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Administrivia

+» Today: C wrapup, File I/0 with C standard library

+ New exercise 6 posted today, due Wednesday morning

= Will use concepts from today’s lecture on File I/O

+» Graded hwO out later today, hw2 out soon

+ And you should be well along on hwl by now...

= Slides with hw1 hints will be sent via Ed this afternoon
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Lecture Outline

» Preprocessor tricks
« Additional C topics
+ File 1/O with the C standard library
» C Stream Buffering
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Other Preprocessor Tricks

+ A way to deal with “magic numbers” (constants)

int globalbuffer[1000];

vold ecircalc(float rad,
float* circumf,
float* area) {
*circumf = rad * 2.0 * 3.1415;
*area = rad * rad * 3.1415;
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(#define BUFSIZE 1000
#define PI 3.14159265359

int globalbuffer [BUFSIZE];

void circalc(float rad,
float* circumf,
float* area) {
*circumf = rad * 2.0 * PI;

*area = rad * rad * PI;

Bad code
(littered with magic constants)

\}

J

Better code
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Macros
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< YOUu can pass arguments to macros

7

o\°

#define ODD(x) ((x) 2
void foo () {
1f ( ODD(5) )

printf ("5 is odd!\n");

CpP
ﬁ

7

void foo() {
if ( ((5) % 2 0) )
printf ("5 is odd!\n");

=

+» Beware of operator precedence issues!

= Use parentheses

7

\

#define ODD(x) ((x)
#define WEIRD(x) X

o\

ODD(5 + 1)

WEIRD(5 + 1);

-Eﬁsz
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Conditional Compilation

+ You can change what gets compiled

" |n this example, #define TRACE before #ifdef toinclude
debug printfsin compiled code

(#1ifdef TRACE

tdefine ENTER(f) printf ("Entering %s\n", f);
fdefine EXIT(f) printf("Exiting %s\n", f);
#else

#define ENTER (f)

#define EXIT (L)

fendif

// print n

void pr(int n) {
ENTER ("pxr") ;
printf ("\n =
EXIT("pxr") ;

\J y,
ifdef.c

sd\n", n);
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Defining Symbols

+ Besides #definesin the code, preprocessor values can
be given as part of the gcc command:

[bash$ gcc -Wall -g -DTRACE -o ifdef i1fdef.c ]

+ assert can be controlled the same way — defining NDEBUG
causes assert to expand to “empty”

" |t'samacro—see assert.h

[bash$ gcc -Wall -g -DNDEBUG -o faster useassert.c ]
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Lecture Outline

- Preprocessor tricks
+ Additional C topics
+ File 1/O with the C standard library
» C Stream Buffering

11
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Additional C Topics

« Teach yourself!

man pages are your friend!

String library functions in the C standard library
« #include <string.h>
— strlen(), strcpy(), strdup(), strcat(), strcmp(), strchr(), strstr(), ...
« #include <stdlib.h>or#include <stdio.h>
— atoi(), atof(), sprint(), sscanf()

How to declare, define, and use a function that accepts a variable-
number of arguments (varargs)

unions and what they are good for
enums and what they are good for
Pre- and post-increment/decrement

Harder: the meaning of the “volatile” storage class .



W UNIVERSITY of WASHINGTON LO6: C Details, File I/O CSE333, Autumn 2025

Lecture Outline

» Preprocessor tricks
« Additional C topics
+ File 1/O with the C standard library
» C Stream Buffering

13
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File 1/O
+» We'll start by using C's standard library

" These functions are part of glibc on Linux

" They are implemented using Linux system calls (POSIX)

+ C’s stdio defines the notion of a stream
= A sequence of characters that flows to and from a device
- Can be either text or binary; Linux does not distinguish
" |s buffered by default; 1ibc reads ahead of your program
" Three streams provided by default: stdin, stdout, stderr
« You can open additional streams to read and write to files

= Cstreams are manipulated with a FILE* pointer, which is
defined in stdio.h

14
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C Stream Functions (1 of 2)

+ Some stream functions (complete list in stdio.h):

= [FILE* fopen(filename, mode) ; ]
- Opens a stream to the specified file in specified file access mode

'[int fclose(stream);]

- Closes the specified stream (and file)

'[int fprintf (stream, format, ...);]
- Writes a formatted C string
— printf (...); isequivalentto fprintf (stdout, ...);
'[int fscanf (stream, format, ...);]

- Reads data and stores data matching the format string

15
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C Stream Functions (2 of 2)

+ Some stream functions (complete list in stdio.h):

.[FILE* fopen(filename, mode) ; ]

- Opens a stream to the specified file in specified file access mode

_[int fclose(stream);]

« Closes the specified stream (and file)

-[size_t fwrite (ptr, size, count, stream); ]

- Writes an array of count elements of size bytes from ptr to stream

-[size_t fread (ptr, size, count, stream); ]

- Reads an array of count elements of size bytes from stream to ptr

16
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C Stream Error Checking/Handling

+ Some error functions (complete listin stdio.h):

.[int ferror(stream);]

- Checks if the error indicator associated with the specified stream is
set

m [int clearerr (stream) ; ]

- Resets error and EOF indicators for the specified stream

'[void perror(message);]

« Prints message followed by an error message related to errno to
stderr

17
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C Streams Example
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cp_example.c

(#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#define READBUFSIZE 128

int main(int argc,
FILE* fin;
FILE* fout;
char readbuf [READBUFSIZE];
size t readlen;
1t (argc !'= 3) {
fprintf (stderr, "usage:
return EXIT FAILURE;
}

