W UNIVERSITY of WASHINGTON LO6: C Details, File /O CSE333, Autumn 2025

Final C Details, Intro to File 1/O
CSE 333 Autumn 2025

Instructors: Naomi Alterman, Chris Thachuk

Teaching Assistants:

Ann Baturytski Derek de Leuw Blake Diaz
Rishabh Jain Chendur Jel Jayavelu Lucas Kwan
Irene Xin Jie Lau Nathan Li Maya Odenheim
Advay Patil Selim Saridede Deeksha Vatwani

Angela Wu Jiexiao Xu

W UNIVERSITY of WASHINGTON LO6: C Details, File /O CSE333, Autumn 2025

Administrivia

+» Today: C wrapup, File I/0 with C standard library

+ New exercise 6 posted today, due Wednesday morning

= Will use concepts from today’s lecture on File I/O

+» Graded hwO out later today, hw2 out soon

+ And you should be well along on hwl by now...

= Slides with hw1 hints will be sent via Ed this afternoon

CSE333, Autumn 2025

W UNIVERSITY of WASHINGTON LO6: C Details, File /O

Lecture Outline

» Preprocessor tricks
« Additional C topics
+ File 1/O with the C standard library
» C Stream Buffering

W UNIVERSITY of WASHINGTON

LO6: C Details, File I/O

Other Preprocessor Tricks

+ A way to deal with “magic numbers” (constants)

int globalbuffer[1000];

vold ecircalc(float rad,
float* circumf,
float* area) {
*circumf = rad * 2.0 * 3.1415;
*area = rad * rad * 3.1415;

CSE333, Autumn 2025

(#define BUFSIZE 1000
#define PI 3.14159265359

int globalbuffer [BUFSIZE];

void circalc(float rad,
float* circumf,
float* area) {
*circumf = rad * 2.0 * PI;

*area = rad * rad * PI;

Bad code
(littered with magic constants)

\}

J

Better code

W UNIVERSITY of WASHINGTON

Macros

LO6: C Details, File I/O

< YOUu can pass arguments to macros

7

o\°

#define ODD(x) ((x) 2
void foo () {
1f (ODD(5))

printf ("5 is odd!\n");

CpP
ﬁ

7

void foo() {
if (((5) % 2 0))
printf ("5 is odd!\n");

=

+» Beware of operator precedence issues!

= Use parentheses

7

\

#define ODD(x) ((x)
#define WEIRD(x) X

o\

ODD(5 + 1)

WEIRD(5 + 1);

-Eﬁsz

CSE333, Autumn 2025

W UNIVERSITY of WASHINGTON LO6: C Details, File /O CSE333, Autumn 2025

Conditional Compilation

+ You can change what gets compiled

" |n this example, #define TRACE before #ifdef toinclude
debug printfsin compiled code

(#1ifdef TRACE

tdefine ENTER(f) printf ("Entering %s\n", f);
fdefine EXIT(f) printf("Exiting %s\n", f);
#else

#define ENTER (f)

#define EXIT (L)

fendif

// print n

void pr(int n) {
ENTER ("pxr") ;
printf ("\n =
EXIT("pxr") ;

\J y,
ifdef.c

sd\n", n);

W UNIVERSITY of WASHINGTON LO6: C Details, File /O CSE333, Autumn 2025

Defining Symbols

+ Besides #definesin the code, preprocessor values can
be given as part of the gcc command:

[bash$ gcc -Wall -g -DTRACE -o ifdef i1fdef.c]

+ assert can be controlled the same way — defining NDEBUG
causes assert to expand to “empty”

" |t'samacro—see assert.h

[bash$ gcc -Wall -g -DNDEBUG -o faster useassert.c]

W UNIVERSITY of WASHINGTON LO6: C Details, File /O CSE333, Autumn 2025

Lecture Outline

- Preprocessor tricks
+ Additional C topics
+ File 1/O with the C standard library
» C Stream Buffering

11

W UNIVERSITY of WASHINGTON LO6: C Details, File /O CSE333, Autumn 2025

Additional C Topics

« Teach yourself!

man pages are your friend!

String library functions in the C standard library
« #include <string.h>
— strlen(), strcpy(), strdup(), strcat(), strcmp(), strchr(), strstr(), ...
« #include <stdlib.h>or#include <stdio.h>
— atoi(), atof(), sprint(), sscanf()

How to declare, define, and use a function that accepts a variable-
number of arguments (varargs)

unions and what they are good for
enums and what they are good for
Pre- and post-increment/decrement

Harder: the meaning of the “volatile” storage class .

