
CSE333, Autumn 2025L07: System Calls & POSIX I/O

System Calls & POSIX I/O
CSE 333 Spring 2025

Instructors: Naomi Alterman, Chris Thachuk

Teaching Assistants:

Ann Baturytski Derek de Leuw Blake Diaz

Rishabh Jain Chendur Jel Jayavelu Lucas Kwan

Irene Xin Jie Lau Nathan Li Maya Odenheim

Advay Patil Selim Saridede Deeksha Vatwani

Angela Wu Jiexiao Xu

CSE333, Autumn 2025L07: System Calls & POSIX I/O

22

pollev.com/naomila

How do you trust a total stranger to care
for your dog / cat / bunny while
you're away on vacation ?

How do you give them instructions? How do you make

sure they do what you asked? What precautions do

you take?

(open-ended survey question)

CSE333, Autumn 2025L07: System Calls & POSIX I/O

Administrivia

❖ EX6 due

❖ EX7 out on Friday, take a breather

▪ Involves material from lecture today and section tomorrow!

❖ HW1 due at midnight tomorrow

▪ Submission time is the timestamp of the git commit tagged `hw1-final`

▪ Late day tokens will get “automatically” used if needed, you don’t need to let

us know

3

CSE333, Autumn 2025L07: System Calls & POSIX I/O

Administrivia

❖ Midterm!

▪ Monday October 27th from 5:30p – 6:20p (50 minutes) in Smith Hall 120

• If you absolutely can’t make this time, please let us know in a private Ed post now!

▪ Written exam

▪ Closed book

▪ Allowed one 5x8” card of handwritten notes

▪ Will cover material up through (and possibly including) C++ Templates

▪ You got this

4

CSE333, Autumn 2025L07: System Calls & POSIX I/O

Administrivia

❖ Exercise grading and feedback

▪ Exercise scores do not operate linearly; that is 2/3 != 66.67% and 1/3 != 33.3%.

▪ Advay: “The number one thing I can recommend is keeping track of all the feedback

you've received on exercises in a document. You can also include feedback from the

Gradescope emails, which have common mistakes people made.”

❖ I apologize for misleading comments earlier in the quarter about how we’d

be grading style u_u

5

CSE333, Autumn 2025L07: System Calls & POSIX I/O

Lecture Outline

❖ System Calls (theoretical)

❖ POSIX I/O System Calls

6

CSE333, Autumn 2025L07: System Calls & POSIX I/O

What’s an OS?

7

C application

C standard
library (glibc)

C++ STL/boost/
standard library

C++ application Java application

JRE

CPU memory storage network
GPU clock audio radio peripherals

HW/SW interface
(x86 + devices)

OS / app interface
(system calls)

operating system

hardware

CSE333, Autumn 2025L07: System Calls & POSIX I/O

What’s an OS?

❖ Software that:

▪ Directly interacts with the hardware

• OS is trusted to do so; user-level programs are not

• OS must be ported to new hardware; user-level programs are portable

▪ Manages (allocates, schedules, protects) hardware resources

• Decides which programs can access which files, memory locations, pixels on the screen, etc. and

when

▪ Abstracts away messy hardware devices

• Provides high-level, convenient, portable abstractions

(e.g. files, disk blocks)

8

CSE333, Autumn 2025L07: System Calls & POSIX I/O

OS: Abstraction Provider

❖ The OS is the “layer below”

▪ A module that your program can call (with system calls)

▪ Provides a powerful OS API – POSIX, Windows, etc.

9

a process running
your program

OS

OS
API

fi
le

 s
ys

te
m

n
et

w
o

rk
 s

ta
ck

vi
rt

u
al

 m
em

o
ry

p
ro

ce
ss

 m
gm

t.

…
 e

tc
 …

File System
• open(), read(), write(), close(), …

Network Stack
• connect(), listen(), read(), write(), ...

