
CSE333, Autumn 2025L08: System Call Details & Makefiles

1

pollev.com/cse333

Which concept did you find the most difficult in
the context of HW1 (so far if not completed)?
A. Pointers

B. Output parameters

C. Dynamic memory allocation

D. Structs

E. GDB

F. Style considerations

G. Prefer not to say

CSE333, Autumn 2025L08: System Call Details & Makefiles

System Call Details, Makefiles
CSE 333 Autumn 2025

Instructors: Naomi Alterman, Chris Thachuk

Teaching Assistants:

Ann Baturytski Derek de Leuw Blake Diaz

Rishabh Jain Chendur Jel Jayavelu Lucas Kwan

Irene Xin Jie Lau Nathan Li Maya Odenheim

Advay Patil Selim Saridede Deeksha Vatwani

Angela Wu Jiexiao Xu

CSE333, Autumn 2025L08: System Call Details & Makefiles

Relevant Course Information

3

❖ Homework 1 was due Thursday (10/9)

▪ Still possible to submit late (until Sunday @ 11:59)

❖ Homework 2 rolling out soon

❖ Exercise 7 due Monday (10/13)
▪ Out this afternoon; practice with POSIX

❖ Start using C++ on Monday!

▪ Many conveniences

▪ Many additional concerns (much larger language)

CSE333, Autumn 2025L08: System Call Details & Makefiles

Lecture Outline

❖ System Calls (More Detailed View)

❖ Make and Build Tools

❖ Makefile Basics

❖ C History (for reading, not covered in lecture)

4

CSE333, Autumn 2025L08: System Call Details & Makefiles

System Call Analogy

❖ The OS is a bank manager overseeing
safety deposit boxes in the vault

▪ Is the only one allowed in the vault and has the keys
to the safety deposit boxes

❖ If a client wants to access a deposit box (i.e., add or
remove items), they must request that the bank manager
do it for them

▪ Takes time to locate and travel to box and find the right key

▪ Client must wait in the lobby while the bank manager accesses
the box – prevents messing with requested box or other boxes

▪ Takes time to put box away, return from vault, and let client know
that request was fulfilled

5

CSE333, Autumn 2025L08: System Call Details & Makefiles

Details on x86/Linux

❖ A more accurate picture:

▪ Consider a typical Linux process

▪ Its thread of execution can be in one
of several places:

• In your program’s code

• In glibc, a shared library containing
the C standard library, POSIX,
support, and more

• In the Linux architecture-independent
code

• In Linux x86-64 code

6

architecture-independent code

architecture-dependent code

glibc

C standard
library

POSIX

Linux
system calls

Linux kernel

Your program

CSE333, Autumn 2025L08: System Call Details & Makefiles

Details on x86/Linux

❖ Some routines your program
invokes may be entirely handled
by glibc without involving the
kernel

▪ e.g. strcmp() from stdio.h

▪ There is some initial overhead when
invoking functions in dynamically
linked libraries (during loading)

• But after symbols are resolved,
invoking glibc routines is basically
as fast as a function call within your
program itself!

7

architecture-independent code

architecture-dependent code

glibc

C standard
library

POSIX

Linux kernel

Your program

CSE333, Autumn 2025L08: System Call Details & Makefiles

Details on x86/Linux

❖ Some routines may be handled
by glibc, but they in turn
invoke Linux system calls
▪ e.g. POSIX wrappers around Linux
syscalls

• POSIX readdir() invokes the
underlying Linux readdir()

▪ e.g. C stdio functions that read
and write from files

• fopen(), fclose(), fprintf()
invoke underlying Linux open(),
close(), write(), etc.

8

architecture-independent code

architecture-dependent code

glibc

C standard
library

POSIX

Linux kernel

Your program

CSE333, Autumn 2025L08: System Call Details & Makefiles

Details on x86/Linux

❖ Your program can choose to
directly invoke Linux system calls
as well
▪ Nothing is forcing you to link with
glibc and use it

▪ But relying on directly-invoked Linux
system calls may make your
program less portable across UNIX
varieties

• (And won’t be portable to non-Unix
systems like Windows that run
standard C on top of their own,
different syscalls)

9

architecture-independent code

architecture-dependent code

glibc

C standard
library

POSIX

Linux kernel

Your program

CSE333, Autumn 2025L08: System Call Details & Makefiles

Details on x86/Linux

❖ Let’s walk through how a Linux
system call actually works

▪ We’ll assume 32-bit x86 using the
modern SYSENTER / SYSEXIT x86
instructions

• x86-64 code is similar, though details
always change over time, so take this
as an example – not a debugging
guide

