WA/ UNIVERSITY of WASHINGTON LO4: The Heap, Structs CSE333, Autumn 2025

The Heap and Structs
CSE 333 Autumn 2025

Instructors: Naomi Alterman, Chris Thachuk

Teaching Assistants:

Ann Baturytski Derek de Leuw Blake Diaz
Rishabh Jain Chendur Jel Jayavelu Lucas Kwan
Irene Xin Jie Lau Nathan Li Maya Odenheim
Advay Patil Selim Saridede Deeksha Vatwani

Angela Wu Jiexiao Xu

CSE333, Autumn 2025

WA/ UNIVERSITY of WASHINGTON LO4: The Heap, Structs

Administrivia

+» HWO due tonight

+» EX3 out now, due Friday morning

< HW1 out now, due a week from Thursday

Look through it and get started now!

Header files / interfaces must not be changed, but
ok to add local “helper” functions in .c files when
appropriate

Pace yourself and make steady progress

WA/ UNIVERSITY of WASHINGTON LO4: The Heap, Structs

More Administrivia

+» Use git commits regularly!

" Finished implementing a bullet point in the spec?
Commit and push!

= Provides backups for all sorts of situations

= Danni gets a pet for every commit and a treat for
every push

+» What goes in your repo?

" Yes: source code, tests, data, notes and documents,
project schedules and tasks...

"= No: compiled code, executable binaries, temporary
files from your text editor

CSE333, Autumn 2025

WA/ UNIVERSITY of WASHINGTON

Lecture Outline

+~ Heap-allocated Memory

" malloc () and free ()

=" Memory leaks

+ structsand typedef

LO4: The Heap, Structs

CSE333, Autumn 2025

WA/ UNIVERSITY of WASHINGTON

LO4: The Heap, Structs

Memory Allocation So Far

+ So far, we have seen two kinds of memory allocation:

-
int counter = 0; // global var

int main(int argc,
counter++;
printf ("count =
return O;

}

\.

char** argv) {

$d\n", counter) ;

N\

r

" counter is statically-allocated
- Allocated when program is loaded

- Deallocated when program exits

int foo(int a) {
int x = a + 1;
return Xx;

// local var

int argc, char** argv) {
foo (10) ; // local var
printf ("y = %d\n",y);

" a, x,yare automatically-
allocated

- Allocated when function is called

- Deallocated when function returns

CSE333, Autumn 2025

CSE333, Autumn 2025

WA/ UNIVERSITY of WASHINGTON LO4: The Heap, Structs

Why Dynamic Allocation?

+ When static and automatic allocation aren’t sufficient!
= Data that persists across multiple function calls but not for the whole lifetime
of the program
= Data too large to fit in a stack frame

= We need memory whose size is not known in advance

— For example, read a file into memory....

(// this is pseudo-C code

char* ReadFile (char* filename) {
int size = GetFileSize (filename) ;
char* buffer = AllocateMem (size);

ReadFileIntoBuffer (filename, buffer):;
return buffer;

WA/ UNIVERSITY of WASHINGTON LO4: The Heap, Structs CSE333, Autumn 2025

Dynamic Allocation

+» What we want is dynamically-allocated memory
" Your program explicitly requests a new block of memory
- The code allocates it at runtime, perhaps with help from OS
" Dynamically-allocated memory persists until either:

+ Your code explicitly deallocates it (manual memory management)

- A garbage collector collects it (automatic memory management)

« Crequires you to manually manage memory

= Gives you more control, but causes headaches

WA/ UNIVERSITY of WASHINGTON LO4: The Heap, Structs

The Heap

+» The Heap is a large pool of available memory
used to hold dynamically-allocated data

" malloc allocates chunks of data in the Heap;
free deallocates those chunks

*" malloc maintains bookkeeping data in the Heap
to track allocated blocks

OxFF...FF

0x00...00

CSE333, Autumn 2025

WA/ UNIVERSITY of WASHINGTON LO4: The Heap, Structs CSE333, Autumn 2025

Aside: NULL

« NULL is the name for a memory location that is guaranteed to be
invalid

" |In Con Linux, NULL is 0x0 and an attempt to dereference NULL causes a
segmentation fault

