WA/ UNIVERSITY of WASHINGTON LO7: System Calls & POSIX 1/0 CSE333, Autumn 2025

System Calls & POSIX 1/0
CSE 333 Spring 2025

Instructors: Naomi Alterman, Chris Thachuk

Teaching Assistants:

Ann Baturytski Derek de Leuw Blake Diaz
Rishabh Jain Chendur Jel Jayavelu Lucas Kwan
Irene Xin Jie Lau Nathan Li Maya Odenheim
Advay Patil Selim Saridede Deeksha Vatwani

Angela Wu Jiexiao Xu

LO7: System Calls & POSIX 1/0 CSE333, Autumn 2025

WA/ UNIVERSITY of WASHINGTON

@ Poll Everywhere pollev.com/naomila

How do you trust a total stranger to care
for your dog %:¥ / cat i/ bunny = while
you're away on vacation ¥ ?

How do you give them instructions? How do you make
sure they do what you asked? What precautions do

you take?
(open-ended survey question)

WA/ UNIVERSITY of WASHINGTON LO7: System Calls & POSIX 1/0

Administrivia

«» EX6 due
+ EX7 out on Friday, take a breather

" |nvolves material from lecture today and section tomorrow!
< HW1 due at midnight tomorrow

= Submission time is the timestamp of the git commit tagged "hwl-final’

= |ate day tokens will get “automatically” used if needed, you don’t need to let
us know

WA/ UNIVERSITY of WASHINGTON LO7: System Calls & POSIX 1/0

Administrivia

+» Midterm!
"= Monday October 27t from 5:30p — 6:20p (50 minutes) in Smith Hall 120
- If you absolutely can’t make this time, please let us know in a private Ed post now!
" Written exam
= Closed book
= Allowed one 5x8” card of handwritten notes
= Will cover material up through (and possibly including) C++ Templates

" You got this T« &

CSE333, Autumn 2025

LO7: System Calls & POSIX 1/0 CSE333, Autumn 2025

WA/ UNIVERSITY of WASHINGTON

Administrivia
+ Exercise grading and feedback

Exercise Grading

Logistics Anonymous 2d 7 19 ‘ ‘

= Exercise scores do not operate linearly; that is 2/3 !1=66.67% and 1/3 = 33.3%.

= Advay: “The number one thing | can recommend is keeping track of all the feedback
you've received on exercises in a document. You can also include feedback from the

Gradescope emails, which have common mistakes people made.”

+ | apologize for misleading comments earlier in the quarter about how we’d
be grading style 4 U U

WA/ UNIVERSITY of WASHINGTON LO7: System Calls & POSIX 1/0 CSE333, Autumn 2025

Lecture Outline

+~ System Calls (theoretical)
+» POSIX /O System Calls

WA/ UNIVERSITY of WASHINGTON LO7: System Calls & POSIX 1/0 CSE333, Autumn 2025

What’s an OS?

C application C++ application Java application

C standard C++ STL/boost/
library (glibc) standard library

OS / app interface
(system calls)

HW/SW interface
(x86 + devices)

hardware

CPU memory storage network
GPU clock audio radio peripherals

WA/ UNIVERSITY of WASHINGTON

LO7: System Calls & POSIX I/O

What’s an OS?

«» Software that:

= Directly interacts with the hardware
« OS is trusted to do so; user-level programs are not
« OS must be ported to new hardware; user-level programs are portable

= Manages (allocates, schedules, protects) hardware resources

CSE333, Autumn 2025

- Decides which programs can access which files, memory locations, pixels on the screen, etc. and

when

= Abstracts away messy hardware devices

- Provides high-level, convenient, portable abstractions
(e.g. files, disk blocks)

LO7: System Calls & POSIX I/O

WA/ UNIVERSITY of WASHINGTON

OS: Abstraction Provider

« The OS is the “layer below”

= A module that your program can call (with system calls)
" Provides a powerful OS APl — POSIX, Windows, etc.

.. etc ...

|
|
£ |
(]
|
(Vp)]
> |
9
D
G |
|
|

virtual memory
process mgmt.

4
(@)
(O
=
(s}
=z
| -
S
)
Q
C

File System
* open(), read(), write(), close(), ...

Network Stack

CSE333, Autumn 2025

* connect(), listen(), read(), write(), ...

