W UNIVERSITY of WASHINGTON L09: C++ Intro CSE333, Autumn 2025

C++ Intro
CSE 333 Autumn 2025

Instructors: Naomi Alterman, Chris Thachuk

Teaching Assistants:

Ann Baturytski Derek de Leuw Blake Diaz
Rishabh Jain Chendur Jel Jayavelu Lucas Kwan
Irene Xin Jie Lau Nathan Li Maya Odenheim
Advay Patil Selim Saridede Deeksha Vatwani

Angela Wu Jiexiao Xu

W UNIVERSITY of WASHINGTON L09: C++ Intro CSE333, Autumn 2025

Administrivia

+» Homework 2 due in next Thursday (10/23)

" File system crawler, indexer, and search engine
= Spec posted and starter files pushed out last Friday

"= Demo in section this week

+ New exercise 8 out today — First C++ program: read a
number and print its factors

" Due Wed. morning 10 am

W UNIVERSITY of WASHINGTON L09: C++ Intro CSE333, Autumn 2025

Today’s Goals

+ An introduction to C++
= Some comparisons to C and shortcomings that C++ addresses
= Give you a perspective on how to learn C++
= Kick the tires and look at some code

« Advice: You must read related sections in the C++ Primer

" |t’s hard to learn the “why is it done this way” from reference
docs, and even harder to learn from random stuff on the web

" Lectures and examples will introduce the main ideas, but aren’t
everything you’ll want need to understand

= 3 hours of web searching might save you 20 min. of reading in the
Primer — but is that a good tradeoff?

" And free access through UW libraries (O’Reilly books online)

W UNIVERSITY of WASHINGTON L09: C++ Intro CSE333, Autumn 2025

Programming Terminology Review

» Encapsulation and Abstraction: Hiding implementation
details (restricting access) and associating behaviors
(methods) with data

+ Polymorphism: The provision of a single interface to
entities of different types

+» @enerics: Algorithms written in terms of types to-be-
specified-later

W UNIVERSITY of WASHINGTON L09: C++ Intro CSE333, Autumn 2025

Encapsulation and Abstraction (C)

- Used header file conventions and the st at 1c specifier to
separate “private” functions, definitions, and constants
from “public”

» Used forward-declared st ructs and opaque pointers
(i.e., void*) to hide implementation-specific details

+ Can’t associate behaviors with encapsulated state

" Functions that operate ona LinkedList notactually tied to
the struct

Really difficult to mimic — implemented primarily via

coding conventions

W UNIVERSITY of WASHINGTON L09: C++ Intro CSE333, Autumn 2025

Encapsulation and Abstraction (C++)

+ Support for classes and objects!
" Public, private, and protected access specifiers
= Methods and instance variables ("this")

= (Multiple!) inheritance

+ Polymorphism
= Static polymorphism: multiple functions or methods with the
same name, but different argument types (overloading)
- Works for all functions, not just class members

= Dynamic (subtype) polymorphism: derived classes can override
methods of parents, and methods will be dispatched correctly

W UNIVERSITY of WASHINGTON L09: C++ Intro CSE333, Autumn 2025

Generics (C)

» Generic linked list and hash table by using void* payload
» Function pointers to generalize different behavior for data

structures

= Comparisons, deallocation, pickling up state, etc.

Emulated generic data structures primarily by

disabling type system

W UNIVERSITY of WASHINGTON L09: C++ Intro CSE333, Autumn 2025

Generics (C++)

+» Templates facilitate generic data types
" Parametric polymorphism: same idea as Java generics, but
different in details, particularly implementation
- Avector of ints: vector<int> x;
- Avectorof floats: vector<float> x;

- A vector of (vectors of f1oats): vector<vector<float>> x;

+ Specialized casts to increase type safety

W UNIVERSITY of WASHINGTON L09: C++ Intro CSE333, Autumn 2025

Namespaces (C)

+» Names are global and visible everywhere

" Canuse static toprevent a name from being visible outside a
source file (as close as C gets to “private”)

«» Naming conventions help avoid collisions in the global
namespace
" e.g,Linkedlist Allocate,HTIterator Next, etc.

