argc, char** argv) {
int x = 5, y = 10; x 7
int* z = &x;

*z += 1; // sets x to 6

X += 1; // sets x (and *z) to 7 y 11
z = &y; // sets z to the address of y <:j:‘
*z += 1; // sets y (and *z) to 11 T N\

4 Ox7ﬁ&fma0

m—=Pp return EXIT SUCCESS;
}

\ J
pointer.cc
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Note: Arrow points

REfe rences to next instruction.

« A reference is an alias for another variable

= Alias: another name that is bound to the aliased variable
- Mutating a reference is mutating the aliased variable

" |ntroduced in C++ as part of the language

- ; .

int main(int argc, char** argv) {
int x = 5, y = 10; % 5

—) iNt& 7z = X;

z += 1;

x += 1; v 10
= Y

z += 1;

return EXIT_SUCCESS;
}

\_ Y,
reference.cc

10
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References

« A reference is an alias for another variable

= Alias: another name that is bound to the aliased variable
- Mutating a reference is mutating the aliased variable

L10: References, Const, Classes

" |ntroduced in C++ as part of the language

- ) . N
int main(int argc, char** argv) {
int x = 5, y = 10;
int& z = x; // binds the name "z" to x
—t 7 += 1;
x += 1;
z =YV
z += 1;
return EXIT SUCCESS;
}
\_ J

CSE333, Autumn 2025

Note: Arrow points
to next instruction.

10

reference.cc

11
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References

« A reference is an alias for another variable

= Alias: another name that is bound to the aliased variable
- Mutating a reference is mutating the aliased variable

L10: References, Const, Classes
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Note: Arrow points
to next instruction.

10

" |ntroduced in C++ as part of the language
- ) ) A
int main(int argc, char** argv) {
int x = 5, y = 10;
int& z = x; // binds the name "z" to x
z += 1; // sets z (and x) to 6
— x += 1 ;
z = y;
z += 1;
return EXIT SUCCESS;
}
. J

reference.cc

12
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References

« A reference is an alias for another variable
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Note: Arrow points
to next instruction.

= Alias: another name that is bound to the aliased variable

- Mutating a reference is mutating the aliased variable

" |ntroduced in C++ as part of the language
. ) ) \
int main(int argc, char** argv) {
int x = 5, y = 10;
int& z = x; // binds the name "z" to x
z += 1; // sets z (and x) to 6
x += 1; // sets x (and z) to 7
q A =] y;
zZ += 3
return EXIT SUCCESS;
}
- y,

reference.cc

13
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References

« A reference is an alias for another variable

= Alias: another name that is bound to the aliased variable
- Mutating a reference is mutating the aliased variable

" |ntroduced in C++ as part of the language

.

int main(int argc, char** argv) {

int& z = x; // binds the name "z" to x

z += 1; // sets z (and x) to 6

x += 1; // sets x (and z) to 7

z =1vy; // sets z (and x) to the value of y
— 7 += 1;

}

int x = 5, y = 10;

return EXIT_SUCCESS;

CSE333, Autumn 2025

Note: Arrow points
to next instruction.

10

10

J

reference.cc

14
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Note: Arrow points

REfe rences to next instruction.

« A reference is an alias for another variable

= Alias: another name that is bound to the aliased variable
- Mutating a reference is mutating the aliased variable

" |ntroduced in C++ as part of the language

(int main(int argc, char** argv) { b
int x = 5, y = 10; X,z 11
int& z = x; // binds the name "z" to x
z += 1; // sets z (and x) to 6
x += 1; // sets x (and z) to 7 y 10

=vy; // sets z (and x) to the value of y
z += 1; // sets z (and x) to 11

m—=Pp return EXIT SUCCESS;
}

\_ Y,
reference.cc

15
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Pass-By-Reference

+ C++ allows you to use real pass-by-reference

= Client passes in an argument with normal syntax

L10: References, Const, Classes
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Note: Arrow points
to next instruction.

- Function uses reference parameters with normal syntax

- Modifying a reference parameter modifies the caller’s argument!