Virtual Memory
* brk(), shm_open(), ...

Process Management
« fork(), wait(), nice(), ...

WA/ UNIVERSITY of WASHINGTON LO7: System Calls & POSIX 1/0 CSE333, Autumn 2025

OS: Protection System

+ OS isolates process from each other

= But permits controlled sharing between them

« Through shared name spaces (e.g. file names)

+» OS isolates itself from processes

= Must prevent processes from accessing the
hardware directly

Process A
(untrusted)
Process B
(untrusted)
Process C
(untrusted)
Process D
(trusted)

« OSis allowed to access the hardware

ON
= User-level processes run with the CPU (trusted)

(processor) in unprivileged mode

®= The OS runs with the CPU in privileged mode
= User-level processes invoke system calls to HW (trUSted)
safely enter the OS

10

WA/ UNIVERSITY of WASHINGTON LO7: System Calls & POSIX 1/0 CSE333, Autumn 2025

System Call Trace

Process A
(untrusted)
Process B
(untrusted)
Process C
(untrusted)
Process D
(trusted)

A CPU (thread of
execution) is running user-
level code in Process A;

the CPU is set to 0S
unprivileged mode. (trusted)

A

11

WA/ UNIVERSITY of WASHINGTON LO7: System Calls & POSIX 1/0 CSE333, Autumn 2025

System Call Trace

Code in Process A invokes
a system call; the
hardware then sets the
CPU to privileged mode
and traps into the OS,
which invokes the
appropriate system call
handler.

system call

Process A
(untrusted)
Process B
(untrusted)
Process C
(untrusted)
Process D
(trusted)

OS
(trusted)

12

WA/ UNIVERSITY of WASHINGTON LO7: System Calls & POSIX 1/0 CSE333, Autumn 2025

System Call Trace

Because the CPU
executing the thread
that’s in the OSis in

privileged mode, it is able

Process A
(untrusted)
Process B
(untrusted)
Process C
(untrusted)
Process D
(trusted)

to use privileged 0S
instructions that interact (trusted)
directly with hardware
devices like disks. VANEVANEREYANEVA

HW (trusted)

13

WA/ UNIVERSITY of WASHINGTON LO7: System Calls & POSIX 1/0 CSE333, Autumn 2025

System Call Trace

Once the OS has finished
servicing the system call,
which might involve long waits
as it interacts with HW, it:

(1) Sets the CPU back to
unprivileged mode and

Process A
(untrusted)
Process B
(untrusted)
Process C
(untrusted)
Process D
(trusted)

system call return

ON

(2) Returns out of the system (trusted)

call back to the user-level code

in Process A.
HW (trusted)

14

WA/ UNIVERSITY of WASHINGTON LO7: System Calls & POSIX 1/0 CSE333, Autumn 2025

System Call Trace

Process A
(untrusted)
Process B
(untrusted)
Process C
(untrusted)
Process D
(trusted)

The process continues
executing whatever
code is next after the
system call invocation. 0S

(trusted)

Useful reference: HW (trusted)
CSPP § 8.1-8.3

(the 351 book)

A

15

WA/ UNIVERSITY of WASHINGTON LO7: System Calls & POSIX 1/0 CSE333, Autumn 2025

Lecture Outline

+ System Calls (theoretical)
+» POSIX 1/0 System Calls

16

w UNIVERSITY of WASHINGTON LO7: System Calls & POSIX 1/0 CSE333, Autumn 2025

How do you trust a total stranger to care for your dog N cat =/ bunny . while .
you're away on vacation == ?

Nobody has responded yet.

Hang tight! Responses are coming in.

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

WA/ UNIVERSITY of WASHINGTON LO7: System Calls & POSIX /O

Remember This Picture?

% Your program can access many

layers of APls:
= (Cstandard library

- Some are just ordinary functions
(<string.h>, for example)

- Some also call OS-level (POSIX)
functions (<stdio.h>, for example)

= POSIX compatibility API

- C-language interface to OS system
calls (fork(), read(), etc.)