Avoid collisions primarily via coding conventions

W UNIVERSITY of WASHINGTON L09: C++ Intro CSE333, Autumn 2025

Namespaces (C++)

+ Explicit namespaces!

" The linked list module could define an “LLL.” namespace while the
hash table module could define an “HT” namespace

= Both modules could define an Iterator class

- One would be globally named LL: : Tterator and the other would
be globally named HT: : ITterator

+ Classes also allow duplicate names without collisions

= Classes can also define their own pseudo-namespace, very similar
to Java static inner classes

10

W UNIVERSITY of WASHINGTON L09: C++ Intro CSE333, Autumn 2025

Standard Library (C)

+» Cdoes not provide any standard data structures

= We had to implement our own linked list and hash table

+ Hopefully, you can use somebody else’s libraries

= But C’s lack of abstraction, encapsulation, and generics means

you’ll probably end up tweak them or tweak your code to use
them

YOU implement the data structures that you need

11

W UNIVERSITY of WASHINGTON L09: C++ Intro CSE333, Autumn 2025

Standard Library (C++)

« @eneric containers: bitset, queue, list, associative array
(including hash table), deque, set, stack, and vector

= And iterators for most of these
+ A string class: hides the implementation of strings

« Streams: allows you to stream data to and from objects,
consoles, files, strings, and so on

+ @Generic algorithms: sort, filter, remove duplicates, etc.

12

W UNIVERSITY of WASHINGTON L09: C++ Intro CSE333, Autumn 2025

Error Handling (C)

+ Error handling is a pain

+ Define error codes and return them
= Either directly return or via a “global” like errno

= No type checking: does 1 mean EXIT FAILURE or true?

+» Customers and implementors need to constantly test
return values

" e.g., ifa() callsb (), which calls c ()

- a depends on b to propagate an error in c back to it

Error handling is a pain — mixture of coding

conventions and discipline

13

W UNIVERSITY of WASHINGTON L09: C++ Intro CSE333, Autumn 2025

Error Handling (C++)

+ Supports exceptions!
" try/throw/catch
= |f used with discipline, can simplify error processing

" |f used carelessly, can complicate memory management

- Consider: a () callsb (), which calls ¢ ()

— If ¢ () throws an exception that b () doesn’t catch, you might not get a
chance to clean up resources allocated inside b ()

+» We will largely avoid in 333
" You still benefit from having more interpretable errors!

® But much C++ code still needs to work with C & old C++ libraries,
so still uses return codes, exit (), etc.

14

W UNIVERSITY of WASHINGTON L09: C++ Intro CSE333, Autumn 2025

Some Tasks Still Hurt in C++

< Memory management

® C++ has no garbage collector
« You still have to manage memory allocation & deallocation and track

- It’s still possible to have leaks, double frees, and so on

= But there are some things that help

- “Smart pointers”
— Classes that encapsulate pointers and track reference counts
— Deallocate memory when the reference count goes to zero
- C++’s constructors and destructors permit a pattern known as
“Resource Allocation Is Initialization” (RAII)
— Useful for releasing memory, locks, database transactions, etc.

15

W UNIVERSITY of WASHINGTON L09: C++ Intro CSE333, Autumn 2025

Some Tasks Still Hurt in C++

+» C++ doesn’t guarantee type or memory safety

" You can still:
- Forcibly cast pointers between incompatible types
- Walk off the end of an array and smash memory
- Have dangling pointers
- Conjure up a pointer to an arbitrary address of your choosing

16

W UNIVERSITY of WASHINGTON L09: C++ Intro CSE333, Autumn 2025

C++ Has Many, Many Features

+ Operator overloading

" Your class can define methods for handling “+”, “=>", etc.
+ QObject constructors, destructors

= Particularly handy for stack-allocated objects
» Reference types

" True call-by-reference instead of always call-by-value

Advanced Objects

" Multiple inheritance, virtual base classes, dynamic dispatch

L)

0‘0

17

W UNIVERSITY of WASHINGTON LO9: C++ Intro CSE333, Autumn 2025

How to Think About C++

Set of styles
and ways to
use C++

Good styles
and robust
engineering

practices Set of styles

and ways to
use C

18

W UNIVERSITY of WASHINGTON L09: C++ Intro CSE333, Autumn 2025

Or...

