W UNIVERSITY of WASHINGTON L10: References, Const, Classes CSE333, Autumn 2025

C++ References, Const, Classes
CSE 333 Autumn 2025

Instructors: Naomi Alterman, Chris Thachuk

Teaching Assistants:

Ann Baturytski Derek de Leuw Blake Diaz
Rishabh Jain Chendur Jel Jayavelu Lucas Kwan
Irene Xin Jie Lau Nathan Li Maya Odenheim
Advay Patil Selim Saridede Deeksha Vatwani

Angela Wu Jiexiao Xu

W UNIVERSITY of WASHINGTON L10: References, Const, Classes CSE333, Autumn 2025

Administrivia

<+ Homework 2 due next Thursday (10/23)
" File system crawler, indexer, and search engine
" Demo in section this week

"= Note: 1ibhwl . a (yours or ours) and the . h files from hw1 need
to be in right directory (~yourgit/hwl/)

" Note: use Ctrl-D to exit searchshell, test on directory of small
self-made files

« A bit of a breather on exercises

" No new exercise out today!

W UNIVERSITY of WASHINGTON

Lecture Outline

« C++ References

&« const in C++

« C++ Classes Intro

L10: References, Const, Classes

CSE333, Autumn 2025

W UNIVERSITY of WASHINGTON L10: References, Const, Classes CSE333, Autumn 2025

Note: Arrow points

Pointers Reminder to next instruction.

+ A pointer is a variable containing an address

" Modifying the pointer doesn’t modify what it points to, but you
can access/modify what it points to by dereferencing

" These work the same in C and C++

= } .

int main(int argc, char** argv) {
int x = 5, y = 10; x 5
P int* 7z = &X;

EZ

x += 1; Yy 10
z = &y;
*xz += 1;

return EXIT_SUCCESS;

\ J
pointer.cc

W UNIVERSITY of WASHINGTON

L10: References, Const, Classes

CSE333, Autumn 2025

Pointers Reminder

Note: Arrow points
to next instruction.

+ A pointer is a variable containing an address

" Modifying the pointer doesn’t modify what it points to, but you
can access/modify what it points to by dereferencing

" These work the same in C and C++

. . .
int main(int argc, char** argv)
int x = 5, y = 10;

int* z = &XxX;

EZ
x += 1;

z = &y;
*xz += 1;

return EXIT_SUCCESS;

{

z Ox7f£fma4

J

pointer.cc

W UNIVERSITY of WASHINGTON L10: References, Const, Classes CSE333, Autumn 2025

Note: Arrow points

Pointers Reminder to next instruction.

+ A pointer is a variable containing an address

" Modifying the pointer doesn’t modify what it points to, but you
can access/modify what it points to by dereferencing

" These work the same in C and C++

- -) N
int main(int argc, char** argv) {
int x = 5, y = 10; % 6
int* z = &x;
*z += 1; // sets x to 6
o y 10
z = &y;
Xz 4= 1; ___4/_\
]
return EXIT SUCCESS; z | 0x7££. a4
}
\ y

pointer.cc

W UNIVERSITY of WASHINGTON L10: References, Const, Classes CSE333, Autumn 2025

Note: Arrow points

Pointers Reminder to next instruction.

+ A pointer is a variable containing an address

" Modifying the pointer doesn’t modify what it points to, but you
can access/modify what it points to by dereferencing

" These work the same in C and C++

(int main(int argc, char** argv) { B
int x = 5, y = 10; X 7
int* z = &x;
*z += 1; // sets x to 6
x += 1; // sets x (and *z) to 7 y 10

—) 7z = &V;
*xz += 1; 4€——4§k
]
return EXIT SUCCESS; z | 0x78t.a
}
\ J

pointer.cc

W UNIVERSITY of WASHINGTON L10: References, Const, Classes CSE333, Autumn 2025

Note: Arrow points

Pointers Reminder to next instruction.

+ A pointer is a variable containing an address

" Modifying the pointer doesn’t modify what it points to, but you
can access/modify what it points to by dereferencing

" These work the same in C and C++

- ; .

int main(int argc, char** argv) {
int x = 5, y = 10; x 7
int* z = &XxX;

*z += 1; // sets x to 6

x += 1; // sets x (and *z) to 7 y 10
z = &y; // sets z to the address of y
— x 7 4=] ; ¥‘;___‘,__\

z Ox7ﬁ¥fma0

return EXIT_SUCCESS;

\ J
pointer.cc

W UNIVERSITY of WASHINGTON L10: References, Const, Classes CSE333, Autumn 2025

Note: Arrow points

Pointers Reminder to next instruction.

