
CSE333, Autumn 2025L09: C++ Intro

C++ Intro
CSE 333 Autumn 2025

Instructors: Naomi Alterman, Chris Thachuk

Teaching Assistants:

Ann Baturytski Derek de Leuw Blake Diaz

Rishabh Jain Chendur Jel Jayavelu Lucas Kwan

Irene Xin Jie Lau Nathan Li Maya Odenheim

Advay Patil Selim Saridede Deeksha Vatwani

Angela Wu Jiexiao Xu

CSE333, Autumn 2025L09: C++ Intro

Administrivia

❖ Homework 2 due in next Thursday (10/23)

▪ File system crawler, indexer, and search engine

▪ Spec posted and starter files pushed out last Friday

▪ Demo in section this week

❖ New exercise 8 out today – First C++ program: read a

number and print its factors

▪ Due Wed. morning 10 am

2

CSE333, Autumn 2025L09: C++ Intro

Today’s Goals

❖ An introduction to C++
▪ Some comparisons to C and shortcomings that C++ addresses

▪ Give you a perspective on how to learn C++

▪ Kick the tires and look at some code

❖ Advice: You must read related sections in the C++ Primer
▪ It’s hard to learn the “why is it done this way” from reference

docs, and even harder to learn from random stuff on the web

▪ Lectures and examples will introduce the main ideas, but aren’t
everything you’ll want need to understand

▪ 3 hours of web searching might save you 20 min. of reading in the
Primer – but is that a good tradeoff?

▪ And free access through UW libraries (O’Reilly books online)

3

CSE333, Autumn 2025L09: C++ Intro

Programming Terminology Review

❖ Encapsulation and Abstraction: Hiding implementation

details (restricting access) and associating behaviors

(methods) with data

❖ Polymorphism: The provision of a single interface to

entities of different types

❖ Generics: Algorithms written in terms of types to-be-

specified-later

4

CSE333, Autumn 2025L09: C++ Intro

Encapsulation and Abstraction (C)

❖ Used header file conventions and the static specifier to

separate “private” functions, definitions, and constants

from “public”

❖ Used forward-declared structs and opaque pointers

(i.e., void*) to hide implementation-specific details

❖ Can’t associate behaviors with encapsulated state

▪ Functions that operate on a LinkedList not actually tied to

the struct

5

Really difficult to mimic – implemented primarily via
coding conventions

CSE333, Autumn 2025L09: C++ Intro

Encapsulation and Abstraction (C++)

❖ Support for classes and objects!

▪ Public, private, and protected access specifiers

▪ Methods and instance variables ("this")

▪ (Multiple!) inheritance

❖ Polymorphism

▪ Static polymorphism: multiple functions or methods with the

same name, but different argument types (overloading)

• Works for all functions, not just class members

▪ Dynamic (subtype) polymorphism: derived classes can override

methods of parents, and methods will be dispatched correctly

6

CSE333, Autumn 2025L09: C++ Intro

Generics (C)

❖ Generic linked list and hash table by using void* payload

❖ Function pointers to generalize different behavior for data

structures

▪ Comparisons, deallocation, pickling up state, etc.

7

Emulated generic data structures primarily by
disabling type system

CSE333, Autumn 2025L09: C++ Intro

Generics (C++)

❖ Templates facilitate generic data types

▪ Parametric polymorphism: same idea as Java generics, but

different in details, particularly implementation

• A vector of ints: vector<int> x;

• A vector of floats: vector<float> x;

• A vector of (vectors of floats): vector<vector<float>> x;

❖ Specialized casts to increase type safety

8

CSE333, Autumn 2025L09: C++ Intro

Namespaces (C)

❖ Names are global and visible everywhere

▪ Can use static to prevent a name from being visible outside a

source file (as close as C gets to “private”)

❖ Naming conventions help avoid collisions in the global

namespace

▪ e.g., LinkedList_Allocate, HTIterator_Next, etc.

9

Avoid collisions primarily via coding conventions

CSE333, Autumn 2025L09: C++ Intro

Namespaces (C++)

❖ Explicit namespaces!

