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Administrivia

❖ Homework 2 due in next Thursday (10/23)

▪ File system crawler, indexer, and search engine

▪ Spec posted and starter files pushed out last Friday

▪ Demo in section this week

❖ New exercise 8 out today – First C++ program: read a 

number and print its factors

▪ Due Wed. morning 10 am
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Today’s Goals

❖ An introduction to C++
▪ Some comparisons to C and shortcomings that C++ addresses

▪ Give you a perspective on how to learn C++

▪ Kick the tires and look at some code

❖ Advice: You must read related sections in the C++ Primer
▪ It’s hard to learn the “why is it done this way” from reference 

docs, and even harder to learn from random stuff on the web

▪ Lectures and examples will introduce the main ideas, but aren’t 
everything you’ll want need to understand

▪ 3 hours of web searching might save you 20 min. of reading in the 
Primer – but is that a good tradeoff?

▪ And free access through UW libraries (O’Reilly books online)
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Programming Terminology Review

❖ Encapsulation and Abstraction:  Hiding implementation 

details (restricting access) and associating behaviors 

(methods) with data

❖ Polymorphism:  The provision of a single interface to 

entities of different types

❖ Generics:  Algorithms written in terms of types to-be-

specified-later

4
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Encapsulation and Abstraction (C)

❖ Used header file conventions and the static specifier to 

separate “private” functions, definitions, and constants 

from “public”

❖ Used forward-declared structs and opaque pointers 

(i.e., void*)  to hide implementation-specific details

❖ Can’t associate behaviors with encapsulated state

▪ Functions that operate on a LinkedList not actually tied to 

the struct

5

Really difficult to mimic – implemented primarily via 
coding conventions
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Encapsulation and Abstraction (C++)

❖ Support for classes and objects!

▪ Public, private, and protected access specifiers

▪ Methods and instance variables ("this")

▪ (Multiple!) inheritance

❖ Polymorphism

▪ Static polymorphism:  multiple functions or methods with the 

same name, but different argument types (overloading)

• Works for all functions, not just class members

▪ Dynamic (subtype) polymorphism:  derived classes can override 

methods of parents, and methods will be dispatched correctly
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Generics (C)

❖ Generic linked list and hash table by using void* payload

❖ Function pointers to generalize different behavior for data 

structures

▪ Comparisons, deallocation, pickling up state, etc.
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Emulated generic data structures primarily by 
disabling type system
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Generics (C++)

❖ Templates facilitate generic data types

▪ Parametric polymorphism:  same idea as Java generics, but 

different in details, particularly implementation

• A vector of ints:  vector<int> x;

• A vector of floats:  vector<float> x;

• A vector of (vectors of floats):  vector<vector<float>> x;

❖ Specialized casts to increase type safety
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Namespaces (C)

❖ Names are global and visible everywhere

▪ Can use static to prevent a name from being visible outside a 

source file (as close as C gets to “private”)

❖ Naming conventions help avoid collisions in the global 

namespace

▪ e.g., LinkedList_Allocate, HTIterator_Next, etc.
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Avoid collisions primarily via coding conventions
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Namespaces (C++)

❖ Explicit namespaces!

▪ The linked list module could define an “LL” namespace while the 

hash table module could define an “HT” namespace

▪ Both modules could define an Iterator class

• One would be globally named LL::Iterator and the other would 

be globally named HT::Iterator

❖ Classes also allow duplicate names without collisions

▪ Classes can also define their own pseudo-namespace, very similar 

to Java static inner classes
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Standard Library (C)

❖ C does not provide any standard data structures

▪ We had to implement our own linked list and hash table

❖ Hopefully, you can use somebody else’s libraries

▪ But C’s lack of abstraction, encapsulation, and generics means 

you’ll probably end up tweak them or tweak your code to use 

them
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YOU implement the data structures that you need
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Standard Library (C++)

❖ Generic containers:  bitset, queue, list, associative array 

(including hash table), deque, set, stack, and vector

▪ And iterators for most of these

❖ A string class:  hides the implementation of strings

❖ Streams:  allows you to stream data to and from objects, 

consoles, files, strings, and so on

❖ Generic algorithms:  sort, filter, remove duplicates, etc.
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Error Handling (C)

❖ Error handling is a pain

❖ Define error codes and return them

▪ Either directly return or via a “global” like errno

▪ No type checking: does 1 mean EXIT_FAILURE or true?