+ A pointer is a variable containing an address

" Modifying the pointer doesn’t modify what it points to, but you
can access/modify what it points to by dereferencing

" These work the same in C and C++

= } .

int main(int argc, char** argv) {
int x = 5, y = 10; x 7
int* z = &x;

*z += 1; // sets x to 6

X += 1; // sets x (and *z) to 7 y 11
z = &y; // sets z to the address of y <:j:‘
*z += 1; // sets y (and *z) to 11 T N\

4 Ox7ﬁ&fma0

m—=Pp return EXIT SUCCESS;
}

\ J
pointer.cc

W UNIVERSITY of WASHINGTON L10: References, Const, Classes CSE333, Autumn 2025

Note: Arrow points

REfe rences to next instruction.

« A reference is an alias for another variable

= Alias: another name that is bound to the aliased variable
- Mutating a reference is mutating the aliased variable

" |ntroduced in C++ as part of the language

- ; .

int main(int argc, char** argv) {
int x = 5, y = 10; % 5

—) iNt& 7z = X;

z += 1;

x += 1; v 10
= Y

z += 1;

return EXIT_SUCCESS;
}

_ Y,
reference.cc

10

W UNIVERSITY of WASHINGTON

References

« A reference is an alias for another variable

= Alias: another name that is bound to the aliased variable
- Mutating a reference is mutating the aliased variable

L10: References, Const, Classes

" |ntroduced in C++ as part of the language

-) . N
int main(int argc, char** argv) {
int x = 5, y = 10;
int& z = x; // binds the name "z" to x
—t 7 += 1;
x += 1;
z =YV
z += 1;
return EXIT SUCCESS;
}
_ J

CSE333, Autumn 2025

Note: Arrow points
to next instruction.

10

reference.cc

11

W UNIVERSITY of WASHINGTON

References

« A reference is an alias for another variable

= Alias: another name that is bound to the aliased variable
- Mutating a reference is mutating the aliased variable

L10: References, Const, Classes

CSE333, Autumn 2025

Note: Arrow points
to next instruction.

10

" |ntroduced in C++ as part of the language
-)) A
int main(int argc, char** argv) {
int x = 5, y = 10;
int& z = x; // binds the name "z" to x
z += 1; // sets z (and x) to 6
— x += 1 ;
z = y;
z += 1;
return EXIT SUCCESS;
}
. J

reference.cc

12

W UNIVERSITY of WASHINGTON

References

« A reference is an alias for another variable

L10: References, Const, Classes

CSE333, Autumn 2025

Note: Arrow points
to next instruction.

= Alias: another name that is bound to the aliased variable

- Mutating a reference is mutating the aliased variable

" |ntroduced in C++ as part of the language
.)) \
int main(int argc, char** argv) {
int x = 5, y = 10;
int& z = x; // binds the name "z" to x
z += 1; // sets z (and x) to 6
x += 1; // sets x (and z) to 7
q A =] y;
zZ += 3
return EXIT SUCCESS;
}
- y,

reference.cc

13

W UNIVERSITY of WASHINGTON

L10: References, Const, Classes

References

« A reference is an alias for another variable

= Alias: another name that is bound to the aliased variable
- Mutating a reference is mutating the aliased variable

" |ntroduced in C++ as part of the language

.

int main(int argc, char** argv) {

int& z = x; // binds the name "z" to x

z += 1; // sets z (and x) to 6

x += 1; // sets x (and z) to 7

z =1vy; // sets z (and x) to the value of y
— 7 += 1;

}

int x = 5, y = 10;

return EXIT_SUCCESS;

CSE333, Autumn 2025

Note: Arrow points
to next instruction.

10

10

J

reference.cc

14

W UNIVERSITY of WASHINGTON L10: References, Const, Classes CSE333, Autumn 2025

Note: Arrow points

REfe rences to next instruction.