(void Swap(int& x, inté& y) {
int tmp = x;
X = VY;
y = tmp;
}

int a = 5, b = 10;

=t Swap(a, b);
cout << "a:
return EXIT SUCCESS;

!

int main(int argc, char** argv) {

LA << a << H,. b:

\

" << b << endl;

(main) a 5

(main) b 10

J

passbyreference.cc

16
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Note: Arrow points

Pass-By-Refe rence to next instruction.

+ C++ allows you to use real pass-by-reference

= Client passes in an argument with normal syntax
- Function uses reference parameters with normal syntax
- Modifying a reference parameter modifies the caller’s argument!

(void Swap(int& x, int& y) | R
) Nt tmp = X; .

X = y; (main) a 5
y = tmp; (Swap) x

}

int main(int argc, char** argv) { (main) b 10
int a = 5, b = 10; (Swap) y
Swap (a, b);
cout << "a: " << a << "; b: " << b << endl; (Swap) tmp
return EXIT SUCCESS;

\} y

passbyreference.cc 17
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Pass-By-Reference

+ C++ allows you to use real pass-by-reference

= Client passes in an argument with normal syntax
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Note: Arrow points
to next instruction.

- Function uses reference parameters with normal syntax

- Modifying a reference parameter modifies the caller’s argument!

(void Swap (int& x, inté& y) |
int tmp = x;
— X = Y;
y = tmp;
}

int a = 5, b = 10;

Swap (a, b);

return EXIT SUCCESS;

!

int main(int argc, char** argv) {

cout << "a: " << a << "; Db:

\

" << b << endl;

(main) a

(Swap) x >
(main) b 10
(Swap) y

(Swap) tmp 5

J

passbyreference.cc

18
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Pass-By-Reference

+ C++ allows you to use real pass-by-reference

= Client passes in an argument with normal syntax
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Note: Arrow points
to next instruction.

- Function uses reference parameters with normal syntax

- Modifying a reference parameter modifies the caller’s argument!

(void Swap (int& x, inté& y) |
int tmp = x;

X = y;
—) v = tmp;
}
int a = 5, b = 10;

Swap (a, b);

return EXIT SUCCESS;

!

int main(int argc, char** argv) {

cout << "a: " << a << "; Db:

\

" << b << endl;

(main) a

10
(Swap) x
(main) b 10
(Swap) y
(Swap) tmp 5

J

passbyreference.cc

19
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Note: Arrow points

Pass-By-Refe rence to next instruction.

+ C++ allows you to use real pass-by-reference

= Client passes in an argument with normal syntax
- Function uses reference parameters with normal syntax
- Modifying a reference parameter modifies the caller’s argument!

(void Swap(int& x, int& y) | R
int tmp = x; _
X = y; (main) a 10
y = tmp; (Swap) x

q

int main(int argc, char** argv) { (main) b 5
int a = 5, b = 10; (Swap) y
Swap (a, b);
cout << "a: " << a << "; b: " << b << endl; (Swap) tmp S
return EXIT SUCCESS;

\} )

passbyreference.cc 20



W UNIVERSITY of WASHINGTON

Pass-By-Reference

+ C++ allows you to use real pass-by-reference

= Client passes in an argument with normal syntax
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Note: Arrow points
to next instruction.

- Function uses reference parameters with normal syntax

- Modifying a reference parameter modifies the caller’s argument!

(void Swap(int& x, int& y) |
int tmp = x;
X = VY;
y = tmp;
}

int a = 5, b = 10;

Swap (a, b);
=) cout << "a:
return EXIT SUCCESS;

!

int main(int argc, char** argv) {

LA << a << H,. b:

\

" << b << endl;

(main) a 10

(main) b 5

J

passbyreference.cc

21
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0 Poll EVEI‘YWhEI'e -. pollev.com/cse333

What will happen when we try to compile and

run this code? | | | poll1.cc
vold Foo (int& x, 1int* y, 1nt z) {

A. S =

B. Output "(3,2,3)" y = &x;

}
C. Compiler error | o
int main(int argc, char** argv) {

about arguments int a = 1;

to Foo (in main) e B S 25
int& ¢ = a;
D. Compiler error
Foo (a, &b, c);
about body of FOO| <tg::cout << "(" << a << ", " << b
E. We're lost << M, M << e << M) << std:rendl;

return EXIT_SUCCESS;