▪ The linked list module could define an “LL” namespace while the

hash table module could define an “HT” namespace

▪ Both modules could define an Iterator class

• One would be globally named LL::Iterator and the other would

be globally named HT::Iterator

❖ Classes also allow duplicate names without collisions

▪ Classes can also define their own pseudo-namespace, very similar

to Java static inner classes

10

CSE333, Autumn 2025L09: C++ Intro

Standard Library (C)

❖ C does not provide any standard data structures

▪ We had to implement our own linked list and hash table

❖ Hopefully, you can use somebody else’s libraries

▪ But C’s lack of abstraction, encapsulation, and generics means

you’ll probably end up tweak them or tweak your code to use

them

11

YOU implement the data structures that you need

CSE333, Autumn 2025L09: C++ Intro

Standard Library (C++)

❖ Generic containers: bitset, queue, list, associative array

(including hash table), deque, set, stack, and vector

▪ And iterators for most of these

❖ A string class: hides the implementation of strings

❖ Streams: allows you to stream data to and from objects,

consoles, files, strings, and so on

❖ Generic algorithms: sort, filter, remove duplicates, etc.

12

CSE333, Autumn 2025L09: C++ Intro

Error Handling (C)

❖ Error handling is a pain

❖ Define error codes and return them

▪ Either directly return or via a “global” like errno

▪ No type checking: does 1 mean EXIT_FAILURE or true?

❖ Customers and implementors need to constantly test

return values

▪ e.g., if a() calls b(), which calls c()

• a depends on b to propagate an error in c back to it

13

Error handling is a pain – mixture of coding
conventions and discipline

CSE333, Autumn 2025L09: C++ Intro

Error Handling (C++)

❖ Supports exceptions!

▪ try / throw / catch

▪ If used with discipline, can simplify error processing

▪ If used carelessly, can complicate memory management

• Consider: a() calls b(), which calls c()

– If c() throws an exception that b() doesn’t catch, you might not get a

chance to clean up resources allocated inside b()

❖ We will largely avoid in 333

▪ You still benefit from having more interpretable errors!

▪ But much C++ code still needs to work with C & old C++ libraries,

so still uses return codes, exit(), etc.

14

CSE333, Autumn 2025L09: C++ Intro

Some Tasks Still Hurt in C++

❖ Memory management

▪ C++ has no garbage collector

• You still have to manage memory allocation & deallocation and track

• It’s still possible to have leaks, double frees, and so on

▪ But there are some things that help

• “Smart pointers”

– Classes that encapsulate pointers and track reference counts

– Deallocate memory when the reference count goes to zero

• C++’s constructors and destructors permit a pattern known as

“Resource Allocation Is Initialization” (RAII)

– Useful for releasing memory, locks, database transactions, etc.

15

CSE333, Autumn 2025L09: C++ Intro

Some Tasks Still Hurt in C++

❖ C++ doesn’t guarantee type or memory safety

▪ You can still:

• Forcibly cast pointers between incompatible types

• Walk off the end of an array and smash memory

• Have dangling pointers

• Conjure up a pointer to an arbitrary address of your choosing

16

CSE333, Autumn 2025L09: C++ Intro

C++ Has Many, Many Features

❖ Operator overloading

▪ Your class can define methods for handling “+”, “->”, etc.

❖ Object constructors, destructors

▪ Particularly handy for stack-allocated objects

❖ Reference types

▪ True call-by-reference instead of always call-by-value

❖ Advanced Objects

▪ Multiple inheritance, virtual base classes, dynamic dispatch

17

CSE333, Autumn 2025L09: C++ Intro

How to Think About C++

18

Set of styles
and ways to

use C++

Set of styles
and ways to

use C

Good styles
and robust
engineering

practices

Style
guides

CSE333, Autumn 2025L09: C++ Intro

Or…

19

In the hands of a disciplined
programmer, C++ is a

powerful tool

But if you’re not so
disciplined about how you

use C++…

CSE333, Autumn 2025L09: C++ Intro

Hello World in C

❖ You never had a chance to write this!

▪ Compile with gcc:

▪ Based on what you know now, what is one thing that goes on in

the execution of this “simple” program?

• Be detailed!

20

#include <stdio.h> // for printf()

#include <stdlib.h> // for EXIT_SUCCESS

int main(int argc, char** argv) {

 printf("Hello, World!\n");

 return EXIT_SUCCESS;

}

helloworld.c

gcc -Wall -g -std=c17 -o helloworld helloworld.c

CSE333, Autumn 2025L09: C++ Intro

Hello World in C++

❖ Looks simple enough…

▪ Compile with g++ instead of gcc:

▪ What are some differences you notice in the C++ program

compared to C?