« A reference is an alias for another variable

= Alias: another name that is bound to the aliased variable
- Mutating a reference is mutating the aliased variable

" |ntroduced in C++ as part of the language

(int main(int argc, char** argv) { b
int x = 5, y = 10; X,z 11
int& z = x; // binds the name "z" to x
z += 1; // sets z (and x) to 6
x += 1; // sets x (and z) to 7 y 10

=vy; // sets z (and x) to the value of y
z += 1; // sets z (and x) to 11

m—=Pp return EXIT SUCCESS;
}

_ Y,
reference.cc

15

W UNIVERSITY of WASHINGTON

Pass-By-Reference

+ C++ allows you to use real pass-by-reference

= Client passes in an argument with normal syntax

L10: References, Const, Classes

CSE333, Autumn 2025

Note: Arrow points
to next instruction.

- Function uses reference parameters with normal syntax

- Modifying a reference parameter modifies the caller’s argument!

(void Swap(int& x, inté& y) {
int tmp = x;
X = VY;
y = tmp;
}

int a = 5, b = 10;

=t Swap(a, b);
cout << "a:
return EXIT SUCCESS;

!

int main(int argc, char** argv) {

LA << a << H,. b:

\

" << b << endl;

(main) a 5

(main) b 10

J

passbyreference.cc

16

W UNIVERSITY of WASHINGTON L10: References, Const, Classes CSE333, Autumn 2025

Note: Arrow points

Pass-By-Refe rence to next instruction.

+ C++ allows you to use real pass-by-reference

= Client passes in an argument with normal syntax
- Function uses reference parameters with normal syntax
- Modifying a reference parameter modifies the caller’s argument!

(void Swap(int& x, int& y) | R
) Nt tmp = X; .

X = y; (main) a 5
y = tmp; (Swap) x

}

int main(int argc, char** argv) { (main) b 10
int a = 5, b = 10; (Swap) y
Swap (a, b);
cout << "a: " << a << "; b: " << b << endl; (Swap) tmp
return EXIT SUCCESS;

\} y

passbyreference.cc 17

W UNIVERSITY of WASHINGTON

Pass-By-Reference

+ C++ allows you to use real pass-by-reference

= Client passes in an argument with normal syntax

L10: References, Const, Classes

CSE333, Autumn 2025

Note: Arrow points
to next instruction.

- Function uses reference parameters with normal syntax

- Modifying a reference parameter modifies the caller’s argument!

(void Swap (int& x, inté& y) |
int tmp = x;
— X = Y;
y = tmp;
}

int a = 5, b = 10;

Swap (a, b);

return EXIT SUCCESS;

!

int main(int argc, char** argv) {

cout << "a: " << a << "; Db:

\

" << b << endl;

(main) a

(Swap) x >
(main) b 10
(Swap) y

(Swap) tmp 5

J

passbyreference.cc

18

W UNIVERSITY of WASHINGTON

Pass-By-Reference

+ C++ allows you to use real pass-by-reference

= Client passes in an argument with normal syntax

L10: References, Const, Classes

CSE333, Autumn 2025

Note: Arrow points
to next instruction.

- Function uses reference parameters with normal syntax

- Modifying a reference parameter modifies the caller’s argument!

(void Swap (int& x, inté& y) |
int tmp = x;

X = y;
—) v = tmp;
}
int a = 5, b = 10;

Swap (a, b);

return EXIT SUCCESS;

!

int main(int argc, char** argv) {

cout << "a: " << a << "; Db:

\

" << b << endl;

(main) a

10
(Swap) x
(main) b 10
(Swap) y
(Swap) tmp 5

J

passbyreference.cc

19

W UNIVERSITY of WASHINGTON L10: References, Const, Classes CSE333, Autumn 2025

Note: Arrow points

Pass-By-Refe rence to next instruction.

+ C++ allows you to use real pass-by-reference

= Client passes in an argument with normal syntax
- Function uses reference parameters with normal syntax
- Modifying a reference parameter modifies the caller’s argument!

(void Swap(int& x, int& y) | R
int tmp = x; _
X = y; (main) a 10
y = tmp; (Swap) x

q

int main(int argc, char** argv) { (main) b 5
int a = 5, b = 10; (Swap) y
Swap (a, b);
cout << "a: " << a << "; b: " << b << endl; (Swap) tmp S
return EXIT SUCCESS;

\})

passbyreference.cc 20

W UNIVERSITY of WASHINGTON

Pass-By-Reference

+ C++ allows you to use real pass-by-reference

= Client passes in an argument with normal syntax

L10: References, Const, Classes

CSE333, Autumn 2025

Note: Arrow points
to next instruction.