= Underlying OS system calls
- Assembly language ©

library

glibc

Linux
system calls

—
| Cstandard
I
I
I

architecture-independent code

architecture-dependent code

Linux kernel

CSE333, Autumn 2025

18

WA/ UNIVERSITY of WASHINGTON LO7: System Calls & POSIX 1/0 CSE333, Autumn 2025

C Standard Library File I/O

+~ So far you’ve used the C standard library to access files
" Use a provided FILE* stream abstraction

" fopen (), fread (), fwrite (), £fclose (), fseek ()

+» These are convenient and portable
" They are buffered

" They are implemented using lower-level OS calls

19

WA/ UNIVERSITY of WASHINGTON LO7: System Calls & POSIX 1/0 CSE333, Autumn 2025

Lower-Level File Access

+» Most UNIX-en support a common set of lower-level file access APIs: POSIX —
Portable Operating System Interface

" open(), read(),write(),close(), 1seek ()
« Similar in spirit to their £* () counterparts from C std lib
- Lower-level and unbuffered compared to their counterparts

« Also less convenient

= We will have to use these to read file system directories and for network 1/0, so we might
as well learn them now

20

WA/ UNIVERSITY of WASHINGTON LO7: System Calls & POSIX 1/0 CSE333, Autumn 2025

open () /close ()

+» To open a file:

(#include <fcntl.h> // for open/()

= Passin the filename and access mode | |
#include <unistd.h> // for close()

- Similar to fopen ()

= Get back a “file d .) int fd = open("foo.txt", O RDONLY) ;
e dCK a Tlle escrlptor if (fd == -1) {

perror ("open failed");

 Similar to FILE* from fopen (), butis _
exit (EXIT FAILURE) ;

justan int \
« Defaults: 0is stdin, 1is stdout, 2is e
close (fd) ;
stderr

21

WA/ UNIVERSITY of WASHINGTON

LO7: System Calls & POSIX I/O

Reading from a File

ssize t [Ssize_t read (int fd, void* buf, size t count);]

= Returns the number of bytes read
- Might be fewer bytes than you requested (!!!)

- Returns O if you’re already at the end-of-file
« Returns -1 on error

= read has some surprising error modes...

CSE333, Autumn 2025

22

WA/ UNIVERSITY of WASHINGTON LO7: System Calls & POSIX 1/0 CSE333, Autumn 2025

Read error modes

ssize t [Ssize_t read (int fd, void* buf, size t count);]

" On error, read returns -1 and sets the global exxrno variable

" You need to check exrrno to see what kind of error happened
EBADF: bad file descriptor
EFAULT: output bufferis not a valid address

EINTR: read was interrupted, please try again (ARGH!!!l &5 (z

And many others...

23

CSE333, Autumn 2025

WA/ UNIVERSITY of WASHINGTON LO7: System Calls & POSIX 1/0

One way to read () n bytes

+» Which is the correct completion of the blank below?

= \/ote at http://PollEv.com/naomila

(char* buf = ...; // buffer of size n b
int bytes left = n;
int result; // result of read()

while (bytes left > 0) {

result = read(fd, , bytes left);
1f (result == -1) {
1f (errno != EINTR) {

// a real error happened,

// so return an error result
}
// EINTR happened,
// so do nothing and try again
continue;

}
bytes left -= result;

A

B. buf + bytes_left
C. buf + bytes_left - n
D

buf + n - bytes_left

E. We're lost...

24

http://pollev.com/naomila

WA/ UNIVERSITY of WASHINGTON

.

(char* buf =

.; // buffer of size n

int bytes left = n;

int result;

while (bytes left > 0) {
result = read(fd, 7 byEesh leime)s
1f (result == -1) {
1f (errno != EINTR) {
// a real error happened,
// so return an error result
}

}

// result of read()

// EINTR happened,
// so do nothing and try again
continue;

}

bytes left -= result;

LO7: System Calls & POSIX 1/O

"

W One way to read() n bytes

A. buf 0%

0%

B. buf + bytes [eft

0%

C.buf + bytes left-n

0%

D.buf +n-bytes left

E. We're lost... 0%

ll Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app l.