❖ Customers and implementors need to constantly test 

return values

▪ e.g., if a() calls b(), which calls c()

• a depends on b to propagate an error in c back to it

13

Error handling is a pain – mixture of coding 
conventions and discipline
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Error Handling (C++)

❖ Supports exceptions!

▪ try / throw / catch

▪ If used with discipline, can simplify error processing

▪ If used carelessly, can complicate memory management

• Consider: a() calls b(), which calls c() 

– If c() throws an exception that b() doesn’t catch, you might not get a 

chance to clean up resources allocated inside b()

❖ We will largely avoid in 333

▪ You still benefit from having more interpretable errors!

▪ But much C++ code still needs to work with C & old C++ libraries, 

so still uses return codes, exit(), etc.
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Some Tasks Still Hurt in C++

❖ Memory management

▪ C++ has no garbage collector

• You still have to manage memory allocation & deallocation and track

• It’s still possible to have leaks, double frees, and so on

▪ But there are some things that help

• “Smart pointers”

– Classes that encapsulate pointers and track reference counts

– Deallocate memory when the reference count goes to zero

• C++’s constructors and destructors permit a pattern known as 

“Resource Allocation Is Initialization” (RAII)

– Useful for releasing memory, locks, database transactions, etc.
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Some Tasks Still Hurt in C++

❖ C++ doesn’t guarantee type or memory safety

▪ You can still:

• Forcibly cast pointers between incompatible types

• Walk off the end of an array and smash memory

• Have dangling pointers

• Conjure up a pointer to an arbitrary address of your choosing
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C++ Has Many, Many Features

❖ Operator overloading

▪ Your class can define methods for handling “+”, “->”, etc.

❖ Object constructors, destructors

▪ Particularly handy for stack-allocated objects

❖ Reference types

▪ True call-by-reference instead of always call-by-value

❖ Advanced Objects

▪ Multiple inheritance, virtual base classes, dynamic dispatch
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How to Think About C++

18

Set of styles 
and ways to 

use C++

Set of styles 
and ways to 

use C

Good styles 
and robust 
engineering 

practices

Style 
guides
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Or…

19

In the hands of a disciplined 
programmer, C++ is a 

powerful tool

But if you’re not so 
disciplined about how you 

use C++…
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Hello World in C

❖ You never had a chance to write this!

▪ Compile with gcc:  

▪ Based on what you know now, what is one thing that goes on in 

the execution of this “simple” program?

• Be detailed!
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#include <stdio.h>    // for printf()

#include <stdlib.h>   // for EXIT_SUCCESS

int main(int argc, char** argv) {

  printf("Hello, World!\n");

  return EXIT_SUCCESS;

}

helloworld.c

gcc -Wall -g -std=c17 -o helloworld helloworld.c
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Hello World in C++

❖ Looks simple enough…

▪ Compile with g++ instead of gcc:  

▪ What are some differences you notice in the C++ program 

compared to C?

▪ Let’s walk through the program step-by-step to highlight some 

differences
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#include <iostream>   // for cout, endl

#include <cstdlib>    // for EXIT_SUCCESS

int main(int argc, char** argv) {

  std::cout << "Hello, World!" << std::endl;

  return EXIT_SUCCESS;

}

g++ -Wall -g -std=c++17 -o helloworld helloworld.cc

helloworld.cc



CSE333, Autumn 2025L09:  C++ Intro

Hello World in C++

❖ iostream is part of the C++ standard library

▪ You don’t add “.h” when including C++ standard library headers

• But you do for local headers (e.g. #include "ll.h")

▪ iostream declares stream object instances in the “std” 

namespace

• Callback: C++ supports classes and objects

• e.g. std::cin, std::cout, std::cerr
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#include <iostream>   // for cout, endl

#include <cstdlib>    // for EXIT_SUCCESS

int main(int argc, char** argv) {

  std::cout << "Hello, World!" << std::endl;

  return EXIT_SUCCESS;

}

helloworld.cc
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Hello World in C++

❖ cstdlib is the C standard library’s stdlib.h

▪ Nearly all C standard library functions are available to you

• For C header foo.h, you should #include <cfoo>

▪ We include it here for EXIT_SUCCESS, as usual
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#include <iostream>   // for cout, endl