▪ Let’s walk through the program step-by-step to highlight some

differences

21

#include <iostream> // for cout, endl

#include <cstdlib> // for EXIT_SUCCESS

int main(int argc, char** argv) {

 std::cout << "Hello, World!" << std::endl;

 return EXIT_SUCCESS;

}

g++ -Wall -g -std=c++17 -o helloworld helloworld.cc

helloworld.cc

CSE333, Autumn 2025L09: C++ Intro

Hello World in C++

❖ iostream is part of the C++ standard library

▪ You don’t add “.h” when including C++ standard library headers

• But you do for local headers (e.g. #include "ll.h")

▪ iostream declares stream object instances in the “std”

namespace

• Callback: C++ supports classes and objects

• e.g. std::cin, std::cout, std::cerr

22

#include <iostream> // for cout, endl

#include <cstdlib> // for EXIT_SUCCESS

int main(int argc, char** argv) {

 std::cout << "Hello, World!" << std::endl;

 return EXIT_SUCCESS;

}

helloworld.cc

CSE333, Autumn 2025L09: C++ Intro

Hello World in C++

❖ cstdlib is the C standard library’s stdlib.h

▪ Nearly all C standard library functions are available to you

• For C header foo.h, you should #include <cfoo>

▪ We include it here for EXIT_SUCCESS, as usual

23

#include <iostream> // for cout, endl

#include <cstdlib> // for EXIT_SUCCESS

int main(int argc, char** argv) {

 std::cout << "Hello, World!" << std::endl;

 return EXIT_SUCCESS;

}

helloworld.cc

CSE333, Autumn 2025L09: C++ Intro

Hello World in C++

❖ std::cout is the “cout” object instance declared by

iostream, living within the “std” namespace

▪ C++’s name for stdout

▪ std::cout is an object of class ostream

• http://www.cplusplus.com/reference/ostream/ostream/

▪ Used to format and write output to the console

▪ The entire standard library is in the namespace std
24

#include <iostream> // for cout, endl

#include <cstdlib> // for EXIT_SUCCESS

int main(int argc, char** argv) {

 std::cout << "Hello, World!" << std::endl;

 return EXIT_SUCCESS;

}

helloworld.cc

http://www.cplusplus.com/reference/ostream/ostream/
http://www.cplusplus.com/reference/ostream/ostream/

CSE333, Autumn 2025L09: C++ Intro

Hello World in C++

❖ C++ distinguishes between objects and primitive types

▪ These include the familiar ones from C:

char, short, int, long, float, double, etc.

▪ C++ also defines bool as a primitive type (woo-hoo!)

• Use it!

25

#include <iostream> // for cout, endl

#include <cstdlib> // for EXIT_SUCCESS

int main(int argc, char** argv) {

 std::cout << "Hello, World!" << std::endl;

 return EXIT_SUCCESS;

}

helloworld.cc

CSE333, Autumn 2025L09: C++ Intro

Hello World in C++

❖ “<<” is an operator defined by the C++ language

▪ Defined in C as well: usually it bit-shifts integers (in C/C++)

▪ C++ allows classes and functions to overload operators!

• Here, the ostream class overloads “<<”

• i.e. it defines different member functions (methods) that are invoked

when an ostream is the left-hand side of the << operator

▪ Without the syntactic sugar (without abstraction)

26

#include <iostream> // for cout, endl

#include <cstdlib> // for EXIT_SUCCESS

int main(int argc, char** argv) {

 std::cout << "Hello, World!" << std::endl;

 return EXIT_SUCCESS;

}

helloworld.cc

std::cout.operator<<(char* c_str);

CSE333, Autumn 2025L09: C++ Intro

Hello World in C++

❖ ostream has many different methods to handle <<

▪ The functions differ in the type of the right-hand side (RHS) of <<

▪ e.g. if you do std::cout << "foo"; , then C++ invokes

cout’s function to handle << with RHS char*

27

std::cout << "foo";

#include <iostream> // for cout, endl

#include <cstdlib> // for EXIT_SUCCESS

int main(int argc, char** argv) {

 std::cout << "Hello, World!" << std::endl;

 return EXIT_SUCCESS;