In the hands of a disciplined But if you’re not so
programmer, C++is a disciplined about how you
powerful tool use C++...

19

WASHINGTON LO9: C++ Intro CSE333, Autumn 2025

W UNIVERSITY of

Hello World in C

helloworld.c

#include <stdio.h> // for printf ()
#include <stdlib.h> // for EXIT SUCCESS

int main(int argc, char** argv) {
printf ("Hello, World!\n");
return EXIT SUCCESS;

}

\ J

« You never had a chance to write this!

= Compile with gcc:

= Based on what you know now, what is one thing that goes on in

gcc -Wall -g -std=cl7 -o helloworld helloworld.c

the execution of this “simple” program?

Be detailed!

20

W UNIVERSITY of WASHINGTON L09: C++ Intro CSE333, Autumn 2025

Hello World in C++

helloworld.cc

#include <iostream> // for cout, endl
#include <cstdlib> // for EXIT SUCCESS

int main(int argc, char** argv) {
std::cout << "Hello, World!" << std::endl;
return EXIT SUCCESS;

}

\ J

+ Looks simple enough...

= Compile with g++ instead of gcc:

gt+ -Wall -g —-std=c++17 -o helloworld helloworld.cc

" What are some differences you notice in the C++ program
compared to C?

" Let’s walk through the program step-by-step to highlight some
differences

21

W UNIVERSITY of WASHINGTON L09: C++ Intro CSE333, Autumn 2025

Hello World in C++
helloworld.cc

\ﬁiaglude <iostream> // for cout, endl |
#include <cstdlib> // for EXIT SUCCESS

int main(int argc, char** argv) {
std::cout << "Hello, World!" << std::endl;
return EXIT SUCCESS;

}

\ J

+» 1ostreamis part of the C++ standard library

" Youdon’t add “.h” when including C++ standard library headers
- But you do for local headers (e.g. #include "11.h")

" iostream declares stream object instances in the “std”
namespace
- Callback: C++ supports classes and objects
- e.g.std::cin, std: :cout, std: :cerr

22

W UNIVERSITY of WASHINGTON L09: C++ Intro CSE333, Autumn 2025

Hello World in C++

helloworld.cc

D

[#include <iostream> // for cout, endl
Finclude <cstdlib> > // for EXIT SUCCESS

int main(int argc, char** argv) {
std::cout << "Hello, World!" << std::endl;
return EXIT SUCCESS;

}

\ J

+» cstdlibisthe Cstandard library’s stdlib.h

" Nearly all Cstandard library functions are available to you
- For Cheader foo.h, youshould #include <cfoo>
"= We include it here for EXIT SUCCESS, as usual

23

W UNIVERSITY of WASHINGTON

Hello World in C++

#include <iostream>
#include <cstdlib>

LO9: C++ Intro CSE333, Autumn 2025

helloworld.cc

// for cout, endl
// for EXIT SUCCESS

int main(int argc, char** argv)
<< "Hello,
return EXIT SUCCESS;

}

std: :cout isthe “cout” object instance declared by
iostream, living within the “std” namespace

" C++’s name for stdout

" std::coutisanobjectofclass ostream

« http://www.cplusplus.com/reference/ostream/ostream/

= Used to format and write output to the console

" The entire standard library is in the namespace std

World!" << std::endl;

http://www.cplusplus.com/reference/ostream/ostream/
http://www.cplusplus.com/reference/ostream/ostream/

W UNIVERSITY of WASHINGTON L09: C++ Intro CSE333, Autumn 2025

Hello World in C++
helloworld.cc

(Y

#include <iostream> // for cout, endl
#include <cstdlib> // for EXIT SUCCESS
int main(int argc, char** argv) {

<< "Hello, World!" << std::endl;
return EXIT SUCCESS;

}

\ J

« C++ distinguishes between objects and primitive types

" These include the familiar ones from C:
char, short, int, long, float, double, etc.

