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@ Poll Everywhere pollev.com/naomila

How do you trust a total stranger to care
for your dog %:¥ / cat i/ bunny = while
you're away on vacation ¥ ?

How do you give them instructions? How do you make
sure they do what you asked? What precautions do

you take?
(open-ended survey question)
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Administrivia

«» EX6 due
+ EX7 out on Friday, take a breather

" |nvolves material from lecture today and section tomorrow!
< HW1 due at midnight tomorrow

= Submission time is the timestamp of the git commit tagged "hwl-final’

= |ate day tokens will get “automatically” used if needed, you don’t need to let
us know
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Administrivia

+» Midterm!
"= Monday October 27t from 5:30p — 6:20p (50 minutes) in Smith Hall 120
- If you absolutely can’t make this time, please let us know in a private Ed post now!
" Written exam
= Closed book
= Allowed one 5x8” card of handwritten notes
= Will cover material up through (and possibly including) C++ Templates

" You got this T« &

CSE333, Autumn 2025
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Administrivia
+ Exercise grading and feedback

Exercise Grading

Logistics Anonymous 2d 7 19 ‘ ‘

= Exercise scores do not operate linearly; that is 2/3 !1=66.67% and 1/3 = 33.3%.

= Advay: “The number one thing | can recommend is keeping track of all the feedback
you've received on exercises in a document. You can also include feedback from the

Gradescope emails, which have common mistakes people made.”

+ | apologize for misleading comments earlier in the quarter about how we’d
be grading style 4 U U
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Lecture Outline

+~ System Calls (theoretical)
+» POSIX /O System Calls
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What’s an OS?

C application C++ application Java application

C standard C++ STL/boost/
library (glibc) standard library

OS / app interface
(system calls)

HW/SW interface
(x86 + devices)

hardware

CPU memory storage network
GPU clock audio radio peripherals
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What’s an OS?

«» Software that:

= Directly interacts with the hardware
« OS is trusted to do so; user-level programs are not
« OS must be ported to new hardware; user-level programs are portable

= Manages (allocates, schedules, protects) hardware resources

CSE333, Autumn 2025

- Decides which programs can access which files, memory locations, pixels on the screen, etc. and

when

= Abstracts away messy hardware devices

- Provides high-level, convenient, portable abstractions
(e.g. files, disk blocks)
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OS: Abstraction Provider

« The OS is the “layer below”

= A module that your program can call (with system calls)
" Provides a powerful OS APl — POSIX, Windows, etc.

.. etc ...
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File System
* open(), read(), write(), close(), ...

Network Stack

CSE333, Autumn 2025

* connect(), listen(), read(), write(), ...

Virtual Memory
* brk(), shm_open(), ...

Process Management
« fork(), wait(), nice(), ...
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OS: Protection System

+ OS isolates process from each other

= But permits controlled sharing between them

« Through shared name spaces (e.g. file names)

+» OS isolates itself from processes

= Must prevent processes from accessing the
hardware directly

Process A
(untrusted)
Process B
(untrusted)
Process C
(untrusted)
Process D
(trusted)

« OSis allowed to access the hardware

ON
= User-level processes run with the CPU (trusted)

(processor) in unprivileged mode

®= The OS runs with the CPU in privileged mode
= User-level processes invoke system calls to HW (trUSted)
safely enter the OS

10
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System Call Trace

Process A
(untrusted)
Process B
(untrusted)
Process C
(untrusted)
Process D
(trusted)

A CPU (thread of
execution) is running user-
level code in Process A;

the CPU is set to 0S
unprivileged mode. (trusted)

A

11
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System Call Trace

Code in Process A invokes
a system call; the
hardware then sets the
CPU to privileged mode
and traps into the OS,
which invokes the
appropriate system call
handler.

system call

Process A
(untrusted)
Process B
(untrusted)
Process C
(untrusted)
Process D
(trusted)

OS
(trusted)

12
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System Call Trace

Because the CPU
executing the thread
that’s in the OSis in

privileged mode, it is able

Process A
(untrusted)
Process B
(untrusted)
Process C
(untrusted)
Process D
(trusted)

to use privileged 0S
instructions that interact (trusted)
directly with hardware
devices like disks. VANEVANEREYANEVA

HW (trusted)

13
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System Call Trace

Once the OS has finished
servicing the system call,
which might involve long waits
as it interacts with HW, it:

(1) Sets the CPU back to
unprivileged mode and

Process A
(untrusted)
Process B
(untrusted)
Process C
(untrusted)
Process D
(trusted)

system call return

ON

(2) Returns out of the system (trusted)

call back to the user-level code

in Process A.
HW (trusted)

14
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System Call Trace

Process A
(untrusted)
Process B
(untrusted)
Process C
(untrusted)
Process D
(trusted)

The process continues
executing whatever
code is next after the
system call invocation. 0S

(trusted)

Useful reference: HW (trusted)
CSPP § 8.1-8.3

(the 351 book)

A

15
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Lecture Outline

+ System Calls (theoretical)
+» POSIX 1/0 System Calls

16
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How do you trust a total stranger to care for your dog N cat =/ bunny . while .
you're away on vacation == ?

Nobody has responded yet.

Hang tight! Responses are coming in.

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app
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Remember This Picture?

% Your program can access many

layers of APls:
= (Cstandard library

- Some are just ordinary functions
(<string.h>, for example)

- Some also call OS-level (POSIX)
functions (<stdio.h>, for example)

= POSIX compatibility API

- C-language interface to OS system
calls (fork(), read(), etc.)