}

helloworld.cc

CSE333, Autumn 2025L09: C++ Intro

Hello World in C++

❖ The ostream class’ member functions that handle <<

return a reference to themselves

▪ When std::cout << "Hello, World!"; is evaluated:

• A member function of the std::cout object is invoked

• It buffers the string "Hello, World!" for the console

• And it returns a reference to std::cout

▪ Synonymous to
28

std::cout << "Hello, World!";

#include <iostream> // for cout, endl

#include <cstdlib> // for EXIT_SUCCESS

int main(int argc, char** argv) {

 std::cout << "Hello, World!" << std::endl;

 return EXIT_SUCCESS;

}

helloworld.cc

std::cout.operator<<("Hello, World!");

CSE333, Autumn 2025L09: C++ Intro

Hello World in C++

❖ Next, another member function on std::cout is

invoked to handle << with RHS std::endl

▪ std::endl is a pointer to a “manipulator” function

• This manipulator function writes newline ('\n') to the ostream it

is invoked on and then flushes the ostream’s buffer

• This enforces that something is printed to the console at this point

29

#include <iostream> // for cout, endl

#include <cstdlib> // for EXIT_SUCCESS

int main(int argc, char** argv) {

 std::cout << "Hello, World!" << std::endl;

 return EXIT_SUCCESS;

}

helloworld.cc

CSE333, Autumn 2025L09: C++ Intro

Wow…

❖ You should be surprised and scared at this point

▪ C++ makes it easy to hide a significant amount of complexity

• It’s powerful, but really dangerous

• Once you mix everything together (templates, operator overloading,

method overloading, generics, multiple inheritance), it can get really

hard to know what’s actually happening!

30

#include <iostream> // for cout, endl

#include <cstdlib> // for EXIT_SUCCESS

int main(int argc, char** argv) {

 std::cout << "Hello, World!" << std::endl;

 return EXIT_SUCCESS;

}

helloworld.cc

CSE333, Autumn 2025L09: C++ Intro

Let’s Refine It a Bit

❖ C++’s standard library has a std::string class

▪ Include the string header to use it

• Seems to be automatically included in iostream on CSE Linux

environment (C++17) – but include it explicitly anyway if you use it

▪ http://www.cplusplus.com/reference/string/
31

#include <iostream> // for cout, endl

#include <cstdlib> // for EXIT_SUCCESS

#include <string> // for string

using namespace std;

int main(int argc, char** argv) {

 string hello("Hello, World!");

 cout << hello << endl;

 return EXIT_SUCCESS;

}

helloworld2.cc

http://www.cplusplus.com/reference/string/
http://www.cplusplus.com/reference/string/

CSE333, Autumn 2025L09: C++ Intro

Let’s Refine It a Bit

❖ The using keyword introduces a namespace (or part of)

into the current region

▪ using namespace std; imports all names from

std::

▪ using std::cout; imports only std::cout

(used as cout) 32

using namespace std;

using std::cout;

#include <iostream> // for cout, endl

#include <cstdlib> // for EXIT_SUCCESS

#include <string> // for string

using namespace std;

int main(int argc, char** argv) {

 string hello("Hello, World!");

 cout << hello << endl;

 return EXIT_SUCCESS;

}

helloworld2.cc

STYLE
TIP

CSE333, Autumn 2025L09: C++ Intro

Let’s Refine It a Bit

❖ Benefits of importing namespaces

▪ We can now refer to std::string as string, std::cout

as cout, and std::endl as endl
33

#include <iostream> // for cout, endl

#include <cstdlib> // for EXIT_SUCCESS

#include <string> // for string

using std::string;

using std::cout;

using std::endl;

int main(int argc, char** argv) {

 string hello("Hello, World!");

 cout << hello << endl;

 return EXIT_SUCCESS;

}

helloworld2.cc

STYLE
TIP

STYLE
TIP

CSE333, Autumn 2025L09: C++ Intro

Let’s Refine It a Bit

❖ Here we are instantiating a std::string object on the stack

(an ordinary local variable)

▪ Passing the C string "Hello, World!" to its constructor method

▪ hello is deallocated (and its destructor invoked) when main returns

34

#include <iostream> // for cout, endl

#include <cstdlib> // for EXIT_SUCCESS

#include <string> // for string

using namespace std;

int main(int argc, char** argv) {

 string hello("Hello, World!");

 cout << hello << endl;

 return EXIT_SUCCESS;