10

architecture-independent code

architecture-dependent code

glibc

C standard
library

POSIX

Linux kernel

Your program

CSE333, Autumn 2025L08: System Call Details & Makefiles

Details on x86/Linux

Remember our
process address
space picture?
▪ Let’s add some

details:

11

architecture-independent code

architecture-dependent code

glibc

C standard
library

POSIX

CPU

Linux kernel

Your program0xFFFFFFFF

0x00000000

Linux
kernel

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

linux-gate.so

kernel stack

CSE333, Autumn 2025L08: System Call Details & Makefiles

Details on x86/Linux

Process is executing your
program code

12

architecture-independent code

architecture-dependent code

glibc

C standard
library

POSIX

CPU

Linux kernel

Your program0xFFFFFFFF

0x00000000

Linux
kernel

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

linux-gate.so

kernel stack

SP

IP

unpriv

CSE333, Autumn 2025L08: System Call Details & Makefiles

Details on x86/Linux

Process calls into a
glibc function

▪ e.g. fopen()

▪ We’ll ignore the
messy details of
loading/linking
shared libraries

13

architecture-independent code

architecture-dependent code

glibc

C standard
library

POSIX

CPU

Linux kernel

Your program0xFFFFFFFF

0x00000000

Linux
kernel

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

linux-gate.so

kernel stack

unpriv

SP

IP

CSE333, Autumn 2025L08: System Call Details & Makefiles

Details on x86/Linux

glibc begins the process
of invoking a Linux system
call

▪ glibc’s
fopen() likely

invokes Linux’s
open() system
call

▪ Puts the system call #
and arguments into
registers

▪ Uses the call x86

instruction to call into
the routine
__kernel_vsyscall
located in linux-
gate.so

14

architecture-independent code

architecture-dependent code

glibc

C standard
library

POSIX

CPU

Linux kernel

Your program0xFFFFFFFF

0x00000000

Linux
kernel

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

linux-gate.so

kernel stack

unpriv

SP

IP

CSE333, Autumn 2025L08: System Call Details & Makefiles

Details on x86/Linux

linux-gate.so is a
vdso

▪ A virtual
dynamically-linked
shared
object

▪ Is a kernel-provided
shared library that is
plunked into a process’
address space

▪ Provides the intricate
machine code needed to
trigger a system call

15

architecture-independent code

architecture-dependent code

glibc

C standard
library

POSIX

CPU

Linux kernel

Your program0xFFFFFFFF

0x00000000

Linux
kernel

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

linux-gate.so

kernel stack

unpriv

SP

IP

CSE333, Autumn 2025L08: System Call Details & Makefiles

Details on x86/Linux

linux-gate.so
eventually invokes
the SYSENTER x86
instruction

▪ SYSENTER is x86’s “fast
system call” instruction

• Causes the CPU to raise
its privilege level

• Traps into the Linux
kernel by changing the
SP, IP to a previously-
determined location

• Changes some
segmentation-related
registers (see CSE451)

16

architecture-independent code

architecture-dependent code

glibc

C standard
library

POSIX

CPU

Linux kernel

Your program0xFFFFFFFF

0x00000000

Linux
kernel

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

linux-gate.so

kernel stack

priv

SP
IP

CSE333, Autumn 2025L08: System Call Details & Makefiles

Details on x86/Linux

The kernel begins
executing code at
the SYSENTER
entry point

▪ Is in the architecture-
dependent part of Linux

▪ It’s job is to:

• Look up the system call
number in a system call
dispatch table

• Call into the address
stored in that table entry;
this is Linux’s system call
handler

– For open(), the
handler is named
sys_open, and is
system call #5

17

architecture-independent code

architecture-dependent code

glibc

C standard
library

POSIX

CPU

Linux kernel

Your program0xFFFFFFFF

0x00000000

Linux
kernel

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

linux-gate.so

kernel stack

priv

SP
IP

CSE333, Autumn 2025L08: System Call Details & Makefiles

Details on x86/Linux

The system call
handler executes

▪ What it does is
system-call specific

▪ It may take a long time to
execute, especially if it
has to interact with
hardware