- Function uses reference parameters with normal syntax

- Modifying a reference parameter modifies the caller’s argument!

(void Swap(int& x, int& y) |
int tmp = x;
X = VY;
y = tmp;
}

int a = 5, b = 10;

Swap (a, b);
=) cout << "a:
return EXIT SUCCESS;

!

int main(int argc, char** argv) {

LA << a << H,. b:

\

" << b << endl;

(main) a 10

(main) b 5

J

passbyreference.cc

21

W UNIVERSITY of WASHINGTON L10: References, Const, Classes CSE333, Autumn 2025

0 Poll EVEI‘YWhEI'e -. pollev.com/cse333

What will happen when we try to compile and

run this code? | | | poll1.cc
vold Foo (int& x, 1int* y, 1nt z) {

A. S =

B. Output "(3,2,3)" y = &x;

}
C. Compiler error | o
int main(int argc, char** argv) {

about arguments int a = 1;

to Foo (in main) e B S 25
int& ¢ = a;
D. Compiler error
Foo (a, &b, c);
about body of FOO| <tg::cout << "(" << a << ", " << b
E. We're lost << M, M << e << M) << std:rendl;

return EXIT_SUCCESS;

22

W UNIVERSITY of WASHINGTON

Lecture Outline

« C++ References
+ constinC++

« C++ Classes Intro

L10: References, Const, Classes

CSE333, Autumn 2025

23

W UNIVERSITY of WASHINGTON L10: References, Const, Classes CSE333, Autumn 2025

const

%+ const: this cannot be changed/mutated

" Used much more in C++ thanin C

= Signal of intent to compiler; meaningless at hardware level
- Results in compile-time errors

(void BrokenPrintSquare (const int& 1) | N

i = i*i; // compiler error here!
std::cout << 1 << std::endl;
}

int main(int argc, char** argv) {
int jJ = 2;
BrokenPrintSquare (J) ;
return EXIT SUCCESS;

}

\. J

brokenpassbyrefconst.cc

24

W UNIVERSITY of WASHINGTON L10: References, Const, Classes CSE333, Autumn 2025

const and Pointers

+ Pointers can change data in two different contexts:

1) You can change the value of the pointer

2) You can change the thing the pointer points to
(via dereference)

%+ const can be used to prevent either/both of these

behaviors!

" const nextto pointer name means you can’t change the value of
the pointer

" const nextto data type pointed to means you can’t use this
pointer to change the thing being pointed to

= Tip: read variable declaration from right-to-left

25

W UNIVERSITY of WASHINGTON

L10: References, Const, Classes CSE333, Autumn 2025

const and Pointers

+ The syntax with pointers is confusing:

a0 . ,)
int main(int argc, char** argv) {
int x = 5; // 1int
const int y = 6; // (const int)
y++;
const int* z = &y; // pointer to a (const int)
*z += 1;
Zrr §
int* const w = &X; // (const pointer) to a (variable int)
*wo+= 1;
w++;
const int* const v = &x; // (const pointer) to a (const int)
7T R
vV++;
return EXIT SUCCESS;
\} J

constmadness.cc

W UNIVERSITY of WASHINGTON

L10: References, Const, Classes CSE333, Autumn 2025

const and Pointers

+ The syntax with pointers is confusing:

(. . ,)
int main(int argc, char** argv) {
int x = 5; // 1int
const int y = 6; // (const 1int)
) Al // compiler error
const int* z = &y; // pointer to a (const int)
Xz 4= 1; // compiler error
Z++; // ok
int* const w = &X; // (const pointer) to a (variable int)
*wo+= 1; // ok
w++; // compiler error
const int* const v = &x; // (const pointer) to a (const int)
v o+= 1; // compiler error
v++; // compiler error
return EXIT SUCCESS;
\} J

constmadness.cc

CSE333, Autumn 2025

W UNIVERSITY of WASHINGTON

const Parameters

< A const parameter
cannot be mutated inside
the function

" Therefore it does not
matter if the argument can
be mutated or not

< A non-const parameter
may be mutated inside
the function

= Compiler won’t let you
pass in const parameters

L10: References, Const, Classes

[
STYLE
[\

TP

Make parameters const when you canl

\[4

(void Foo (const int* y) {
std::cout << *y << std::endl;