® C++ also defines bool as a primitive type (woo-hoo!)

« Useit!

25

W UNIVERSITY of WASHINGTON

Hello World in C++

L09: C++ Intro

helloworld.cc

CSE333, Autumn 2025

r#include <iostream>
#include <cstdlib>

char** argv)

int main(int_argc,
std::cout<;f>"Hello,
return EXIT SUCCESS;

// for cout, endl
// for EXIT SUCCESS

{
World!" << std::endl;

D

\/
0’0

“<<”is an operator defined by the C++ language

= Defined in C as well: usually it bit-shifts integers (in C/C++)

= C++ allows classes and functions to overload operators!

- Here, the ostream class overloads “<<”

- i.e. it defines different member functions (methods) that are invoked
when an ostreamis the left-hand side of the << operator

= Without the syntactic sugar (without abstraction
std: :cout.operator<<(char* c str);

26

W UNIVERSITY of WASHINGTON L09: C++ Intro CSE333, Autumn 2025

Hello World in C++

helloworld.cc

D

r#include <iostream> // for cout, endl
#include <cstdlib> // for EXIT SUCCESS

int main(int_argc, char** argv) {
std::cout<;f>"Hello, World!" << std::endl;

return EXI _SUCCESS;

+» ostream has many different methods to handle <<
= The functions differ in the type of the right-hand side (RHS) of <<

= e.g.ifyou do[std: :cout << "foo";], then C++ invokes
cout’s function to handle << with RHS char*

27

W UNIVERSITY of WASHINGTON

L09: C++ Intro

CSE333, Autumn 2025

Hello World in C++

helloworld.cc

// for cout, endl |
// for EXIT SUCCESS

r#include <iostream>
#include <cstdlib>

int main(int argc, char** argv) ({
GGtd::cout << "Hello, World!
return EXIT SUCCESS;

}

< std::endl;

\

+ The ostream class’ member functions that handle <<
return a reference to themselves

= When[std::cout << "Hello, World!";|isevaluated:
- A member function of the std: : cout object is invoked

- It buffers the string "Hello, World!" for the console
- And it returns a reference to std: : cout

" Synonymous to [Std: :cout.operator<<("Hello, World!") ;]

28

W UNIVERSITY of WASHINGTON L09: C++ Intro CSE333, Autumn 2025

Hello World in C++
helloworld.cc

(Y

#include <iostream> // for cout, endl
#include <cstdlib> // for EXIT SUCCESS

int main(int argc, char** argv) {
std: :cout << "Hello, World!"(EEZ%td::e%EIZ)
return EXIT SUCCESS;

}

\ J

«» Next, another member functionon std: : cout is
invoked to handle << with RHS std: :endl

" std::endl isapointer to a “manipulator” function

« This manipulator function writes newline (' \n ') tothe ostreamit
is invoked on and then flushes the ostream’s buffer

- This enforces that something is printed to the console at this point

29

W UNIVERSITY of WASHINGTON L09: C++ Intro CSE333, Autumn 2025

Wow...

helloworld.cc

D

r#include <iostream> // for cout, endl
#include <cstdlib> // for EXIT SUCCESS

int main(int argc, char** argv) {
std::cout << "Hello, World!"(EEZEtd::e%EIZ)
return EXIT SUCCESS;

}

\ J

+ You should be surprised and scared at this point

" C++ makes it easy to hide a significant amount of complexity

2
| <

Tieled

- It’s powerful, but really dangerous

- Once you mix everything together (teplates, operator overloading,
method overloading, generics, multiple inheritance), it can get really
hard to know what’s actually happening!