+ Useful as an indicator of an uninitialized (or currently unused)
pointer or allocation error

" |t's better to cause a segfault than to allow the corruption of memory!

rint main (int argc, char** argv) {

int* p = NULL;

*o = 1; // causes a segmentation fault
return 0O;

segfault.c

|)

WA/ UNIVERSITY of WASHINGTON LO4: The Heap, Structs CSE333, Autumn 2025

malloc ()

+ General usage: [var = (type*) malloc (sizein bytes)]

+» malloc allocates a block of memory of the requested size
= Returns a pointer to the first byte of that memory
« And returns NULL if the memory allocation failed!
" You should assume that the memory initially contains garbage

= You'll typically use sizeof to calculate the size you need and cast the result to the
desired pointer type

[// allocate a 10-float array
float* arr = (float*) malloc(10*sizeof (float));
1f (arr == NULL) {

return errcode;

}
// do stuff with arr

WA/ UNIVERSITY of WASHINGTON

calloc ()

LO4: The Heap, Structs

CSE333, Autumn 2025

+ General usage: [var = (type*) calloc (num, bytes per element)

Like malloc, but also zeros out the block of memory

= Helpful when zero-initialization wanted (but don’t use it to mask bugs — fix those)

= Slightly slower; but useful for non-performance-critical code or if you really are planning

to zero out the new block of memory

" mallocandcallocarefoundinstdlib.h

p
// allocate a 10-double array

double* arr = (double*) calloc (10, sizeof (double)):;

1f (arr == NULL) {
return errcode;

}
// do stuff with arr

WA/ UNIVERSITY of WASHINGTON LO4: The Heap, Structs CSE333, Autumn 2025

free ()

+» Usage: [free(pointer)f]

+ Deallocates the memory pointed-to by the pointer

= Pointer must point to the first byte of heap-allocated memory (i.e. something
previously returned by malloc or calloc)

" Freed memory becomes eligible for future (re-)allocation

" The bits in the pointer are not changed by calling free

- Defensive programming: can set pointer to NULL after freeing it

N\

[float* arr = (float*) malloc (10*sizeof (float)) ;
1f (arr == NULL)
return errcode;
. .. // do stuff with arr
free(arr);
arr = NULL; // OPTIONAL

\

12

WA/ UNIVERSITY of WASHINGTON

Heap and Stack Example

arraycopy.c

LO4: The Heap, Structs

/;include <stdlib.h>
int i, *a2;
1if (a2 == NULL)

return NULL;

for (1 = 0;
az2[i] = al[il;

return a2;

}

int main(int argc, char**

m—— int nums[4] = {1, 2, 3,
int* ncopy = copy (nums,
// .. do stuff with the

free (ncopy) ;
return 0;

U

int* copy(int a[], int size) {

a?2 = malloc(size*sizeof (int)) ;

1 < size; 1i++)

argv)
4}

array

{

Note: Arrow points
to next instruction.

Stack

nums

main

ncopy

1

Heap (malloc/free)

Read/Write Segment

Read-Only Segment
(main, copy)

CSE333, Autumn 2025

13

WA/ UNIVERSITY of WASHINGTON

Heap and Stack Example

arraycopy.c

LO4: The Heap, Structs

/;include <stdlib.h>
int i, *a2;
1if (a2 == NULL)

return NULL;

for (1 = 0;
az2[i] = al[il;

return a2;

}

int main(int argc, char**

int nums[4] = {1, 2, 3,
= int* ncopy = copy (nums,
// .. do stuff with the

free (ncopy) ;
return 0;

U

int* copy(int a[], int size) {

a?2 = malloc(size*sizeof (int)) ;

1 < size; 1i++)

argv)
4}

array

{

Stack

nums|{ 1| 2| 3

main

ncopy

1

Heap (malloc/free)

Read/Write Segment

Read-Only Segment
(main, copy)