}

void Bar (int* y) {
std::cout << *y << std::endl;
}

int main(int argc, char** argv) {

const int a = 10;

int b = 20;

Foo (&a) ; // OK

Foo (&b) ; // OK

Bar (&a) ; // not OK - error
Bar (&b) ; // OK

return EXIT SUCCESS;

N\

28

W UNIVERSITY of WASHINGTON L10: References, Const, Classes CSE333, Autumn 2025

0 Poll Everywhere -. pollev.com/cse333

What will happen when we try to compile and

run this code? poll2.cc
(void Foo (1nt* const x,)
A. int& y, int z) {
*x +=1;
B. OUtpUt "(2’4’3)" 3% we= o
C. Compiler error ST
about arguments

int main(int argc, char** argv) {
to Foo (in main) const int a = 1;
. int b = 2, ¢ = 3;
D. Compiler error
Foo (&a, b, c);

about body of Foo std:scout << " (" << a << ", " << b

E. We're lost... << M,M << e << M) << std::endl;

return EXIT SUCCESS;
}

W UNIVERSITY of WASHINGTON L10: References, Const, Classes CSE333, Autumn 2025

When to Use References? By

« A stylistic choice, not mandated by the C++ language
+ Google C++ style guide suggests:

" |nput parameters:
- Either use values (for primitive types like int or small

structs/objects)
- Oruse const references (for complex struct/object instances)

" Qutput parameters:
- Use const pointers
— Unchangeable pointers referencing changeable data

= Ordering:
- List input parameters first, then output parameters last

void CalcArea (const int& width, const inté& height,
int* const area) { , :)

. . ordinary int (not int&

*area = width * helght; probably better here,

} but shows how const

ref can be used_’J 30

W UNIVERSITY of WASHINGTON

Lecture Outline

« C++ References

&« const in C++

« C++ Classes Intro

L10: References, Const, Classes

CSE333, Autumn 2025

31

W UNIVERSITY of WASHINGTON L10: References, Const, Classes CSE333, Autumn 2025

Classes

+ Class definition syntax (in a . h file):

(class Name {
public:
// public member definitions & declarations go here

private:
// private member definitions & declarations go here
}; // class Name

\ J

= Members can be functions (methods) or data (variables)

+ Class member function definition syntax (in a . cc file):

retType Name: :MethodName (typel paraml, .., typeN paramN) {
// body statements

}

® (1) define within the class definition or (2) declare within the class
definition and then define elsewhere

32

W UNIVERSITY of WASHINGTON L10: References, Const, Classes CSE333, Autumn 2025

Class Organization

+ It’s a little more complex than in C when modularizing
with struct definition:
= (Class definition is part of interface and should go in . h file
- Private members still must be included in definition (!)

= Usually put member function definitions into companion . cc file
with implementation details
- Common exception: setter and getter methods

" These files can also include non-member functions that use the
class

+ Unlike Java, you can name files anything you want

" Typically Name.cc and Name.h forclass Name

33

W UNIVERSITY of WASHINGTON L10: References, Const, Classes CSE333, Autumn 2025

Const & Classes

+ Like other data types, objects can be declared as const:

" Once a const object has been constructed, its member variables
can’t be changed

" Canonly invoke member functions that are labeled const

« You can declare a member function of a class as const

" This means that it cannot modify the object it was called on

- The compiler will treat member variables as const inside the
function at compile time

" |f a member function doesn’t modify the object, mark it const!

34

W UNIVERSITY of WASHINGTON

L10: References, Const, Classes

Class Definition (. h file)

CSE333, Autumn 2025

[
STYLE
[\

TIP
Point.h\

(#ifndef POINT H
#define POINT H

class Point {
public:

vold SetlLocation (const int x,

private:
int x ; // data member
int y ; // data member

}; // class Point

#endif // POINT H
.