#include <cstdlib>    // for EXIT_SUCCESS

int main(int argc, char** argv) {

  std::cout << "Hello, World!" << std::endl;

  return EXIT_SUCCESS;

}

helloworld.cc
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Hello World in C++

❖ std::cout is the “cout” object instance declared by 

iostream, living within the “std” namespace

▪ C++’s name for stdout

▪ std::cout is an object of class ostream

• http://www.cplusplus.com/reference/ostream/ostream/ 

▪ Used to format and write output to the console

▪ The entire standard library is in the namespace std
24

#include <iostream>   // for cout, endl

#include <cstdlib>    // for EXIT_SUCCESS

int main(int argc, char** argv) {

  std::cout << "Hello, World!" << std::endl;

  return EXIT_SUCCESS;

}

helloworld.cc

http://www.cplusplus.com/reference/ostream/ostream/
http://www.cplusplus.com/reference/ostream/ostream/
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Hello World in C++

❖ C++ distinguishes between objects and primitive types

▪ These include the familiar ones from C:

char, short, int, long, float, double, etc.

▪ C++ also defines bool as a primitive type (woo-hoo!)

• Use it!
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#include <iostream>   // for cout, endl

#include <cstdlib>    // for EXIT_SUCCESS

int main(int argc, char** argv) {

  std::cout << "Hello, World!" << std::endl;

  return EXIT_SUCCESS;

}

helloworld.cc
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Hello World in C++

❖ “<<” is an operator defined by the C++ language

▪ Defined in C as well: usually it bit-shifts integers (in C/C++)

▪ C++ allows classes and functions to overload operators!

• Here, the ostream class overloads “<<”

• i.e. it defines different member functions (methods) that are invoked 

when an ostream is the left-hand side of the << operator

▪ Without the syntactic sugar (without abstraction)
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#include <iostream>   // for cout, endl

#include <cstdlib>    // for EXIT_SUCCESS

int main(int argc, char** argv) {

  std::cout << "Hello, World!" << std::endl;

  return EXIT_SUCCESS;

}

helloworld.cc

std::cout.operator<<(char* c_str);
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Hello World in C++

❖ ostream has many different methods to handle <<

▪ The functions differ in the type of the right-hand side (RHS) of <<

▪ e.g. if you do std::cout << "foo"; , then C++ invokes 

cout’s function to handle << with RHS char*

27

std::cout << "foo";

#include <iostream>   // for cout, endl

#include <cstdlib>    // for EXIT_SUCCESS

int main(int argc, char** argv) {

  std::cout << "Hello, World!" << std::endl;

  return EXIT_SUCCESS;

}

helloworld.cc
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Hello World in C++

❖ The ostream class’ member functions that handle << 

return a reference to themselves

▪ When std::cout << "Hello, World!"; is evaluated:

• A member function of the std::cout object is invoked

• It buffers the string "Hello, World!" for the console

• And it returns a reference to std::cout

▪ Synonymous to
28

std::cout << "Hello, World!";

#include <iostream>   // for cout, endl

#include <cstdlib>    // for EXIT_SUCCESS

int main(int argc, char** argv) {

  std::cout << "Hello, World!" << std::endl;

  return EXIT_SUCCESS;

}

helloworld.cc

std::cout.operator<<("Hello, World!");
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Hello World in C++

❖ Next, another member function on std::cout is 

invoked to handle << with RHS std::endl

▪ std::endl is a pointer to a “manipulator” function

• This manipulator function writes newline ('\n') to the ostream it 

is invoked on and then flushes the ostream’s buffer

• This enforces that something is printed to the console at this point
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#include <iostream>   // for cout, endl

#include <cstdlib>    // for EXIT_SUCCESS

int main(int argc, char** argv) {

  std::cout << "Hello, World!" << std::endl;

  return EXIT_SUCCESS;

}

helloworld.cc
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Wow…

❖ You should be surprised and scared at this point

▪ C++ makes it easy to hide a significant amount of complexity

• It’s powerful, but really dangerous

• Once you mix everything together (templates, operator overloading, 

method overloading, generics, multiple inheritance), it can get really 

hard to know what’s actually happening!
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#include <iostream>   // for cout, endl

#include <cstdlib>    // for EXIT_SUCCESS

int main(int argc, char** argv) {

  std::cout << "Hello, World!" << std::endl;

  return EXIT_SUCCESS;