30

W UNIVERSITY of WASHINGTON L09: C++ Intro CSE333, Autumn 2025

Let’s Refine It a Bit

helloworld2.cc

(#include <iostream> // for cout, endl b

#include <cstdlib> // for EXIT SUCCESS
<££5§lude <strinég::> // for string

using namespace std;

int main(int argc, char** argv) {
string hello("Hello, World!");
cout << hello << endl;
return EXIT SUCCESS;

}

\ J

+» C++’s standard library hasa std: : stringclass

" Include the string header to use it

- Seems to be automatically included in 10stream on CSE Linux
environment (C++17) — but include it explicitly anyway if you use it

= http://www.cplusplus.com/reference/string/

31

http://www.cplusplus.com/reference/string/
http://www.cplusplus.com/reference/string/

W UNIVERSITY of WASHINGTON L09: C++ Intro CSE333, Autumn 2025

) . . STYLE
Let’s Refine It a Bit I
helloworld2.cc \'4
(#include <iostream> // for cout, endl b
#include <cstdlib> // for EXIT SUCCESS
#include <string> // for string
CEgzig namespace %EEZ:>

int main(int argc, char** argv) {
string hello("Hello, World!");
cout << hello << endl;
return EXIT SUCCESS;

}

\ J

+» The using keyword introduces a namespace (or part of)
into the current region

. X[using namespace Std;] imports all names from

Stc[using std: :cout;]
= using std::cout; importsonly std: :cout
(used as cout)

32

W UNIVERSITY of WASHINGTON L09: C++ Intro CSE333, Autumn 2025

[]
. . ST-YLE
Let’s Refine It a Bit e
helloworld2.cc \'4
(#include <iostream> // for cout, endl h
#include <cstdlib> // for EXIT SUCCESS
#include <string> // for string
using std::string;
using std::cout;
using std::endl;
int main(int argc, char** argv) {
@ ello("Hello, World!");
(STTER< hello <<
return EXIT SUCCE y
}
U J

+ Benefits of importing namespaces

" Wecannowrefertostd: :stringasstring, std: :cout

as cout,and std: :endl as endl
33

W UNIVERSITY of WASHINGTON L09: C++ Intro

Let’s Refine It a Bit

helloworld2.cc

(#include <iostream>
#include <cstdlib>
#include <string>

using namespace std;

return EXIT SUCCESS;
}

\.

// for cout, endl
// for EXIT SUCCESS
// for string

int mai Lnt argc, char** argv) {
'Hello, World!™) ;
cout ello << endl;

N

CSE333, Autumn 2025

+ Here we are instantiatinga std: : string object on the stack

(an ordinary local variable)

= Passing the Cstring "Hello, World!" toits constructor method

" hello is deallocated (and its destructor invoked) when main returns

34

W UNIVERSITY of WASHINGTON L09: C++ Intro CSE333, Autumn 2025

Let’s Refine It a Bit

helloworld2.cc

(#include <iostream> // for cout, endl b
#include <cstdlib> // for EXIT SUCCESS
#include <string> // for string

using namespace std;

int main(int argc, char** argv) {
stri lo("Hello, World!");
cout << hello X< endl;
return EXIT SUCCESS;

}

\ J

+ The C++ string library also overloads the << operator

= Defines a function (not an object method) that is invoked when
the LHSis ostream and the RHS is std: :string

« http://www.cplusplus.com/reference/string/string/operator<</

35

http://www.cplusplus.com/reference/string/string/operator%3c%3c/
http://www.cplusplus.com/reference/string/string/operator%3c%3c/

W UNIVERSITY of WASHINGTON L09: C++ Intro CSE333, Autumn 2025

String Concatenation

concat.cc
(#include <iostream> // for cout, endl b
#include <cstdlib> // for EXIT SUCCESS
#include <string> // for string
using namespace std;
int main(int argc, char** argv) {
string hella("Hello");
hello ", World!";
cout << helTo << endl;
return EXIT SUCCESS;
\} y,