• Linux may choose to
context switch the CPU
to a different runnable
process

18

architecture-independent code

architecture-dependent code

glibc

C standard
library

POSIX

CPU

Linux kernel

Your program0xFFFFFFFF

0x00000000

Linux
kernel

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

linux-gate.so

kernel stack

priv

SP
IP

CSE333, Autumn 2025L08: System Call Details & Makefiles

Details on x86/Linux

Eventually, the
system call handler
finishes

▪ Returns back to the
system call entry point

• Places the system call’s
return value in the
appropriate register

• Calls SYSEXIT to return
to the user-level code

19

architecture-independent code

architecture-dependent code

glibc

C standard
library

POSIX

CPU

Linux kernel

Your program0xFFFFFFFF

0x00000000

Linux
kernel

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

linux-gate.so

kernel stack

priv

SP
IP

CSE333, Autumn 2025L08: System Call Details & Makefiles

Details on x86/Linux

SYSEXIT transitions the
processor back to user-
mode code

▪ Restores the
IP, SP to
user-land values

▪ Sets the CPU
back to
unprivileged mode

▪ Changes some
segmentation-related
registers (see CSE451)

▪ Returns the processor
back to glibc

20

architecture-independent code

architecture-dependent code

glibc

C standard
library

POSIX

CPU

Linux kernel

Your program0xFFFFFFFF

0x00000000

Linux
kernel

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

linux-gate.so

kernel stack

unpriv

SP

IP

CSE333, Autumn 2025L08: System Call Details & Makefiles

Details on x86/Linux

glibc continues to
execute

▪ Might execute more
system calls

▪ Eventually
returns back to
your program code

21

architecture-independent code

architecture-dependent code

glibc

C standard
library

POSIX

CPU

Linux kernel

Your program0xFFFFFFFF

0x00000000

Linux
kernel

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

linux-gate.so

kernel stack

SP

IP

unpriv

CSE333, Autumn 2025L08: System Call Details & Makefiles

strace

❖ A useful Linux utility that shows the sequence of system
calls that a process makes:

22

bash$ strace ls 2>&1 | less

execve("/usr/bin/ls", ["ls"], [/* 41 vars */]) = 0

brk(NULL) = 0x15aa000

mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) =

0x7f03bb741000

access("/etc/ld.so.preload", R_OK) = -1 ENOENT (No such file or directory)

open("/etc/ld.so.cache", O_RDONLY|O_CLOEXEC) = 3

fstat(3, {st_mode=S_IFREG|0644, st_size=126570, ...}) = 0

mmap(NULL, 126570, PROT_READ, MAP_PRIVATE, 3, 0) = 0x7f03bb722000

close(3) = 0

open("/lib64/libselinux.so.1", O_RDONLY|O_CLOEXEC) = 3

read(3, "\177ELF\2\1\1\0\0\0\0\0\0\0\0\0\3\0>\0\1\0\0\0\300j\0\0\0\0\0\0"...,

832) = 832

fstat(3, {st_mode=S_IFREG|0755, st_size=155744, ...}) = 0

mmap(NULL, 2255216, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_DENYWRITE, 3, 0) =

0x7f03bb2fa000

mprotect(0x7f03bb31e000, 2093056, PROT_NONE) = 0

mmap(0x7f03bb51d000, 8192, PROT_READ|PROT_WRITE,

MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE, 3, 0x23000) = 0x7f03bb51d000

... etc ...

CSE333, Autumn 2025L08: System Call Details & Makefiles

If You’re Curious

❖ Download the Linux kernel source code

▪ Available from http://www.kernel.org/

❖ man, section 2: Linux system calls
▪ man 2 intro

▪ man 2 syscalls

❖ man, section 3: glibc/libc library functions
▪ man 3 intro

❖ The book: The Linux Programming Interface by Michael
Kerrisk (keeper of the Linux man pages)

23

http://www.kernel.org/

CSE333, Autumn 2025L08: System Call Details & Makefiles

Lecture Outline

❖ System Calls (High-Level View)

❖ Make and Build Tools

❖ Makefile Basics

❖ C History (for reading, not covered in lecture)

24

CSE333, Autumn 2025L08: System Call Details & Makefiles

make

❖ make is a classic program for controlling what gets
(re)compiled and how
▪ Many other such programs exist (e.g., ant, maven, IDE “projects”)

❖ make has tons of fancy features, but only two basic ideas:

1) Scripts for executing commands

2) Dependencies for avoiding unnecessary work

❖ To avoid “just teaching make features” (boring and
narrow), let’s focus more on the concepts…

25

CSE333, Autumn 2025L08: System Call Details & Makefiles

Building Software

❖ Programmers spend a lot of time “building”