}

helloworld2.cc

CSE333, Autumn 2025L09: C++ Intro

Let’s Refine It a Bit

❖ The C++ string library also overloads the << operator

▪ Defines a function (not an object method) that is invoked when

the LHS is ostream and the RHS is std::string

• http://www.cplusplus.com/reference/string/string/operator<</

35

#include <iostream> // for cout, endl

#include <cstdlib> // for EXIT_SUCCESS

#include <string> // for string

using namespace std;

int main(int argc, char** argv) {

 string hello("Hello, World!");

 cout << hello << endl;

 return EXIT_SUCCESS;

}

helloworld2.cc

http://www.cplusplus.com/reference/string/string/operator%3c%3c/
http://www.cplusplus.com/reference/string/string/operator%3c%3c/

CSE333, Autumn 2025L09: C++ Intro

String Concatenation

❖ The string class overloads the “+” operator

▪ Creates and returns a new string that is the concatenation of the

LHS and RHS

36

#include <iostream> // for cout, endl

#include <cstdlib> // for EXIT_SUCCESS

#include <string> // for string

using namespace std;

int main(int argc, char** argv) {

 string hello("Hello");

 hello = hello + ", World!";

 cout << hello << endl;

 return EXIT_SUCCESS;

}

concat.cc

hello.operator+(", World!");

CSE333, Autumn 2025L09: C++ Intro

String Assignment

❖ The string class overloads the “=” operator

▪ Copies the RHS and replaces the string’s contents with it

37

#include <iostream> // for cout, endl

#include <cstdlib> // for EXIT_SUCCESS

#include <string> // for string

using namespace std;

int main(int argc, char** argv) {

 string hello("Hello");

 hello = hello + ", World!";

 cout << hello << endl;

 return EXIT_SUCCESS;

}

concat.cc

hello.operator=(string);

CSE333, Autumn 2025L09: C++ Intro

String Manipulation

❖ This statement is complex!

▪ First “+” creates a string that is the concatenation of hello’s

current contents and ", World!"

▪ Then “=” creates a copy of the concatenation to store in hello

▪ Without the syntactic sugar:

• hello.operator=(hello.operator+(", World!"));

38

#include <iostream> // for cout, endl

#include <cstdlib> // for EXIT_SUCCESS

#include <string> // for string

using namespace std;

int main(int argc, char** argv) {

 string hello("Hello");

 hello = hello + ", World!";

 cout << hello << endl;

 return EXIT_SUCCESS;

}

concat.cc

hello.operator=(hello.operator+(", World!"));

CSE333, Autumn 2025L09: C++ Intro

Stream Manipulators

❖ iomanip defines a set of stream manipulator functions

▪ Pass them to a stream to affect formatting

• http://www.cplusplus.com/reference/iomanip/

• http://www.cplusplus.com/reference/ios/

39

#include <iostream> // for cout, endl

#include <cstdlib> // for EXIT_SUCCESS

#include <iomanip> // for dec, hex, setw

using namespace std;

int main(int argc, char** argv) {

 cout << "Hi! " << setw(4) << 5 << " " << 5 << endl;

 cout << hex << 16 << " " << 13 << endl;

 cout << dec << 16 << " " << 13 << endl;

 return EXIT_SUCCESS;

}

manip.cc

http://www.cplusplus.com/reference/iomanip/
http://www.cplusplus.com/reference/iomanip/
http://www.cplusplus.com/reference/ios/
http://www.cplusplus.com/reference/ios/

CSE333, Autumn 2025L09: C++ Intro

Stream Manipulators

❖ setw(x) sets the width of the next field to x

▪ Only affects the next thing sent to the output stream (i.e. it is

not persistent)

40

#include <iostream> // for cout, endl

#include <cstdlib> // for EXIT_SUCCESS

#include <iomanip> // for dec, hex, setw

using namespace std;

int main(int argc, char** argv) {

 cout << "Hi! " << setw(4) << 5 << " " << 5 << endl;

 cout << hex << 16 << " " << 13 << endl;

 cout << dec << 16 << " " << 13 << endl;

 return EXIT_SUCCESS;

}

manip.cc

CSE333, Autumn 2025L09: C++ Intro

Stream Manipulators

❖ hex, dec, and oct set the numerical base for integers

output to the stream

▪ Stays in effect until you set the stream to another base (i.e. it is

persistent)