Virtual Memory
• brk(), shm_open(), …

Process Management
• fork(), wait(), nice(), …

CSE333, Autumn 2025L07: System Calls & POSIX I/O

OS: Protection System

❖ OS isolates process from each other

▪ But permits controlled sharing between them

• Through shared name spaces (e.g. file names)

❖ OS isolates itself from processes

▪ Must prevent processes from accessing the

hardware directly

❖ OS is allowed to access the hardware

▪ User-level processes run with the CPU

(processor) in unprivileged mode

▪ The OS runs with the CPU in privileged mode

▪ User-level processes invoke system calls to

safely enter the OS

10

OS
(trusted)

HW (trusted)

P
ro

ce
ss

 A
(u

n
tr

u
st

ed
)

P
ro

ce
ss

 B
(u

n
tr

u
st

ed
)

P
ro

ce
ss

 C
(u

n
tr

u
st

ed
)

P
ro

ce
ss

 D
(t

ru
st

ed
)

CSE333, Autumn 2025L07: System Calls & POSIX I/O

System Call Trace

11

OS
(trusted)

HW (trusted)

P
ro

ce
ss

 A
(u

n
tr

u
st

ed
)

P
ro

ce
ss

 B
(u

n
tr

u
st

ed
)

P
ro

ce
ss

 C
(u

n
tr

u
st

ed
)

P
ro

ce
ss

 D
(t

ru
st

ed
)

A CPU (thread of
execution) is running user-

level code in Process A;
the CPU is set to

unprivileged mode.

CSE333, Autumn 2025L07: System Calls & POSIX I/O

OS
(trusted)

HW (trusted)

P
ro

ce
ss

 A
(u

n
tr

u
st

ed
)

P
ro

ce
ss

 B
(u

n
tr

u
st

ed
)

P
ro

ce
ss

 C
(u

n
tr

u
st

ed
)

P
ro

ce
ss

 D
(t

ru
st

ed
)

System Call Trace

12

Code in Process A invokes
a system call; the

hardware then sets the
CPU to privileged mode
and traps into the OS,

which invokes the
appropriate system call

handler.

sy
st

em
 c

al
l

CSE333, Autumn 2025L07: System Calls & POSIX I/O

OS
(trusted)

HW (trusted)

P
ro

ce
ss

 A
(u

n
tr

u
st

ed
)

P
ro

ce
ss

 B
(u

n
tr

u
st

ed
)

P
ro

ce
ss

 C
(u

n
tr

u
st

ed
)

P
ro

ce
ss

 D
(t

ru
st

ed
)

System Call Trace

13

Because the CPU
executing the thread
that’s in the OS is in

privileged mode, it is able
to use privileged

instructions that interact
directly with hardware

devices like disks.

CSE333, Autumn 2025L07: System Calls & POSIX I/O

OS
(trusted)

HW (trusted)

P
ro

ce
ss

 A
(u

n
tr

u
st

ed
)

P
ro

ce
ss

 B
(u

n
tr

u
st

ed
)

P
ro

ce
ss

 C
(u

n
tr

u
st

ed
)

P
ro

ce
ss

 D
(t

ru
st

ed
)

System Call Trace

14

sy
st

em
 c

al
l r

et
u

rn

Once the OS has finished
servicing the system call,

which might involve long waits
as it interacts with HW, it:

(1) Sets the CPU back to
unprivileged mode and

(2) Returns out of the system
call back to the user-level code

in Process A.

CSE333, Autumn 2025L07: System Calls & POSIX I/O

OS
(trusted)

HW (trusted)

P
ro

ce
ss

 A
(u

n
tr

u
st

ed
)

P
ro

ce
ss

 B
(u

n
tr

u
st

ed
)

P
ro

ce
ss

 C
(u

n
tr

u
st

ed
)

P
ro

ce
ss

 D
(t

ru
st

ed
)

System Call Trace

15

The process continues
executing whatever

code is next after the
system call invocation.

Useful reference:
CSPP § 8.1–8.3
(the 351 book)

CSE333, Autumn 2025L07: System Calls & POSIX I/O

Lecture Outline

❖ System Calls (theoretical)

❖ POSIX I/O System Calls

16

CSE333, Autumn 2025L07: System Calls & POSIX I/O

17

CSE333, Autumn 2025L07: System Calls & POSIX I/O

Remember This Picture?

❖ Your program can access many

layers of APIs:

▪ C standard library

• Some are just ordinary functions

(<string.h>, for example)

• Some also call OS-level (POSIX)

functions (<stdio.h>, for example)

▪ POSIX compatibility API

• C-language interface to OS system

calls (fork(), read(), etc.)