}

helloworld.cc
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Let’s Refine It a Bit

❖ C++’s standard library has a std::string class

▪ Include the string header to use it

• Seems to be automatically included in iostream on CSE Linux 

environment (C++17) – but include it explicitly anyway if you use it

▪ http://www.cplusplus.com/reference/string/ 
31

#include <iostream>   // for cout, endl

#include <cstdlib>    // for EXIT_SUCCESS

#include <string>     // for string

using namespace std;

int main(int argc, char** argv) {

  string hello("Hello, World!");

  cout << hello << endl;

  return EXIT_SUCCESS;

}

helloworld2.cc

http://www.cplusplus.com/reference/string/
http://www.cplusplus.com/reference/string/
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Let’s Refine It a Bit

❖ The using keyword introduces a namespace (or part of) 

into the current region

▪ using namespace std; imports all names from 

std::

▪ using std::cout; imports only std::cout 

(used as cout) 32

using namespace std;

using std::cout;

#include <iostream>   // for cout, endl

#include <cstdlib>    // for EXIT_SUCCESS

#include <string>     // for string

using namespace std;

int main(int argc, char** argv) {

  string hello("Hello, World!");

  cout << hello << endl;

  return EXIT_SUCCESS;

}

helloworld2.cc

STYLE
TIP
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Let’s Refine It a Bit

❖ Benefits of importing namespaces

▪ We can now refer to std::string as string, std::cout 

as cout, and std::endl as endl
33

#include <iostream>   // for cout, endl

#include <cstdlib>    // for EXIT_SUCCESS

#include <string>     // for string

using std::string;

using std::cout;

using std::endl;

int main(int argc, char** argv) {

  string hello("Hello, World!");

  cout << hello << endl;

  return EXIT_SUCCESS;

}

helloworld2.cc

STYLE
TIP

STYLE
TIP
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Let’s Refine It a Bit

❖ Here we are instantiating a std::string object on the stack 

(an ordinary local variable)

▪ Passing the C string "Hello, World!" to its constructor method

▪ hello is deallocated (and its destructor invoked) when main returns
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#include <iostream>   // for cout, endl

#include <cstdlib>    // for EXIT_SUCCESS

#include <string>     // for string

using namespace std;

int main(int argc, char** argv) {

  string hello("Hello, World!");

  cout << hello << endl;

  return EXIT_SUCCESS;

}

helloworld2.cc
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Let’s Refine It a Bit

❖ The C++ string library also overloads the << operator

▪ Defines a function (not an object method) that is invoked when 

the LHS is ostream and the RHS is std::string

• http://www.cplusplus.com/reference/string/string/operator<</ 
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#include <iostream>   // for cout, endl

#include <cstdlib>    // for EXIT_SUCCESS

#include <string>     // for string

using namespace std;

int main(int argc, char** argv) {

  string hello("Hello, World!");

  cout << hello << endl;

  return EXIT_SUCCESS;

}

helloworld2.cc

http://www.cplusplus.com/reference/string/string/operator%3c%3c/
http://www.cplusplus.com/reference/string/string/operator%3c%3c/
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String Concatenation

❖ The string class overloads the “+” operator

▪ Creates and returns a new string that is the concatenation of the 

LHS and RHS

36

#include <iostream>   // for cout, endl

#include <cstdlib>    // for EXIT_SUCCESS

#include <string>     // for string

using namespace std;

int main(int argc, char** argv) {

  string hello("Hello");

  hello = hello + ", World!";

  cout << hello << endl;

  return EXIT_SUCCESS;

}

concat.cc

hello.operator+(", World!");
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String Assignment

❖ The string class overloads the “=” operator

▪ Copies the RHS and replaces the string’s contents with it

37

#include <iostream>   // for cout, endl

#include <cstdlib>    // for EXIT_SUCCESS

#include <string>     // for string

using namespace std;

int main(int argc, char** argv) {

  string hello("Hello");

  hello = hello + ", World!";

  cout << hello << endl;

  return EXIT_SUCCESS;

}

concat.cc

hello.operator=(string);
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String Manipulation

❖ This statement is complex!

▪ First “+” creates a string that is the concatenation of hello’s 

current contents and ", World!"