CSE333, Autumn 2025

14

WA/ UNIVERSITY of WASHINGTON

Heap and Stack Example

arraycopy.c

LO4: The Heap, Structs

/;include <stdlib.h>

int i, *az2;

= 32 = malloc(size*sizeof (int));

1f (a2 == NULL)
return NULL;

for (1 = 0;
az2[i] = al1i];

return a2;

}

int main(int argc, char**
int nums(4] = {1, 2, 3,
int* ncopy = copy (nums,
// .. do stuff with the
free (ncopy) ;
return O;

U

int* copy(int al[], int size) {

1 < size; 1i++)

argv)
4t

array

{

CSE333, Autumn 2025

15

WA/ UNIVERSITY of WASHINGTON

Heap and Stack Example

arraycopy.c

LO4: The Heap, Structs

/;include <stdlib.h>

int i, *az2;

= 32 = malloc(size*sizeof (int));

1f (a2 == NULL)
return NULL;

for (1 = 0;
az2[i] = al1i];

return a2;

}

int main(int argc, char**
int nums(4] = {1, 2, 3,
int* ncopy = copy (nums,
// .. do stuff with the
free (ncopy) ;
return O;

U

int* copy(int al[], int size) {

1 < size; 1i++)

argv)
4t

array

{

CSE333, Autumn 2025

16

WA/ UNIVERSITY of WASHINGTON

Heap and Stack Example

arraycopy.c

LO4: The Heap, Structs

/;include <stdlib.h>

int i, *az2;

return NULL;

for (1 = 0;
az2[i] = al1i];

return a2;

}

int main(int argc, char**
int nums(4] = {1, 2, 3,
int* ncopy = copy (nums,
// .. do stuff with the
free (ncopy) ;
return O;

U

int* copy(int al[], int size) {

a2 = malloc(size*sizeof (int));

) 1f (a2 == NULL)

1 < size; 1i++)

argv)
4t

array

{

CSE333, Autumn 2025

17

= for (i1 = 0

WA/ UNIVERSITY of WASHINGTON

Heap and Stack Example

arraycopy.c

LO4: The Heap, Structs

/;include <stdlib.h>
int i, *az2;

1f (a2 == NULL)
return NULL;

a2[i] = al1i]l;

return a2;

}

int main(int argc, char**
int nums(4] = {1, 2, 3,
int* ncopy = copy (nums,
// .. do stuff with the
free (ncopy) ;
return O;

U

int* copy(int al[], int size) {

a2 = malloc(size*sizeof (int));

1 < size; 1i++)

argv)
4t

array

{

CSE333, Autumn 2025

18

WA/ UNIVERSITY of WASHINGTON

Heap and Stack Example

arraycopy.c

LO4: The Heap, Structs

/;include <stdlib.h>
int i, *az2;

1f (a2 == NULL)
return NULL;

for (1 = 0;
az2[i] = al1i];

— rcocturn a2;
}

int main(int argc, char**
int nums(4] = {1, 2, 3,
int* ncopy = copy (nums,
// .. do stuff with the
free (ncopy) ;
return O;

U

int* copy(int al[], int size) {

a2 = malloc(size*sizeof (int));

1 < size; 1i++)

argv)
4t

array

{

CSE333, Autumn 2025

19

WA/ UNIVERSITY of WASHINGTON

Heap and Stack Example

arraycopy.c

LO4: The Heap, Structs

/;include <stdlib.h>
int i, *az2;

1f (a2 == NULL)
return NULL;

for (1 = 0;
az2[i] = al1i];

return a2;

}

int main(int argc, char**
int nums(4] = {1, 2, 3,
int* ncopy = copy (nums,

— // .. do stuff with the

free (ncopy) ;

return O;

U

int* copy(int al[], int size) {

a2 = malloc(size*sizeof (int));

1 < size; 1i++)

argv)
4t

array

{

CSE333, Autumn 2025

20

WA/ UNIVERSITY of WASHINGTON

Heap and Stack Example

arraycopy.c

LO4: The Heap, Structs

/;include <stdlib.h>
int i, *az2;