22
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Lecture Outline

« C++ References
+ constinC++

« C++ Classes Intro
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const

%+ const: this cannot be changed/mutated

" Used much more in C++ thanin C

= Signal of intent to compiler; meaningless at hardware level
- Results in compile-time errors

(void BrokenPrintSquare (const int& 1) | N

i = i*i; // compiler error here!
std::cout << 1 << std::endl;
}

int main(int argc, char** argv) {
int jJ = 2;
BrokenPrintSquare (J) ;
return EXIT SUCCESS;

}

\. J

brokenpassbyrefconst.cc

24
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const and Pointers

+ Pointers can change data in two different contexts:

1) You can change the value of the pointer

2) You can change the thing the pointer points to
(via dereference)

%+ const can be used to prevent either/both of these

behaviors!

" const nextto pointer name means you can’t change the value of
the pointer

" const nextto data type pointed to means you can’t use this
pointer to change the thing being pointed to

= Tip: read variable declaration from right-to-left

25
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const and Pointers

+ The syntax with pointers is confusing:

a0 . , )
int main(int argc, char** argv) {
int x = 5; // 1int
const int y = 6; // (const int)
y++;
const int* z = &y; // pointer to a (const int)
*z += 1;
Zrr §
int* const w = &X; // (const pointer) to a (variable int)
*wo+= 1;
w++;
const int* const v = &x; // (const pointer) to a (const int)
7T R
vV++;
return EXIT SUCCESS;
\} J

constmadness.cc
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const and Pointers

+ The syntax with pointers is confusing:

( . . , )
int main(int argc, char** argv) {
int x = 5; // 1int
const int y = 6; // (const 1int)
) Al // compiler error
const int* z = &y; // pointer to a (const int)
Xz 4= 1; // compiler error
Z++; // ok
int* const w = &X; // (const pointer) to a (variable int)
*wo+= 1; // ok
w++; // compiler error
const int* const v = &x; // (const pointer) to a (const int)
v o+= 1; // compiler error
v++; // compiler error
return EXIT SUCCESS;
\} J

constmadness.cc
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const Parameters

< A const parameter
cannot be mutated inside
the function

" Therefore it does not
matter if the argument can
be mutated or not

< A non-const parameter
may be mutated inside
the function

= Compiler won’t let you
pass in const parameters

L10: References, Const, Classes

[
STYLE
[\

TP

Make parameters const when you canl

\[4

(void Foo (const int* y) {
std::cout << *y << std::endl;

}

void Bar (int* y) {
std::cout << *y << std::endl;
}

int main(int argc, char** argv) {

const int a = 10;

int b = 20;

Foo (&a) ; // OK

Foo (&b) ; // OK

Bar (&a) ; // not OK - error
Bar (&b) ; // OK

return EXIT SUCCESS;

N\

28
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0 Poll Everywhere -. pollev.com/cse333

What will happen when we try to compile and

run this code? poll2.cc
(void Foo (1nt* const x, )
A. int& y, int z) {
*x +=1;
B. OUtpUt "(2’4’3)" 3% we= o
C. Compiler error ST
about arguments

int main(int argc, char** argv) {
to Foo (in main) const int a = 1;
. int b = 2, ¢ = 3;
D. Compiler error
Foo (&a, b, c);

about body of Foo std:scout << " (" << a << ", " << b

E. We're lost... << M,M << e << M) << std::endl;

return EXIT SUCCESS;
}
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When to Use References? By

« A stylistic choice, not mandated by the C++ language
+ Google C++ style guide suggests:

" |nput parameters:
- Either use values (for primitive types like int or small

structs/objects)
- Oruse const references (for complex struct/object instances)

" Qutput parameters:
- Use const pointers
— Unchangeable pointers referencing changeable data

= Ordering:
- List input parameters first, then output parameters last

void CalcArea (const int& width, const inté& height,
int* const area) { , : )

. . ordinary int (not int&

*area = width * helght; probably better here,

} but shows how const

ref can be used_’J 30
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Lecture Outline

« C++ References

&« const in C++

« C++ Classes Intro

L10: References, Const, Classes
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Classes