41

#include <iostream> // for cout, endl

#include <cstdlib> // for EXIT_SUCCESS

#include <iomanip> // for dec, hex, setw

using namespace std;

int main(int argc, char** argv) {

 cout << "Hi! " << setw(4) << 5 << " " << 5 << endl;

 cout << hex << 16 << " " << 13 << endl;

 cout << dec << 16 << " " << 13 << endl;

 return EXIT_SUCCESS;

}

manip.cc

CSE333, Autumn 2025L09: C++ Intro

C and C++

❖ C is (roughly) a subset of C++

▪ You can still use printf – but bad style in ordinary C++ code

• E.g. Use std::cerr instead of fprintf(stderr, …)

▪ Can mix C and C++ idioms if needed to work with existing code,

but avoid mixing if you can

• Use C++(17)

42

#include <cstdio> // for printf

#include <cstdlib> // for EXIT_SUCCESS

int main(int argc, char** argv) {

 printf("Hello from C!\n");

 return EXIT_SUCCESS;

}

helloworld3.cc

STYLE
TIP

CSE333, Autumn 2025L09: C++ Intro

Reading

❖ std::cin is an object instance of class istream

▪ Supports the >> operator for “extraction”

• Can be used in conditionals – (std::cin>>num) is true if

successful

▪ Has a getline() method and methods to detect and clear

errors 43

#include <iostream> // for cout, endl

#include <cstdlib> // for EXIT_SUCCESS

using namespace std;

int main(int argc, char** argv) {

 int num;

 cout << "Type a number: ";

 cin >> num;

 cout << "You typed: " << num << endl;

 return EXIT_SUCCESS;

}

echonum.cc

CSE333, Autumn 2025L09: C++ Intro

44

pollev.com/cse333

How many different versions of << are called?
▪ Ignore the stream manipulators for now

▪ Also, what is output?

A. 1

B. 2

C. 3

D. 4

E. We’re lost…

#include <iostream>

#include <cstdlib>

#include <string>

#include <iomanip>

using namespace std;

int main(int argc, char** argv) {

 int n = 172;

 string str("m");

 str += "y";

 cout << str << hex << setw(2)

 << 15U << n << "e!" << endl;

 return EXIT_SUCCESS;

}

msg.cc

CSE333, Autumn 2025L09: C++ Intro

Extra Exercise #1

❖ Write a C++ program that uses stream to:

▪ Prompt the user to type 5 floats

▪ Prints them out in opposite order with 4 digits of precision

45

	Slide 1: C++ Intro CSE 333 Autumn 2025
	Slide 2: Administrivia
	Slide 3: Today’s Goals
	Slide 4: Programming Terminology Review
	Slide 5: Encapsulation and Abstraction (C)
	Slide 6: Encapsulation and Abstraction (C++)
	Slide 7: Generics (C)
	Slide 8: Generics (C++)
	Slide 9: Namespaces (C)
	Slide 10: Namespaces (C++)
	Slide 11: Standard Library (C)
	Slide 12: Standard Library (C++)
	Slide 13: Error Handling (C)
	Slide 14: Error Handling (C++)
	Slide 15: Some Tasks Still Hurt in C++
	Slide 16: Some Tasks Still Hurt in C++
	Slide 17: C++ Has Many, Many Features
	Slide 18: How to Think About C++
	Slide 19: Or…
	Slide 20: Hello World in C
	Slide 21: Hello World in C++
	Slide 22: Hello World in C++
	Slide 23: Hello World in C++
	Slide 24: Hello World in C++
	Slide 25: Hello World in C++
	Slide 26: Hello World in C++
	Slide 27: Hello World in C++
	Slide 28: Hello World in C++
	Slide 29: Hello World in C++
	Slide 30: Wow…
	Slide 31: Let’s Refine It a Bit
	Slide 32: Let’s Refine It a Bit
	Slide 33: Let’s Refine It a Bit
	Slide 34: Let’s Refine It a Bit
	Slide 35: Let’s Refine It a Bit
	Slide 36: String Concatenation
	Slide 37: String Assignment
	Slide 38: String Manipulation
	Slide 39: Stream Manipulators
	Slide 40: Stream Manipulators
	Slide 41: Stream Manipulators
	Slide 42: C and C++
	Slide 43: Reading
	Slide 44: How many different versions of << are called?
	Slide 45: Extra Exercise #1