1f (a2 == NULL)
return NULL;

for (1 = 0;
az2[i] = al1i];

return a2;

}

int main(int argc, char**
int nums(4] = {1, 2, 3,
int* ncopy = copy (nums,
// .. do stuff with the

=P free (ncopy);

return 0;

U

int* copy(int al[], int size) {

a2 = malloc(size*sizeof (int));

1 < size; 1i++)

argv)
4t

array

{

CSE333, Autumn 2025

21

WA/ UNIVERSITY of WASHINGTON

Heap and Stack Example

arraycopy.c

LO4: The Heap, Structs

/;include <stdlib.h>
int i, *az2;

1f (a2 == NULL)
return NULL;

for (1 = 0;
az2[i] = al1i];

return a2;

}

int main(int argc, char**
int nums(4] = {1, 2, 3,
int* ncopy = copy (nums,
// .. do stuff with the

=P free (ncopy);

return 0;

U

int* copy(int al[], int size) {

a2 = malloc(size*sizeof (int));

1 < size; 1i++)

argv)
4t

array

{

CSE333, Autumn 2025

22

WA/ UNIVERSITY of WASHINGTON

Heap and Stack Example

arraycopy.c

LO4: The Heap, Structs

/;include <stdlib.h>
int i, *az2;

1f (a2 == NULL)
return NULL;

for (1 = 0;
az2[i] = al1i];

return a2;

}

int main(int argc, char**
int nums(4] = {1, 2, 3,
int* ncopy = copy (nums,
// .. do stuff with the
free (ncopy) ;

—(return 0;
}

int* copy(int al[], int size) {

a2 = malloc(size*sizeof (int));

1 < size; 1i++)

argv)
4t

array

{

CSE333, Autumn 2025

23

WA/ UNIVERSITY of WASHINGTON

Participation time!

+» What (if anything) is wrong
with each of these lines of
code?
= Discuss amongst your neighbors

= Respond individually @
http://PollEv.com/naomila

LO4: The Heap, Structs

CSE333, Autumn 2025

/¥include <stdio.h>
#include <stdlib.h>

int main(int argc,
int al[2];

int* c;

e avi
&y avi
/*3*/ ¢
/*4*/
/*5%/
/*e*/
S*T*/

return 0;

char** argv)

int* b = malloc(2*sizeof (int)) ;

{

24

http://pollev.com/naomila
http://pollev.com/naomila
http://pollev.com/naomila
http://pollev.com/naomila

WA/ UNIVERSITY of WASHINGTON

LO4: The Heap, Structs

Memory Corruption - What Happens?

stack: main

da

heap:

memcorrupt.c

— 777

CSE333, Autumn 2025

-

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char** argv) {
int al[2];
int* b = malloc(2*sizeof (int)) ;

int* c;

al[2] = 5; // assign past the end of an array
b[0] += 2; // assume malloc zeros out memory

c = b+3; // mess up your polnter arithmetic

free(&(a[0])); // free something not malloc'ed
free (b) ;

free (b) ; // double-free the same block

b[0] = 5; // use a freed (dangling) pointer

// any many more!
return 0O;

WA/ UNIVERSITY of WASHINGTON

LO4: The Heap, Structs

CSE333, Autumn 2025

Memory Leak

\/
0’0

A memory leak occurs when code fails to deallocate dynamically-allocated memory
that is no longer used

= e.g. forget to £ree malloc-ed block, lose/change pointer to the block

= Takes real work to prevent — as pointers are passed around, what part of the program is
responsible for freeing each malloc-ed block?

e

» What happens: program’s “memory footprint” will keep growing
= This might be OK for short-lived program, since all memory is deallocated when program ends
= Usually has bad repercussions for long-lived programs

- Might slow down over time (e.g. lead to VM thrashing)

- Might exhaust all available memory and crash

« Other programs might get starved of memory

26

WA/ UNIVERSITY of WASHINGTON

Lecture Outline

+» Heap-allocated Memory

" malloc () and free ()

" Memory leaks

+ structs and typedef

LO4: The Heap, Structs

CSE333, Autumn 2025

27

WA/ UNIVERSITY of WASHINGTON LO4: The Heap, Structs

Structured Data

« A struct isa Cdatatype that contains a set of fields
= Similar to a Java class, but with no methods or constructors
= Useful for defining new structured types of data
= Act similarly to primitive variables (can assign, pass by value, ...)