▪ Creating programs from source code

▪ Both programs that they write and other people write

26

https://xkcd.com/303/

https://xkcd.com/303/

CSE333, Autumn 2025L08: System Call Details & Makefiles

Building Software

❖ Programmers spend a lot of time “building”

▪ Creating programs from source code

▪ Both programs that they write and other people write

❖ Programmers like to automate repetitive tasks

▪ Repetitive: gcc -Wall -g -std=c17 -o widget foo.c bar.c baz.c

• Retype this every time:

• Use up-arrow or history: (still retype after logout)

• Have an alias or bash script:

• Have a Makefile: (you’re ahead of us)

27

CSE333, Autumn 2025L08: System Call Details & Makefiles

“Real” Build Process

❖ On larger projects, you can’t or don’t want to have one big (set
of) command(s) that are all run every time you change
anything. To do things “smarter,” consider:
1) It could be worse: If gcc didn’t combine steps for you, you’d need to

preprocess, compile, and link on your own (along with anything you
used to generate the C files)

2) Source files could have multiple outputs (e.g., javadoc). You may
have to type out the source file name(s) multiple times

3) You don’t want to have to document the build logic when you
distribute source code; make it relatively simple for others to build

4) You don’t want to recompile everything every time you change
something (especially if you have 105-107 files of source code)

❖ A script can handle 1-3 (use a variable for filenames for 2), but
4 is trickier

28

CSE333, Autumn 2025L08: System Call Details & Makefiles

Recompilation Management

❖ The “theory” behind avoiding unnecessary compilation is
a dependency dag (directed, acyclic graph)

❖ To create a target 𝑡, you need sources 𝑠1, 𝑠2, … , 𝑠𝑛 and a
command 𝑐 that directly or indirectly uses the sources

▪ It 𝑡 is newer than every source (file-modification times), assume
there is no reason to rebuild it

▪ Recursive building: if some source 𝑠𝑖 is itself a target for some
other sources, see if it needs to be rebuilt…

▪ Cycles “make no sense”!

29

CSE333, Autumn 2025L08: System Call Details & Makefiles

Theory Applied to C

❖ Compiling a .c creates a .o – the .o depends on the .c
and all included files (.h, recursively/transitively)

30

Source files

Object files

foo.c bar.cfoo.h

foo.o bar.olibZ.a

bar

Statically-linked
libraries

Executable

CSE333, Autumn 2025L08: System Call Details & Makefiles

Theory Applied to C

❖ Compiling a .c creates a .o – the .o depends on the .c
and all included files (.h, recursively/transitively)

❖ An archive (library, .a) depends on included .o files

31

Source files

Object files

foo.c bar.cfoo.h

foo.o bar.olibZ.a

bar

Statically-linked
libraries

Executable

CSE333, Autumn 2025L08: System Call Details & Makefiles

Theory Applied to C

❖ Compiling a .c creates a .o – the .o depends on the .c
and all included files (.h, recursively/transitively)

❖ An archive (library, .a) depends on included .o files

❖ Creating an executable (“linking”) depends on .o files and
archives
▪ Archives linked by -L<path> -l<name>

(e.g., -L. -lfoo to get libfoo.a from current directory)

32

Source files

Object files

foo.c bar.cfoo.h

foo.o bar.olibZ.a

bar

Statically-linked
libraries

Executable

CSE333, Autumn 2025L08: System Call Details & Makefiles

Theory Applied to C

❖ If one .c file changes, just need to recreate one .o file,
maybe a library, and re-link

❖ If a .h file changes, may need to rebuild more

❖ Many more possibilities!

33

Source files

Object files

foo.c bar.cfoo.h

foo.o bar.olibZ.a

bar

Statically-linked
libraries

Executable

CSE333, Autumn 2025L08: System Call Details & Makefiles

Lecture Outline

❖ System Calls (High-Level View)

❖ Make and Build Tools

❖ Makefile Basics

❖ C History (for reading, not covered in lecture)

34

CSE333, Autumn 2025L08: System Call Details & Makefiles

make Basics

❖ A makefile contains a bunch of triples:

▪ Colon after target is required

▪ Command lines must start with a TAB, NOT SPACES

▪ Multiple commands for same target are executed in order

• Can split commands over multiple lines by ending lines with ‘\’

❖ Example:

35

foo.o: foo.c foo.h bar.h

 gcc -Wall -o foo.o -c foo.c

target: sources

 command← Tab →

CSE333, Autumn 2025L08: System Call Details & Makefiles

Using make

❖ Defaults:
▪ If no -f specified, use a file named Makefile in current dir

▪ If no target specified, will use the first one in the file

▪ Will interpret commands in your default shell

• Set SHELL variable in makefile to ensure

❖ Target execution:

▪ Check each source in the source list:

• If the source is a target in the makefile, then process it recursively

• If some source does not exist, then error

• If any source is newer than the target (or target does not exist), run
command (presumably to update the target)

36

$ make -f <makefileName> target

CSE333, Autumn 2025L08: System Call Details & Makefiles

“Phony” Targets

❖ A make target whose command does not create a file of
the target’s name (i.e., a “recipe”)

▪ As long as target file doesn’t exist, the command(s) will be
executed because the target must be “remade”

❖ e.g., target clean is a convention to remove generated
files to “start over” from just the source

❖ e.g., target all is a convention to build all “final
products” in the makefile
▪ Lists all of the “final products” as sources

37

clean:

 rm foo.o bar.o baz.o widget *~

CSE333, Autumn 2025L08: System Call Details & Makefiles

“all” Example

38

all: prog B.class someLib.a

 # notice no commands this time

prog: foo.o bar.o main.o

 gcc –o prog foo.o bar.o main.o

B.class: B.java

 javac B.java

someLib.a: foo.o baz.o

 ar r foo.o baz.o

foo.o: foo.c foo.h header1.h header2.h

 gcc -c -Wall foo.c

similar targets for bar.o, main.o, baz.o, etc...

1

2

3

4

5 6

7 8

CSE333, Autumn 2025L08: System Call Details & Makefiles

make Variables

❖ You can define variables in a makefile:

▪ All values are strings of text, no “types”

▪ Variable names are case-sensitive and can’t contain ‘:’, ‘#’, ‘=’, or

whitespace

❖ Example:

❖ Advantages:

▪ Easy to change things (especially in multiple commands)

• It’s common to use variables to hold lists of filenames

▪ Can also specify/overwrite variables on the command line:
(e.g., make CC=clang CFLAGS=-g)

39

CC = gcc

CFLAGS = -Wall -std=c17

OBJFILES = foo.o bar.o baz.o

widget: $(OBJFILES)

 $(CC) $(CFLAGS) -o widget $(OBJFILES)

CSE333, Autumn 2025L08: System Call Details & Makefiles

Makefile Writing Tips

❖ When creating a Makefile, first draw the dependencies!!!!

❖ C Dependency Rules:
▪ .c and .h files are never targets, only sources.

▪ Each .c file will be compiled into a corresponding .o file

• Header files will be implicitly used via #include

▪ Executables will typically be built from one or more .o file

❖ Good Conventions:
▪ Include a clean rule

▪ If you have more than one “final target,” include an all rule

▪ The first/top target should be your singular “final target” or all

40

STYLE
TIP

STYLE
TIP

CSE333, Autumn 2025L08: System Call Details & Makefiles

Writing a Makefile Example

❖ “talk” program (find files on web with lecture slides)

41

speak.cspeak.h shout.cshout.hmain.c

#include "speak.h"

#include "shout.h"

int main(int argc, char** argv) {…

#include "speak.h"

...

#include "speak.h"

#include "shout.h"

...

main.c

speak.c

shout.c

CSE333, Autumn 2025L08: System Call Details & Makefiles

Writing a Makefile Example

❖ “talk” program (find files on web with lecture slides)

42

speak.cspeak.h shout.cshout.hmain.c

speak.o shout.omain.o

talk

CSE333, Autumn 2025L08: System Call Details & Makefiles

Revenge of the Funny Characters

❖ Special variables:
▪ $@ for target name

▪ $^ for all sources

▪ $< for left-most source

▪ Lots more! – see the documentation

❖ Examples:

43

CC and CFLAGS defined above

widget: foo.o bar.o

 $(CC) $(CFLAGS) -o $@ $^

foo.o: foo.c foo.h bar.h

 $(CC) $(CFLAGS) -c $<

CSE333, Autumn 2025L08: System Call Details & Makefiles

And more…

❖ There are a lot of “built-in” rules – see documentation

❖ There are “suffix” rules and “pattern” rules

▪ Example:

❖ Remember that you can put any shell command – even
whole scripts!