W UNIVERSITY of WASHINGTON LO6: C Details, File I/O CSE333, Autumn 2025

Lecture Outline

» Preprocessor tricks
« Additional C topics
+ File 1/O with the C standard library
» C Stream Buffering

13

W UNIVERSITY of WASHINGTON LO6: C Details, File /O CSE333, Autumn 2025

File 1/O
+» We'll start by using C's standard library

" These functions are part of glibc on Linux

" They are implemented using Linux system calls (POSIX)

+ C’s stdio defines the notion of a stream
= A sequence of characters that flows to and from a device
- Can be either text or binary; Linux does not distinguish
" |s buffered by default; 1ibc reads ahead of your program
" Three streams provided by default: stdin, stdout, stderr
« You can open additional streams to read and write to files

= Cstreams are manipulated with a FILE* pointer, which is
defined in stdio.h

14

W UNIVERSITY of WASHINGTON LO6: C Details, File /O CSE333, Autumn 2025

C Stream Functions (1 of 2)

+ Some stream functions (complete list in stdio.h):

= [FILE* fopen(filename, mode) ;]
- Opens a stream to the specified file in specified file access mode

'[int fclose(stream);]

- Closes the specified stream (and file)

'[int fprintf (stream, format, ...);]
- Writes a formatted C string
— printf (...); isequivalentto fprintf (stdout, ...);
'[int fscanf (stream, format, ...);]

- Reads data and stores data matching the format string

15

W UNIVERSITY of WASHINGTON LO6: C Details, File /O CSE333, Autumn 2025

C Stream Functions (2 of 2)

+ Some stream functions (complete list in stdio.h):

.[FILE* fopen(filename, mode) ;]

- Opens a stream to the specified file in specified file access mode

_[int fclose(stream);]

« Closes the specified stream (and file)

-[size_t fwrite (ptr, size, count, stream);]

- Writes an array of count elements of size bytes from ptr to stream

-[size_t fread (ptr, size, count, stream);]

- Reads an array of count elements of size bytes from stream to ptr

16

W UNIVERSITY of WASHINGTON LO6: C Details, File /O CSE333, Autumn 2025

C Stream Error Checking/Handling

+ Some error functions (complete listin stdio.h):

.[int ferror(stream);]

- Checks if the error indicator associated with the specified stream is
set

m [int clearerr (stream) ;]

- Resets error and EOF indicators for the specified stream

'[void perror(message);]

« Prints message followed by an error message related to errno to
stderr

17

W UNIVERSITY of WASHINGTON

C Streams Example

LO6: C Details, File I/O

cp_example.c

(#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#define READBUFSIZE 128

int main(int argc,
FILE* fin;
FILE* fout;
char readbuf [READBUFSIZE];
size t readlen;
1t (argc !'= 3) {
fprintf (stderr, "usage:
return EXIT FAILURE;
}

// Open the input file
fopen (argv(l],
(fin NULL) {

fin
if

return EXIT FAILURE;

// next slide’s code

"rb") ;

char** argv) {

./cp example infile outfile\n");
// defined in stdlib.h

//

"rb" -> read, binary mode

perror ("fopen for read failed");

~

CSE333, Autumn 2025

18

W UNIVERSITY of WASHINGTON LO6: C Details, File /O CSE333, Autumn 2025

C Streams Example

7

cp_example.c

int main(int argc, char** argv) {)

// previous slide’s code

// Open the output file
fout = fopen (argv[2], "wb"); // "wb" -> write, binary mode
1if (fout == NULL) {

perror ("fopen for write failed");

fclose(fin);

return EXIT FAILURE;

}

// Read from the file, write to fout
while ((readlen = fread(readbuf, 1, READBUFSIZE, fin)) > 0) {
// Test to see if we encountered an error while reading
1if (ferror (fin)) {
perror ("fread failed");
fclose (fin) ;
fclose (fout) ;
return EXIT FAILURE;

// next slide’s code

LO6: C Details, File I/O

CSE333, Autumn 2025

W UNIVERSITY of WASHINGTON

C Streams Example

cp_example.c

D

rint main(int argc, char** argv) {
// two slides ago’s code

// previous slide’s code

1f (fwrite (readbuf, 1, readlen, fout)

perror ("fwrite failed");
fclose (fin) ;

fclose (fout) ;

return EXIT FAILURE;

}
} // end of while loop

fclose(fin) ;
fclose (fout) ;

return EXIT_SUCCESS;

< readlen)

{

20

LO6: C Details, File I/0 CSE333, Autumn 2025

W UNIVERSITY of WASHINGTON

Lecture Outline

- Preprocessor tricks
« Additional C topics
+ File 1/O with the C standard library

» C Stream Buffering

21

W UNIVERSITY of WASHINGTON LO6: C Details, File /O CSE333, Autumn 2025

Buffering

+» By default, stdio uses buffering for streams:

= Data written by fwrite () is copied into a buffer allocated by
stdio inside your process’ address space

= At some point, the buffer will be “drained” into the destination:
- When you explicitly call ££1ush () on the stream
- When the buffer size is exceeded (often 1024 or 4096 bytes)

- For stdout to console, when a newline is written (“line buffered”) or
when some other function tries to read from the console

- When you call £close () on the stream

- When your process exits gracefully (exit () or return from
main ())

22

LO6: C Details, File I/O CSE333, Autumn 2025

W UNIVERSITY of WASHINGTON

Buffering Example

[int main(int argc, char** argv) {
mmp FILE* fout = fopen("test.txt", "wb");