= Underlying OS system calls
- Assembly language ©

library

glibc

Linux
system calls

—
| Cstandard
I
I
I

architecture-independent code

architecture-dependent code

Linux kernel

CSE333, Autumn 2025
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C Standard Library File I/O

+~ So far you’ve used the C standard library to access files
" Use a provided FILE* stream abstraction

" fopen (), fread (), fwrite (), £fclose (), fseek ()

+» These are convenient and portable
" They are buffered

" They are implemented using lower-level OS calls

19
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Lower-Level File Access

+» Most UNIX-en support a common set of lower-level file access APIs: POSIX —
Portable Operating System Interface

" open(), read(),write(),close(), 1seek ()
« Similar in spirit to their £* () counterparts from C std lib
- Lower-level and unbuffered compared to their counterparts

« Also less convenient

= We will have to use these to read file system directories and for network 1/0, so we might
as well learn them now

20
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open () /close ()

+» To open a file:

(#include <fcntl.h> // for open/()

= Passin the filename and access mode | |
#include <unistd.h> // for close()

- Similar to fopen ()

= Get back a “file d . ) int fd = open("foo.txt", O RDONLY) ;
e dCK a Tlle escrlptor if (fd == -1) {

perror ("open failed");

 Similar to FILE* from fopen (), butis _
exit (EXIT FAILURE) ;

justan int \
« Defaults: 0is stdin, 1is stdout, 2is e
close (fd) ;
stderr

21
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Reading from a File

ssize t [Ssize_t read (int fd, void* buf, size t count);]

= Returns the number of bytes read
- Might be fewer bytes than you requested (!!!)

- Returns O if you’re already at the end-of-file
« Returns -1 on error

= read has some surprising error modes...

CSE333, Autumn 2025

22
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Read error modes

ssize t [Ssize_t read (int fd, void* buf, size t count);]

" On error, read returns -1 and sets the global exxrno variable

" You need to check exrrno to see what kind of error happened
EBADF: bad file descriptor
EFAULT: output bufferis not a valid address

EINTR: read was interrupted, please try again (ARGH!!!l &5 (z

And many others...

23
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One way to read () n bytes

+» Which is the correct completion of the blank below?

= \/ote at http://PollEv.com/naomila

( char* buf = ...; // buffer of size n b
int bytes left = n;
int result; // result of read()

while (bytes left > 0) {

result = read(fd, , bytes left);
1f (result == -1) {
1f (errno != EINTR) {

// a real error happened,

// so return an error result
}
// EINTR happened,
// so do nothing and try again
continue;

}
bytes left -= result;

A

B. buf + bytes_left
C. buf + bytes_left - n
D

buf + n - bytes_left

E. We're lost...

24
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.

( char* buf =

.; // buffer of size n

int bytes left = n;

int result;

while (bytes left > 0) {
result = read(fd, 7 byEesh leime)s
1f (result == -1) {
1f (errno != EINTR) {
// a real error happened,
// so return an error result
}

}

// result of read()

// EINTR happened,
// so do nothing and try again
continue;

}

bytes left -= result;

LO7: System Calls & POSIX 1/O

"

W One way to read() n bytes

A. buf 0%

0%

B. buf + bytes [eft

0%

C.buf + bytes left-n

0%

D.buf +n-bytes left

E. We're lost... 0%

ll Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app l.

LD

CSE333, Autumn 2025



WA/ UNIVERSITY of WASHINGTON LO7: System Calls & POSIX 1/0 CSE333, Autumn 2025

One way to read () n bytes

rint fd = open(filename, O RDONLY) ; R
char* buf = ...; // buffer of appropriate size
int bytes left = n;
int result;
while (bytes left > 0) {
result = read(fd, buf + (n - bytes left), bytes left);
1f (result == -1) {
1f (errno != EINTR) {
// a real error happened, so return an error result
}
// EINTR happened, so do nothing and try again
continue;
} else 1if (result == 0) {
// EOF reached, so stop reading
break;
}
bytes left -= result;
}
\ close (fd) ; y

readN.c 26
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Other Low-Level Functions

+» Read man pages to learn about:
" write () —write data
= fsync () —flush data to the underlying device

" opendir (), readdir (), closedir () —deal with directory listings

- Make sure you read the section 3 version (e.g. man 3 opendir)

+ A useful shortcut sheet (from CMU):
http://www.cs.cmu.edu/~guna/15-123S11/Lectures/Lecture24.pdf

More in sections this week.... (as in, tomorrow!)

CSE333, Autumn 2025
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If You’re Curious

«» Download the Linux kernel source code

" Available from http://www.kernel.org/

» man, section 2: Linux system calls
" man 2 1ntro

" man 2 syscalls

o
%

» man, section 3: glibc/libc library functions

" man 3 1ntro

*

The book: The Linux Programming Interface by Michael Kerrisk (keeper of the
Linux man pages)

28
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Extra Exercise #1

+~ Write a program that:

L)

= Uses argc/argv to receive the name of a text file
= Reads the contents of the file a line at a time
" Parses each line, converting text intoa uint32 t

= Builds an array of the parsed uint32 t’s

= Sorts the array bash$ cat in.txt
1213
" Prints the sorted array to stdout 3231
000005
52
: bash$ . 1 in.
Hint: use man to read about pashy ./extral dn.txe
getline, sscanf, reallogc, 5213
and gsort 3231

bash$

29
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Extra Exercise #2

+~ Write a program that:

7
o0

" Loops forever; in each loop:

- Prompt the user to
input a filename

- Reads a filename
from stdin

- Opens and reads
the file

« Prints its contents

to stdout in the format shown:

Hints:

Use man to read about fgets

LO7: System Calls & POSIX I/O

00000000
00000010
00000020
00000030
00000040
00000050

00000060
00000070
00000080
00000090
000000a0

. etc ...

Or, if you’re more courageous, tryman 3 readline tolearnabout 1ibreadline.a and Google to learn

how to link to it

30
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