+ The string class overloads the “+” operator

" Creates and returns a new string that is the concatenation of the
LHS and RHS
[hello.operator+(", World!");]

36

W UNIVERSITY of WASHINGTON L09: C++ Intro CSE333, Autumn 2025

String Assignment

concat.cc
(#include <iostream> // for cout, endl b
#include <cstdlib> // for EXIT SUCCESS
#include <string> // for string
using namespace std;
int main(int argc, char** argv) {
string hello("Hello");
ello + ", World!";
cout << hello << endl;
return EXIT SUCCESS;
\} y,

+ The string class overloads the “=" operator

" Copies the RHS and replaces the string’s contents with it

[hello.operator=(string);]

37

W UNIVERSITY of WASHINGTON L09: C++ Intro

CSE333, Autumn 2025

String Manipulation

concat.cc

(#include <iostream>
#include <cstdlib>
#include <string>

using namespace std;

// for cout, endl
// for EXIT SUCCESS
// for string

int main(int argc, char** argv) {
string hello ("Hello");

hiello = hello + ", World ™

return EXIT_SUCCESS;

cout << helTo <X endl;

\

}
+ This statement 1s complex!

" First “+” creates a string that is the concatenation of hello’s
current contentsand ", World!™"

" Then “=" creates a copy of the concatenation to storeinhello

= Without the syntactic sugar:

'[hello.operator=(hello.operator+(", World!"));]

38

W UNIVERSITY of WASHINGTON L09: C++ Intro CSE333, Autumn 2025

Stream Manipulators

manip.cc
(#include <lostream> // for cout, endl b
#include <cstdlib> // for EXIT SUCCESS
Gizgiude <iomaé££2> // for dec, hex, setw
using namespace std;
int main(int argc, char** argv) {
cout << "Hi! " << setw(4) << 5H <« " " K< 5 << endl;
cout << hex << 16 << " " << 13 << endl;
cout << dec << 16 << " " <« 13 << endl;
return EXIT SUCCESS;
\} y,

+» 1omanip defines a set of stream manipulator functions

= Pass them to a stream to affect formatting

« http://www.cplusplus.com/reference/iomanip/

. http://www.cplusplus.com/reference/ios/

39

http://www.cplusplus.com/reference/iomanip/
http://www.cplusplus.com/reference/iomanip/
http://www.cplusplus.com/reference/ios/
http://www.cplusplus.com/reference/ios/

W UNIVERSITY of WASHINGTON L09: C++ Intro CSE333, Autumn 2025

Stream Manipulators

manip.cc
(#include <iostream> // for cout, endl b
#include <cstdlib> // for EXIT SUCCESS
#include <iomanip> // for dec, hex, setw

using namespace std;

int main(int argc, char** argv) {
cout << "Hi! " << << 5 << " " << 5 << endl;
cout << hex << 16 << " << 13 << endl;

cout << dec << 16 << " " <« 13 << endl;
return EXIT SUCCESS;

\} J

+» setw(x) sets the width of the next field to x

= Only affects the next thing sent to the output stream (i.e. it is
not persistent)

40

W UNIVERSITY of WASHINGTON L09: C++ Intro CSE333, Autumn 2025

Stream Manipulators

manip.cc
(#include <lostream> // for cout, endl b
#include <cstdlib> // for EXIT SUCCESS
#include <iomanip> // for dec, hex, setw
using namespace std;
int main(int argc, char** argv) {
cout << "Hi! " << setw(4) << 5H <« " " < 5 << endl;
cout <<(hag)<< 16 << " " << 13 << endl;
cout <<<< 16 << " " << 13 << endl;
return EXIT SUCCESS;
U y,

+ hex, dec, and oct set the numerical base for integers
output to the stream

= Stays in effect until you set the stream to another base (i.e. it is
persistent)

41

W UNIVERSITY of WASHINGTON L09: C++ Intro CSE333, Autumn 2025

ST-YLE
Cand C++ LY
helloworld3.cc 4
[#include <cstdio> // for printf |
#include <cstdlib> // for EXIT SUCCESS

int main(int argc, char** argv) {
printf ("Hello from C!\n");
return EXIT SUCCESS;

}

\ J

+ Cis (roughly) a subset of C++

" You can still use print£ — but bad style in ordinary C++ code
- E.g. Use std: :cerrinstead of fprintf (stderr, ..)