// write "hi" one char at a time C stdio buffer
== i f (fwrite ("h", sizeof (char), 1, fout) < 1) { A I
perror ("fwrite failed");

fclose (fout) ;
return EXIT_FAILURE;

}

e if (fwrite("i", sizeof (char), 1, fout) < 1) {
perror ("fwrite failed"); I

fclose (fout) ;
return EXIT FAILURE;

}

=P fclose (fout) ;
return EXIT SUCCESS;

}
buffered_hi.c

test.txt (disk)

23

W UNIVERSITY of WASHINGTON LO6: C Details, File I/O

No Buffering Example

7

int main(int argc, char** argv) {

3 FILE* fout = fopen ("test.txt", "wb");

setbuf (fout, NULL); // turn off buffering

// write "hi" one char at a time

mp i (fwrite ("h", sizeof (char), 1, fout) <

perror ("fwrite failed");
fclose (fout) ;
return EXIT_FAILURE;

}

e i f (fwrite("i", sizeof (char), 1, fout) <

perror ("fwrite failed");
fclose (fout) ;
return EXIT FAILURE;

}

=P fclose (fout) ;

\

return EXIT_SUCCESS;
}

unbuffered_hi.c

CSE333, Autumn 2025

C stdio buffer

/

//

test.txt (disk)

'hl

Vi'

24

W UNIVERSITY of WASHINGTON LO6: C Details, File I/O CSE333, Autumn 2025

Why Buffer?

+ Performance — avoid disk accesses

/ \
| I) W Eﬁﬁil \
Group many small writes - n:? I oo | Heao
. . H \ t bukler ream
into a single larger write ! A R
~ writes p
= Disk Latency = Numbers Everyone Should Know
(Jeff Dean from LADIS ’09) | ! cache reference 0o e
Branch mispredict 2 s
L2 cache reference T s
Mutex lock/unlock 25 ms
Main memory reference 100 ns
Compress 1K bytes with Zippy 3,000 ns
Send 2K bytes over 1 Gbps network 20,000 ns
Read 1 MB sequentially from memory 250,000 ns
Round trip within same datacenter 500,000 ns
Disk seek 10,000,000 ns
Read 1 MB sequentially from disk 20,000,000 ns
Send packet CA->Netherlands->CA 150,000,000 ns

<« Convenience — nicer API
= We'll compare C's £fread () with POSIX's read () 25

W UNIVERSITY of WASHINGTON LO6: C Details, File /O CSE333, Autumn 2025

Why NOT Buffer?

+ Reliability — the buffer needs to be flushed

" Loss of computer power = loss of data

= “Completion” of a write (i.e., return from fwrite ()) does not
mean the data has actually been written

- What if you signal another process to read the file you just wrote to?

*

» Performance — buffering takes time

D)

= Copying data into the stdio buffer consumes CPU cycles and
memory bandwidth

= Can potentially slow down high-performance applications, like a
web server or database (“zero-copy”)

+» When is buffering faster? Slower?

26

W UNIVERSITY of WASHINGTON LO6: C Details, File /O CSE333, Autumn 2025

We Need To Go Deeper...

WE NEED TO GO
" DEEPER ”

+ So far we’ve seen the C standard library to access files
= Use aprovided FFILE* stream abstraction

" fopen(), fread (), fwrite (), £fclose (), £fseek ()

+ These are convenient and portable
" They are buffered*

" They are implemented using lower-level OS calls

27

W UNIVERSITY of WASHINGTON LO6: C Details, File /O CSE333, Autumn 2025

Extra Exercise #1

« Write a program that:

" Prompts the user to input a string (use fgets ())

- Assume the string is a sequence of whitespace-separated integers
(e.g. "5555 1234 4 5543"M)

= Converts the string into an array of integers

= Converts an array of integers into an array of strings

- Where each element of the string array is the binary representation
of the associated integer

" Prints out the array of strings

28

	Slide 1: Final C Details, Intro to File I/O CSE 333 Autumn 2025
	Slide 2: Administrivia
	Slide 5: Lecture Outline
	Slide 6: Other Preprocessor Tricks
	Slide 7: Macros
	Slide 8: Conditional Compilation
	Slide 9: Defining Symbols
	Slide 11: Lecture Outline
	Slide 12: Additional C Topics
	Slide 13: Lecture Outline
	Slide 14: File I/O
	Slide 15: C Stream Functions (1 of 2)
	Slide 16: C Stream Functions (2 of 2)
	Slide 17: C Stream Error Checking/Handling
	Slide 18: C Streams Example
	Slide 19: C Streams Example
	Slide 20: C Streams Example
	Slide 21: Lecture Outline
	Slide 22: Buffering
	Slide 23: Buffering Example
	Slide 24: No Buffering Example
	Slide 25: Why Buffer?
	Slide 26: Why NOT Buffer?
	Slide 27: We Need To Go Deeper…
	Slide 28: Extra Exercise #1