▪ Underlying OS system calls

• Assembly language ☺

18

architecture-independent code

architecture-dependent code

glibc

C standard
library

POSIX

Linux
system calls

Linux kernel

Your program

CSE333, Autumn 2025L07: System Calls & POSIX I/O

C Standard Library File I/O

❖ So far you’ve used the C standard library to access files

▪ Use a provided FILE* stream abstraction

▪ fopen(), fread(), fwrite(), fclose(), fseek()

❖ These are convenient and portable

▪ They are buffered

▪ They are implemented using lower-level OS calls

19

CSE333, Autumn 2025L07: System Calls & POSIX I/O

Lower-Level File Access

❖ Most UNIX-en support a common set of lower-level file access APIs: POSIX –

Portable Operating System Interface

▪ open(), read(), write(), close(), lseek()

• Similar in spirit to their f*() counterparts from C std lib

• Lower-level and unbuffered compared to their counterparts

• Also less convenient

▪ We will have to use these to read file system directories and for network I/O, so we might

as well learn them now

20

CSE333, Autumn 2025L07: System Calls & POSIX I/O

open()/close()

❖ To open a file:

▪ Pass in the filename and access mode

• Similar to fopen()

▪ Get back a “file descriptor”

• Similar to FILE* from fopen(), but is

just an int

• Defaults: 0 is stdin, 1 is stdout, 2 is

stderr

#include <fcntl.h> // for open()

#include <unistd.h> // for close()

 ...

 int fd = open("foo.txt", O_RDONLY);

 if (fd == -1) {

 perror("open failed");

 exit(EXIT_FAILURE);

 }

 ...

 close(fd);

21

CSE333, Autumn 2025L07: System Calls & POSIX I/O

Reading from a File

❖ ssize_t read(int fd, void* buf, size_t count);

▪ Returns the number of bytes read

• Might be fewer bytes than you requested (!!!)

• Returns 0 if you’re already at the end-of-file

• Returns -1 on error

▪ read has some surprising error modes…

ssize_t read(int fd, void* buf, size_t count);

22

CSE333, Autumn 2025L07: System Calls & POSIX I/O

Read error modes

❖ ssize_t read(int fd, void* buf, size_t count);

▪ On error, read returns -1 and sets the global errno variable

▪ You need to check errno to see what kind of error happened

• EBADF: bad file descriptor

• EFAULT: output buffer is not a valid address

• EINTR: read was interrupted, please try again (ARGH!!!!)

• And many others…

ssize_t read(int fd, void* buf, size_t count);

23

CSE333, Autumn 2025L07: System Calls & POSIX I/O

One way to read() 𝑛 bytes

❖ Which is the correct completion of the blank below?

▪ Vote at http://PollEv.com/naomila

24

char* buf = ...; // buffer of size n

int bytes_left = n;

int result; // result of read()

while (bytes_left > 0) {

 result = read(fd, ______, bytes_left);

 if (result == -1) {

 if (errno != EINTR) {

 // a real error happened,

 // so return an error result

 }

 // EINTR happened,

 // so do nothing and try again

 continue;

 }

 bytes_left -= result;

}

A. buf

B. buf + bytes_left

C. buf + bytes_left - n

D. buf + n - bytes_left

E. We’re lost…

http://pollev.com/naomila

CSE333, Autumn 2025L07: System Calls & POSIX I/O

25

char* buf = ...; // buffer of size n

int bytes_left = n;

int result; // result of read()

while (bytes_left > 0) {

 result = read(fd, ______, bytes_left);

 if (result == -1) {

 if (errno != EINTR) {

 // a real error happened,

 // so return an error result

 }

 // EINTR happened,

 // so do nothing and try again

 continue;

 }

 bytes_left -= result;

}

CSE333, Autumn 2025L07: System Calls & POSIX I/O

One way to read() 𝑛 bytes

26

int fd = open(filename, O_RDONLY);

char* buf = ...; // buffer of appropriate size

int bytes_left = n;

int result;

while (bytes_left > 0) {

 result = read(fd, buf + (n - bytes_left), bytes_left);

 if (result == -1) {

 if (errno != EINTR) {

 // a real error happened, so return an error result

 }

 // EINTR happened, so do nothing and try again

 continue;

 } else if (result == 0) {

 // EOF reached, so stop reading

 break;

 }

 bytes_left -= result;

}

close(fd);

readN.c

CSE333, Autumn 2025L07: System Calls & POSIX I/O

Other Low-Level Functions

❖ Read man pages to learn about:

▪ write() – write data

▪ fsync() – flush data to the underlying device

▪ opendir(), readdir(), closedir() – deal with directory listings

• Make sure you read the section 3 version (e.g. man 3 opendir)

❖ A useful shortcut sheet (from CMU):
http://www.cs.cmu.edu/~guna/15-123S11/Lectures/Lecture24.pdf

❖ More in sections this week…. (as in, tomorrow!)