®= Can mix C and C++ idioms if needed to work with existing code,
but avoid mixing if you can

- Use C++(17)

42

W UNIVERSITY of WASHINGTON L09: C++ Intro CSE333, Autumn 2025

Reading

echonum.cc
(#include <iostream> // for cout, endl b
#include <cstdlib> // for EXIT SUCCESS
using namespace std;
int main(int argc, char** argv) {
int num;
cout << "Type a number: ";
cin >> num;
cout << "You typed: " << num << endl;
return EXIT SUCCESS;
\} J

+» std::cinisan objectinstance of class istream

= Supports the >> operator for “extraction”

- Can be used in conditionals — (std: : cin>>num) is true if
successful

" Hasagetline () method and methods to detect and clear
errors 43

W UNIVERSITY of WASHINGTON L09: C++ Intro CSE333, Autumn 2025

0 PO“ E\IerYWhere pollev.com/cse333

How many different versions of << are called?

" |gnore the stream manipulators for now
msg.cc

= Also, what is output? [#include <iostream> 1

#include <cstdlib>
#include <string>

A. #include <iomanip>
B 2 using namespace std;
C

3 int main(int argc, char** argv) {
¢ int n = 172;
D. 4 string str("m");
str += "y";
E. We’re Iost". cout << str << hex << setw(2)
<< 15U << n << "e!" << endl;
return EXIT SUCCESS;

44

W UNIVERSITY of WASHINGTON L09: C++ Intro CSE333, Autumn 2025

Extra Exercise #1

+» Write a C++ program that uses stream to:
" Prompt the user to type 5 floats

" Prints them out in opposite order with 4 digits of precision

45

	Slide 1: C++ Intro CSE 333 Autumn 2025
	Slide 2: Administrivia
	Slide 3: Today’s Goals
	Slide 4: Programming Terminology Review
	Slide 5: Encapsulation and Abstraction (C)
	Slide 6: Encapsulation and Abstraction (C++)
	Slide 7: Generics (C)
	Slide 8: Generics (C++)
	Slide 9: Namespaces (C)
	Slide 10: Namespaces (C++)
	Slide 11: Standard Library (C)
	Slide 12: Standard Library (C++)
	Slide 13: Error Handling (C)
	Slide 14: Error Handling (C++)
	Slide 15: Some Tasks Still Hurt in C++
	Slide 16: Some Tasks Still Hurt in C++
	Slide 17: C++ Has Many, Many Features
	Slide 18: How to Think About C++
	Slide 19: Or…
	Slide 20: Hello World in C
	Slide 21: Hello World in C++
	Slide 22: Hello World in C++
	Slide 23: Hello World in C++
	Slide 24: Hello World in C++
	Slide 25: Hello World in C++
	Slide 26: Hello World in C++
	Slide 27: Hello World in C++
	Slide 28: Hello World in C++
	Slide 29: Hello World in C++
	Slide 30: Wow…
	Slide 31: Let’s Refine It a Bit
	Slide 32: Let’s Refine It a Bit
	Slide 33: Let’s Refine It a Bit
	Slide 34: Let’s Refine It a Bit
	Slide 35: Let’s Refine It a Bit
	Slide 36: String Concatenation
	Slide 37: String Assignment
	Slide 38: String Manipulation
	Slide 39: Stream Manipulators
	Slide 40: Stream Manipulators
	Slide 41: Stream Manipulators
	Slide 42: C and C++
	Slide 43: Reading
	Slide 44: How many different versions of << are called?
	Slide 45: Extra Exercise #1