// Open the input file
fopen (argv(l],
(fin NULL) {

fin
if

return EXIT FAILURE;

// next slide’s code

"rb") ;

char** argv) {

./cp example infile outfile\n");
// defined in stdlib.h

//

"rb" -> read, binary mode

perror ("fopen for read failed");

~

CSE333, Autumn 2025
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C Streams Example

7

cp_example.c

int main(int argc, char** argv) { )

// previous slide’s code

// Open the output file
fout = fopen (argv[2], "wb"); // "wb" -> write, binary mode
1if (fout == NULL) {

perror ("fopen for write failed");

fclose(fin);

return EXIT FAILURE;

}

// Read from the file, write to fout
while ((readlen = fread(readbuf, 1, READBUFSIZE, fin)) > 0) {
// Test to see if we encountered an error while reading
1if (ferror (fin)) {
perror ("fread failed");
fclose (fin) ;
fclose (fout) ;
return EXIT FAILURE;

// next slide’s code
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C Streams Example

cp_example.c

D

rint main(int argc, char** argv) {
// two slides ago’s code

// previous slide’s code

1f (fwrite (readbuf, 1, readlen, fout)

perror ("fwrite failed");
fclose (fin) ;

fclose (fout) ;

return EXIT FAILURE;

}
} // end of while loop

fclose(fin) ;
fclose (fout) ;

return EXIT_SUCCESS;

< readlen)

{

20
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Lecture Outline

- Preprocessor tricks
« Additional C topics
+ File 1/O with the C standard library

» C Stream Buffering

21
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Buffering

+» By default, stdio uses buffering for streams:

= Data written by fwrite () is copied into a buffer allocated by
stdio inside your process’ address space

= At some point, the buffer will be “drained” into the destination:
- When you explicitly call ££1ush () on the stream
- When the buffer size is exceeded (often 1024 or 4096 bytes)

- For stdout to console, when a newline is written (“line buffered”) or
when some other function tries to read from the console

- When you call £close () on the stream

- When your process exits gracefully (exit () or return from
main ())

22
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Buffering Example

[int main(int argc, char** argv) {
mmp FILE* fout = fopen("test.txt", "wb");

// write "hi" one char at a time C stdio buffer
== i f (fwrite ("h", sizeof (char), 1, fout) < 1) { A I
perror ("fwrite failed");

fclose (fout) ;
return EXIT_FAILURE;

}

e if (fwrite("i", sizeof (char), 1, fout) < 1) {
perror ("fwrite failed"); I

fclose (fout) ;
return EXIT FAILURE;

}

=P fclose (fout) ;
return EXIT SUCCESS;

}
buffered_hi.c

test.txt (disk)

23



W UNIVERSITY of WASHINGTON LO6: C Details, File I/O

No Buffering Example

7

int main(int argc, char** argv) {

3 FILE* fout = fopen ("test.txt", "wb");

setbuf (fout, NULL); // turn off buffering

// write "hi" one char at a time

mp i (fwrite ("h", sizeof (char), 1, fout) <

perror ("fwrite failed");
fclose (fout) ;
return EXIT_FAILURE;

}

e i f (fwrite("i", sizeof (char), 1, fout) <

perror ("fwrite failed");
fclose (fout) ;
return EXIT FAILURE;

}

=P fclose (fout) ;

\

return EXIT_SUCCESS;
}

unbuffered_hi.c

CSE333, Autumn 2025

C stdio buffer

/

//

test.txt (disk)

'hl

Vi'

24
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Why Buffer?

+ Performance — avoid disk accesses

/ \
| I ) W Eﬁﬁil \
Group many small writes - n:? I oo | Heao
. . H \ t bukler ream
into a single larger write ! A R
~ writes p
= Disk Latency = Numbers Everyone Should Know
(Jeff Dean from LADIS ’09) | ! cache reference 0o e
Branch mispredict 2 s
L2 cache reference T s
Mutex lock/unlock 25 ms
Main memory reference 100 ns
Compress 1K bytes with Zippy 3,000 ns
Send 2K bytes over 1 Gbps network 20,000 ns
Read 1 MB sequentially from memory 250,000 ns
Round trip within same datacenter 500,000 ns
Disk seek 10,000,000 ns
Read 1 MB sequentially from disk 20,000,000 ns
Send packet CA->Netherlands->CA 150,000,000 ns

<« Convenience — nicer API
= We'll compare C's £fread () with POSIX's read () 25
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Why NOT Buffer?

+ Reliability — the buffer needs to be flushed

" Loss of computer power = loss of data

= “Completion” of a write (i.e., return from fwrite () ) does not
mean the data has actually been written

- What if you signal another process to read the file you just wrote to?

*

» Performance — buffering takes time

D)

= Copying data into the stdio buffer consumes CPU cycles and
memory bandwidth

= Can potentially slow down high-performance applications, like a
web server or database (“zero-copy”)

+» When is buffering faster? Slower?

26
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We Need To Go Deeper...

WE NEED TO GO
" DEEPER ”

+ So far we’ve seen the C standard library to access files
= Use aprovided FFILE* stream abstraction

" fopen(), fread (), fwrite (), £fclose (), £fseek ()

+ These are convenient and portable
" They are buffered*

" They are implemented using lower-level OS calls

27
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Extra Exercise #1

« Write a program that:

" Prompts the user to input a string (use fgets ())

- Assume the string is a sequence of whitespace-separated integers
(e.g. "5555 1234 4 5543"M)

= Converts the string into an array of integers

= Converts an array of integers into an array of strings

- Where each element of the string array is the binary representation
of the associated integer

" Prints out the array of strings

28
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