❖ You can repeat target names to add more dependencies

❖ Often this stuff is more useful for reading makefiles than
writing your own (until some day…)

44

%.class: %.java

 javac $< # we need the $< here

CSE333, Autumn 2025L08: System Call Details & Makefiles

Lecture Outline

❖ System Calls (High-Level View)

❖ Make and Build Tools

❖ Makefile Basics

❖ C History (for reading, not covered in lecture)

45

CSE333, Autumn 2025L08: System Call Details & Makefiles

Development of the C Language

❖ Created in 1972

▪ BCPL → B → C

▪ Designed specifically as a system programming language for Unix

• Unix was rewritten entirely in C (Version 4 in 1973)

❖ “Standardized” in 1978 with release of K&R Ed. 1

▪ From initial creation, developed
 in terms of portability and type safety

❖ Formal standardization via American National
Standards Institute (ANSI) in 1989 and International
Organziation for Standardization (ISO) in 1990

▪ Non-portable portion of the Unix C library was the basis for the
POSIX standard via IEEE

47

CSE333, Autumn 2025L08: System Call Details & Makefiles

Development of the C Language

❖ Development Context:

▪ Developed for the PDP-7/PDP-11

• Very limited memory available for program

▪ Improvements over B: data typing, performance, byte
addressibility

▪ Developed in the context of operating system innovations
(Multics, Unix)

• “Particularly oriented towards system programming, are small and
compactly described, and are amenable to translation by simple
compilers.”

• “By design, C provides constructs that map efficiently to typical
machine instructions. It has found lasting use in applications
previously coded in assembly language.”

❖ Who used computers and programming at the time?
48

CSE333, Autumn 2025L08: System Call Details & Makefiles

Development of the C Language

❖ Credits:

▪ Dennis Ritchie designed C

▪ Ken Thompson designed B and, with Ritchie, were the primary
architects of UNIX (in assembly)

▪ Brian Kernighan helped Ritchie write K&R, the first
“standardization” of the C language

❖ “The development of the C language” (https://dl.acm.org/doi/10.1145/155360.155580)

49

Dennis
Ritchie

Ken
Thompson

Brian
Kernighan

https://dl.acm.org/doi/10.1145/155360.155580

CSE333, Autumn 2025L08: System Call Details & Makefiles

Principles of C

❖ Some commonly-held contemporary views:

▪ “Since C is relatively small, it can be described
in small space and learned quickly.”

▪ “Shows what’s really happening.”

▪ “Close to the machine/hardware.”

▪ “Only the bare essentials.”

▪ “No one to help you.”

▪ “You’re on your own.”

▪ “I know what I’m doing, get out of my way.”

50

	Slide 1: Which concept did you find the most difficult in the context of HW1 (so far if not completed)?
	Slide 2: System Call Details, Makefiles CSE 333 Autumn 2025
	Slide 3: Relevant Course Information
	Slide 4: Lecture Outline
	Slide 5: System Call Analogy
	Slide 6: Details on x86/Linux
	Slide 7: Details on x86/Linux
	Slide 8: Details on x86/Linux
	Slide 9: Details on x86/Linux
	Slide 10: Details on x86/Linux
	Slide 11: Details on x86/Linux
	Slide 12: Details on x86/Linux
	Slide 13: Details on x86/Linux
	Slide 14: Details on x86/Linux
	Slide 15: Details on x86/Linux
	Slide 16: Details on x86/Linux
	Slide 17: Details on x86/Linux
	Slide 18: Details on x86/Linux
	Slide 19: Details on x86/Linux
	Slide 20: Details on x86/Linux
	Slide 21: Details on x86/Linux
	Slide 22: strace
	Slide 23: If You’re Curious
	Slide 24: Lecture Outline
	Slide 25: make
	Slide 26: Building Software
	Slide 27: Building Software
	Slide 28: “Real” Build Process
	Slide 29: Recompilation Management
	Slide 30: Theory Applied to C
	Slide 31: Theory Applied to C
	Slide 32: Theory Applied to C
	Slide 33: Theory Applied to C
	Slide 34: Lecture Outline
	Slide 35: make Basics
	Slide 36: Using make
	Slide 37: “Phony” Targets
	Slide 38: “all” Example
	Slide 39: make Variables
	Slide 40: Makefile Writing Tips
	Slide 41: Writing a Makefile Example
	Slide 42: Writing a Makefile Example
	Slide 43: Revenge of the Funny Characters
	Slide 44: And more…
	Slide 45: Lecture Outline
	Slide 47: Development of the C Language
	Slide 48: Development of the C Language
	Slide 49: Development of the C Language
	Slide 50: Principles of C