+ Class definition syntax (in a . h file):

(class Name {
public:
// public member definitions & declarations go here

private:
// private member definitions & declarations go here
}; // class Name

\ J

= Members can be functions (methods) or data (variables)

+ Class member function definition syntax (in a . cc file):

retType Name: :MethodName (typel paraml, .., typeN paramN) {
// body statements

}

® (1) define within the class definition or (2) declare within the class
definition and then define elsewhere

32
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Class Organization

+ It’s a little more complex than in C when modularizing
with struct definition:
= (Class definition is part of interface and should go in . h file
- Private members still must be included in definition (!)

= Usually put member function definitions into companion . cc file
with implementation details
- Common exception: setter and getter methods

" These files can also include non-member functions that use the
class

+ Unlike Java, you can name files anything you want

" Typically Name.cc and Name.h forclass Name

33
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Const & Classes

+ Like other data types, objects can be declared as const:

" Once a const object has been constructed, its member variables
can’t be changed

" Canonly invoke member functions that are labeled const

« You can declare a member function of a class as const

" This means that it cannot modify the object it was called on

- The compiler will treat member variables as const inside the
function at compile time

" |f a member function doesn’t modify the object, mark it const!

34
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Class Definition ( . h file)
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[
STYLE
[\

TIP
Point.h\

(#ifndef POINT H
#define POINT H

class Point {
public:

vold SetlLocation (const int x,

private:
int x ; // data member
int y ; // data member

}; // class Point

#endif // POINT H
.

Point (const int x, const int vy)
int get x() const { return x ;
int get y() const { return y ;
double Distance (const Pointé& p) const;

; //
} //
} //

const 1int

constructor
inline member
inline member
// member
v); // member

function
function
function
function

\

/

35
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Class Member Definitions (. cc file)

Point.cc
(#include <cmath> R
#include "Point.h"
Point::Point (const int x, const int y) {
X = X;
this->y = vy; // "this->" is optional unless name conflicts

}

double Point::Distance (const Pointé& p) const {
// We can access p’s x and y variables either through the
// get x(), get y() accessor functions or the x , y private
// member variables directly, since we’re in a member
// function of the same class.
double distance = (x_ - p.get x()) * (x_ - p.get x());
distance += (y_ - p.y ) * (y_ - p.y_);
return sqrt(distance);

}

void Point::Setlocation(const int x, const int y) {
X = Xy
Y_ = Y

36
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Class Usage (. cc file)

L10: References, Const, Classes

CSE333, Autumn 2025

usepoint.cc

cout
cout

cout
cout

cout

#include

<<
<<

<<
<<

<<

r#include <iostream>
#include <cstdlib>

"Point.h"

using namespace std;

int main(int argc, char** argv) {
Point pl (1, 2); // allocate a new Point on the Stack
Point p2(4, 6); // allocate a new Point on the Stack

"pl is: (" << pl.get x() <<
pl.get y() << ")" << endl;
"p2 is: (" << p2.get x () <<
pZ2.get y() << ")" << endl;
"dist : " << pl.Distance (p2)

return EXIT SUCCESS;

"

"w .
4 4

"w .
14 4

<< endl;

N\

37
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Reading Assignment

+ Before next time, read the sections in C++ Primer covering

class constructors, copy constructors, assignment
(operator=), and destructors

" |gnore “move semantics” for now

" The table of contents and index are your friends...

38
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Extra Exercise #1

2 Write a C++ program that:

= Has a class representing a 3-dimensional point
" Has the following methods:
- Return the inner product of two 3D points
- Return the distance between two 3D points
- Accessors and mutators for the %, v, and z coordinates

CSE333, Autumn 2025

39
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Extra Exercise #2

2 Write a C++ program that:

" Has a class representing a 3-dimensional box

- Use your Extra Exercise #1 class to store the coordinates of the
vertices that define the box

- Assume the box has right-angles only and its faces are parallel to the
axes, so you only need 2 vertices to define it

"= Has the following methods:
- Test if one box is inside another box
« Return the volume of a box

- Handles <<, =, and a copy constructor
- Uses const in all the right places

40
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