LD

CSE333, Autumn 2025

WA/ UNIVERSITY of WASHINGTON LO7: System Calls & POSIX 1/0 CSE333, Autumn 2025

One way to read () n bytes

rint fd = open(filename, O RDONLY) ; R
char* buf = ...; // buffer of appropriate size
int bytes left = n;
int result;
while (bytes left > 0) {
result = read(fd, buf + (n - bytes left), bytes left);
1f (result == -1) {
1f (errno != EINTR) {
// a real error happened, so return an error result
}
// EINTR happened, so do nothing and try again
continue;
} else 1if (result == 0) {
// EOF reached, so stop reading
break;
}
bytes left -= result;
}
\ close (fd) ; y

readN.c 26

WA/ UNIVERSITY of WASHINGTON LO7: System Calls & POSIX 1/0

Other Low-Level Functions

+» Read man pages to learn about:
" write () —write data
= fsync () —flush data to the underlying device

" opendir (), readdir (), closedir () —deal with directory listings

- Make sure you read the section 3 version (e.g. man 3 opendir)

+ A useful shortcut sheet (from CMU):
http://www.cs.cmu.edu/~guna/15-123S11/Lectures/Lecture24.pdf

More in sections this week.... (as in, tomorrow!)

CSE333, Autumn 2025

27

http://www.cs.cmu.edu/~guna/15-123S11/Lectures/Lecture24.pdf
http://www.cs.cmu.edu/~guna/15-123S11/Lectures/Lecture24.pdf
http://www.cs.cmu.edu/~guna/15-123S11/Lectures/Lecture24.pdf

WA/ UNIVERSITY of WASHINGTON LO7: System Calls & POSIX 1/0 CSE333, Autumn 2025

If You’re Curious

«» Download the Linux kernel source code

" Available from http://www.kernel.org/

» man, section 2: Linux system calls
" man 2 1ntro

" man 2 syscalls

o
%

» man, section 3: glibc/libc library functions

" man 3 1ntro

*

The book: The Linux Programming Interface by Michael Kerrisk (keeper of the
Linux man pages)

28

http://www.kernel.org/

WA/ UNIVERSITY of WASHINGTON LO7: System Calls & POSIX I/O CSE333, Autumn 2025

Extra Exercise #1

+~ Write a program that:

L)

= Uses argc/argv to receive the name of a text file
= Reads the contents of the file a line at a time
" Parses each line, converting text intoa uint32 t

= Builds an array of the parsed uint32 t’s

= Sorts the array bash$ cat in.txt
1213
" Prints the sorted array to stdout 3231
000005
52
: bash$. 1 in.
Hint: use man to read about pashy ./extral dn.txe
getline, sscanf, reallogc, 5213
and gsort 3231

bash$

29

CSE333, Autumn 2025

WA/ UNIVERSITY of WASHINGTON

Extra Exercise #2

+~ Write a program that:

7
o0

" Loops forever; in each loop:

- Prompt the user to
input a filename

- Reads a filename
from stdin

- Opens and reads
the file

« Prints its contents

to stdout in the format shown:

Hints:

Use man to read about fgets

LO7: System Calls & POSIX I/O

00000000
00000010
00000020
00000030
00000040
00000050

00000060
00000070
00000080
00000090
000000a0

. etc ...

Or, if you’re more courageous, tryman 3 readline tolearnabout 1ibreadline.a and Google to learn

how to link to it

30

	Slide 1: System Calls & POSIX I/O CSE 333 Spring 2025
	Slide 2
	Slide 3: Administrivia
	Slide 4: Administrivia
	Slide 5: Administrivia
	Slide 6: Lecture Outline
	Slide 7: What’s an OS?
	Slide 8: What’s an OS?
	Slide 9: OS: Abstraction Provider
	Slide 10: OS: Protection System
	Slide 11: System Call Trace
	Slide 12: System Call Trace
	Slide 13: System Call Trace
	Slide 14: System Call Trace
	Slide 15: System Call Trace
	Slide 16: Lecture Outline
	Slide 17: Poll Everywhere free text poll activity
Activity Title: Name a value that you feel is embedded in the C language.
Slide 18
	Slide 18: Remember This Picture?
	Slide 19: C Standard Library File I/O
	Slide 20: Lower-Level File Access
	Slide 21: open()/close()
	Slide 22: Reading from a File
	Slide 23: Read error modes
	Slide 24: One way to read() n bytes
	Slide 25: Poll Everywhere multiple choice poll activity
Activity Title: One way to read() 𝑛 bytes
Slide 25
	Slide 26: One way to read() n bytes
	Slide 27: Other Low-Level Functions
	Slide 28: If You’re Curious
	Slide 29: Extra Exercise #1
	Slide 30: Extra Exercise #2