Point (const int x, const int vy)
int get x() const { return x ;
int get y() const { return y ;
double Distance (const Pointé& p) const;

; //
} //
} //

const 1int

constructor
inline member
inline member
// member
v); // member

function
function
function
function

\

/

35

W UNIVERSITY of WASHINGTON L10: References, Const, Classes CSE333, Autumn 2025

Class Member Definitions (. cc file)

Point.cc
(#include <cmath> R
#include "Point.h"
Point::Point (const int x, const int y) {
X = X;
this->y = vy; // "this->" is optional unless name conflicts

}

double Point::Distance (const Pointé& p) const {
// We can access p’s x and y variables either through the
// get x(), get y() accessor functions or the x , y private
// member variables directly, since we’re in a member
// function of the same class.
double distance = (x_ - p.get x()) * (x_ - p.get x());
distance += (y_ - p.y) * (y_ - p.y_);
return sqrt(distance);

}

void Point::Setlocation(const int x, const int y) {
X = Xy
Y_ = Y

36

W UNIVERSITY of WASHINGTON

Class Usage (. cc file)

L10: References, Const, Classes

CSE333, Autumn 2025

usepoint.cc

cout
cout

cout
cout

cout

#include

<<
<<

<<
<<

<<

r#include <iostream>
#include <cstdlib>

"Point.h"

using namespace std;

int main(int argc, char** argv) {
Point pl (1, 2); // allocate a new Point on the Stack
Point p2(4, 6); // allocate a new Point on the Stack

"pl is: (" << pl.get x() <<
pl.get y() << ")" << endl;
"p2 is: (" << p2.get x () <<
pZ2.get y() << ")" << endl;
"dist : " << pl.Distance (p2)

return EXIT SUCCESS;

"

"w .
4 4

"w .
14 4

<< endl;

N\

37

W UNIVERSITY of WASHINGTON L10: References, Const, Classes

CSE333, Autumn 2025

Reading Assignment

+ Before next time, read the sections in C++ Primer covering

class constructors, copy constructors, assignment
(operator=), and destructors

" |gnore “move semantics” for now

" The table of contents and index are your friends...

38

W UNIVERSITY of WASHINGTON

L10: References, Const, Classes

Extra Exercise #1

2 Write a C++ program that:

= Has a class representing a 3-dimensional point
" Has the following methods:
- Return the inner product of two 3D points
- Return the distance between two 3D points
- Accessors and mutators for the %, v, and z coordinates

CSE333, Autumn 2025

39

W UNIVERSITY of WASHINGTON

L10: References, Const, Classes

CSE333, Autumn 2025

Extra Exercise #2

2 Write a C++ program that:

" Has a class representing a 3-dimensional box

- Use your Extra Exercise #1 class to store the coordinates of the
vertices that define the box

- Assume the box has right-angles only and its faces are parallel to the
axes, so you only need 2 vertices to define it

"= Has the following methods:
- Test if one box is inside another box
« Return the volume of a box

- Handles <<, =, and a copy constructor
- Uses const in all the right places

40

	Slide 1: C++ References, Const, Classes CSE 333 Autumn 2025
	Slide 2: Administrivia
	Slide 3: Lecture Outline
	Slide 4: Pointers Reminder
	Slide 5: Pointers Reminder
	Slide 6: Pointers Reminder
	Slide 7: Pointers Reminder
	Slide 8: Pointers Reminder
	Slide 9: Pointers Reminder
	Slide 10: References
	Slide 11: References
	Slide 12: References
	Slide 13: References
	Slide 14: References
	Slide 15: References
	Slide 16: Pass-By-Reference
	Slide 17: Pass-By-Reference
	Slide 18: Pass-By-Reference
	Slide 19: Pass-By-Reference
	Slide 20: Pass-By-Reference
	Slide 21: Pass-By-Reference
	Slide 22: What is your anticipated lecture/section attendance modality?
	Slide 23: Lecture Outline
	Slide 24: const
	Slide 25: const and Pointers
	Slide 26: const and Pointers
	Slide 27: const and Pointers
	Slide 28: const Parameters
	Slide 29: What is your anticipated lecture/section attendance modality?
	Slide 30: When to Use References?
	Slide 31: Lecture Outline
	Slide 32: Classes
	Slide 33: Class Organization
	Slide 34: Const & Classes
	Slide 35: Class Definition (.h file)
	Slide 36: Class Member Definitions (.cc file)
	Slide 37: Class Usage (.cc file)
	Slide 38: Reading Assignment
	Slide 39: Extra Exercise #1
	Slide 40: Extra Exercise #2