▪ Then “=” creates a copy of the concatenation to store in hello

▪ Without the syntactic sugar:

• hello.operator=(hello.operator+(", World!"));

38

#include <iostream>   // for cout, endl

#include <cstdlib>    // for EXIT_SUCCESS

#include <string>     // for string

using namespace std;

int main(int argc, char** argv) {

  string hello("Hello");

  hello = hello + ", World!";

  cout << hello << endl;

  return EXIT_SUCCESS;

}

concat.cc

hello.operator=(hello.operator+(", World!"));
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Stream Manipulators

❖ iomanip defines a set of stream manipulator functions

▪ Pass them to a stream to affect formatting

• http://www.cplusplus.com/reference/iomanip/ 

• http://www.cplusplus.com/reference/ios/ 
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#include <iostream>   // for cout, endl

#include <cstdlib>    // for EXIT_SUCCESS

#include <iomanip>    // for dec, hex, setw

using namespace std;

int main(int argc, char** argv) {

  cout << "Hi! " << setw(4) << 5 << " " << 5 << endl;

  cout << hex << 16 << " " << 13 << endl;

  cout << dec << 16 << " " << 13 << endl;

  return EXIT_SUCCESS;

}

manip.cc

http://www.cplusplus.com/reference/iomanip/
http://www.cplusplus.com/reference/iomanip/
http://www.cplusplus.com/reference/ios/
http://www.cplusplus.com/reference/ios/
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Stream Manipulators

❖ setw(x) sets the width of the next field to x

▪ Only affects the next thing sent to the output stream (i.e. it is 

not persistent)

40

#include <iostream>   // for cout, endl

#include <cstdlib>    // for EXIT_SUCCESS

#include <iomanip>    // for dec, hex, setw

using namespace std;

int main(int argc, char** argv) {

  cout << "Hi! " << setw(4) << 5 << " " << 5 << endl;

  cout << hex << 16 << " " << 13 << endl;

  cout << dec << 16 << " " << 13 << endl;

  return EXIT_SUCCESS;

}

manip.cc
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Stream Manipulators

❖ hex, dec, and oct set the numerical base for integers 

output to the stream

▪ Stays in effect until you set the stream to another base (i.e. it is 

persistent)

41

#include <iostream>   // for cout, endl

#include <cstdlib>    // for EXIT_SUCCESS

#include <iomanip>    // for dec, hex, setw

using namespace std;

int main(int argc, char** argv) {

  cout << "Hi! " << setw(4) << 5 << " " << 5 << endl;

  cout << hex << 16 << " " << 13 << endl;

  cout << dec << 16 << " " << 13 << endl;

  return EXIT_SUCCESS;

}

manip.cc
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C and C++

❖ C is (roughly) a subset of C++

▪ You can still use printf – but bad style in ordinary C++ code

• E.g. Use std::cerr instead of fprintf(stderr, …)

▪ Can mix C and C++ idioms if needed to work with existing code, 

but avoid mixing if you can

• Use C++(17)

42

#include <cstdio>     // for printf

#include <cstdlib>    // for EXIT_SUCCESS

int main(int argc, char** argv) {

  printf("Hello from C!\n");

  return EXIT_SUCCESS;

}

helloworld3.cc

STYLE
TIP
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Reading

❖ std::cin is an object instance of class istream

▪ Supports the >> operator for “extraction”

• Can be used in conditionals – (std::cin>>num) is true if 

successful

▪ Has a getline() method and methods to detect and clear 

errors 43

#include <iostream>   // for cout, endl

#include <cstdlib>    // for EXIT_SUCCESS

using namespace std;

int main(int argc, char** argv) {

  int num;

  cout << "Type a number: ";

  cin >> num;

  cout << "You typed: " << num << endl;

  return EXIT_SUCCESS;

}

echonum.cc
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44

pollev.com/cse333

How many different versions of << are called?
▪ Ignore the stream manipulators for now

▪ Also, what is output?

A. 1

B. 2

C. 3

D. 4

E. We’re lost…

#include <iostream>

#include <cstdlib>

#include <string>

#include <iomanip>

using namespace std;

int main(int argc, char** argv) {

  int n = 172;

  string str("m");

  str += "y";

  cout << str << hex << setw(2)

       << 15U << n << "e!" << endl;

  return EXIT_SUCCESS;

}

msg.cc
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Extra Exercise #1

❖ Write a C++ program that uses stream to:

▪ Prompt the user to type 5 floats

▪ Prints them out in opposite order with 4 digits of precision

45
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