27

http://www.cs.cmu.edu/~guna/15-123S11/Lectures/Lecture24.pdf
http://www.cs.cmu.edu/~guna/15-123S11/Lectures/Lecture24.pdf
http://www.cs.cmu.edu/~guna/15-123S11/Lectures/Lecture24.pdf

CSE333, Autumn 2025L07: System Calls & POSIX I/O

If You’re Curious

❖ Download the Linux kernel source code

▪ Available from http://www.kernel.org/

❖ man, section 2: Linux system calls

▪ man 2 intro

▪ man 2 syscalls

❖ man, section 3: glibc/libc library functions

▪ man 3 intro

❖ The book: The Linux Programming Interface by Michael Kerrisk (keeper of the

Linux man pages)
28

http://www.kernel.org/

CSE333, Autumn 2025L07: System Calls & POSIX I/O

Extra Exercise #1

❖ Write a program that:

▪ Uses argc/argv to receive the name of a text file

▪ Reads the contents of the file a line at a time

▪ Parses each line, converting text into a uint32_t

▪ Builds an array of the parsed uint32_t’s

▪ Sorts the array

▪ Prints the sorted array to stdout

❖ Hint: use man to read about

getline, sscanf, realloc,

and qsort

29

bash$ cat in.txt

1213

3231

000005

52

bash$./extra1 in.txt

5

52

1213

3231

bash$

CSE333, Autumn 2025L07: System Calls & POSIX I/O

Extra Exercise #2

❖ Write a program that:

▪ Loops forever; in each loop:

• Prompt the user to

input a filename

• Reads a filename

from stdin

• Opens and reads

the file

• Prints its contents

to stdout in the format shown:

❖ Hints:

▪ Use man to read about fgets

▪ Or, if you’re more courageous, try man 3 readline to learn about libreadline.a and Google to learn

how to link to it
30

00000000 50 4b 03 04 14 00 00 00 00 00 9c 45 26 3c f1 d5

00000010 68 95 25 1b 00 00 25 1b 00 00 0d 00 00 00 43 53

00000020 45 6c 6f 67 6f 2d 31 2e 70 6e 67 89 50 4e 47 0d

00000030 0a 1a 0a 00 00 00 0d 49 48 44 52 00 00 00 91 00

00000040 00 00 91 08 06 00 00 00 c3 d8 5a 23 00 00 00 09

00000050 70 48 59 73 00 00 0b 13 00 00 0b 13 01 00 9a 9c

00000060 18 00 00 0a 4f 69 43 43 50 50 68 6f 74 6f 73 68

00000070 6f 70 20 49 43 43 20 70 72 6f 66 69 6c 65 00 00

00000080 78 da 9d 53 67 54 53 e9 16 3d f7 de f4 42 4b 88

00000090 80 94 4b 6f 52 15 08 20 52 42 8b 80 14 91 26 2a

000000a0 21 09 10 4a 88 21 a1 d9 15 51 c1 11 45 45 04 1b

... etc ...

	Slide 1: System Calls & POSIX I/O CSE 333 Spring 2025
	Slide 2
	Slide 3: Administrivia
	Slide 4: Administrivia
	Slide 5: Administrivia
	Slide 6: Lecture Outline
	Slide 7: What’s an OS?
	Slide 8: What’s an OS?
	Slide 9: OS: Abstraction Provider
	Slide 10: OS: Protection System
	Slide 11: System Call Trace
	Slide 12: System Call Trace
	Slide 13: System Call Trace
	Slide 14: System Call Trace
	Slide 15: System Call Trace
	Slide 16: Lecture Outline
	Slide 17: Poll Everywhere free text poll activity
Activity Title: Name a value that you feel is embedded in the C language.
Slide 18
	Slide 18: Remember This Picture?
	Slide 19: C Standard Library File I/O
	Slide 20: Lower-Level File Access
	Slide 21: open()/close()
	Slide 22: Reading from a File
	Slide 23: Read error modes
	Slide 24: One way to read() n bytes
	Slide 25: Poll Everywhere multiple choice poll activity
Activity Title: One way to read() 𝑛 bytes
Slide 25
	Slide 26: One way to read() n bytes
	Slide 27: Other Low-Level Functions
	Slide 28: If You’re Curious
	Slide 29: Extra Exercise #1
	Slide 30: Extra Exercise #2