= A struct tagname is a tag; not a full first-class type name

«» @eneric declaration: (// the following defines a new
4) // structured datatype called
struct tagname { /) a "struct Point"

typel namel; struct Point {
float x, y;

e o o };
typeN nameN;

// declare and initialize a
Y // struct Point variable

~ 4 kstruct Point origin = {0.0,0.0};)

CSE333, Autumn 2025

28

LO4: The Heap, Structs CSE333, Autumn 2025

WA/ UNIVERSITY of WASHINGTON

Using structs

« Use “.” toreferto afieldin a struct

+» Use “—>" to refer to a field from a struct pointer

= Shorthand for: dereference pointer first, then accesses field
- Using p->x instead of (*p).x is standard practice — do it that way

(Struct Point {
float x, vy;

b g

int main(int argc, char** argv) {
struct Point pl = {0.0, 0.0}, // pl is stack allocated

struct Point* pl ptr = &pl;

pl.x = 1.0;
pl ptr->y =
return 0;

) y,

2.0; // equivalent to (*pl ptr).y = 2.0;

_
simplestruct.c

29

WA/ UNIVERSITY of WASHINGTON

Copy by Assignment

LO4: The Heap, Structs

+ You can assign the value of a struct from a struct of the
same type — this copies the entire contents!

(#include <stdio.h>

struct Point {
float x, y;
}i

int main(int argc,
struct Point pl
struct Point p2
printf ("pl: {%f,
p2 = pl;
printf ("pl:
return 0O;

{51,

\}

char** argv) {
= {0.0, 2.0};
= {4.0, 6.0};

$f} p2: {%f,%f}\n", pl.x,

$f} p2: {%f,%f}\n", pl.x,

pl.y,

pl.y,

pP2.x%,

pP2.x%,

pP2.y);

pP2.y);

structassign.c

CSE333, Autumn 2025

30

CSE333, Autumn 2025

WA/ UNIVERSITY of WASHINGTON LO4: The Heap, Structs

typedef

+ Generic format: [typedef Cype name;]

+ Allows you to define new data type names/synonyms
= Both type and name are usable and refer to the same type

= Be careful with pointers — * before name is part of type!

f// make "superlong" a synonym for "unsigned long long"
typedef unsigned long long superlong;

// make "str" a synonym for "char*"
typedef char *str;

// make '"Point" a synonym for "struct point st { ... }"
// make "PointPtr'" a synonym for "struct point st*"
typedef struct point st {

superlong Xx;

superlong y;
} Point, *PointPtr; // similar syntax to "int n, *p;"

\Point origin = {0, 0};

31

LO4: The Heap, Structs CSE333, Autumn 2025

WA/ UNIVERSITY of WASHINGTON

Dynamically-allocated Structs

+ Youcanmalloc and £ree structs, just like other data
type

" sizeof is particularly helpful here

(// a complex number 1is a + bi
typedef struct complex st ({

double real;
double imag;

// real component
// imaginary component

} Complex, *ComplexPtr;

// note that ComplexPtr is equivalent to Complex*
ComplexPtr AllocComplex (double real, double imag) {

Complex* retval = (Complex*) malloc(sizeof (Complex)):
1f (retval != NULL) {

retval->real = real;

retval->imag = imag;

}

return retval;
W y
complexstruct.c 32

CSE333, Autumn 2025

WA/ UNIVERSITY of WASHINGTON LO4: The Heap, Structs

Structs as Arguments

+ Structs are passed by value, like everything else in C

" Entire struct is copied — where?

" To manipulate a struct argument, pass a pointer instead

(typedef struct poilnt st { R
int x, y;
} Point, *PointPtr;
vold DoubleXBroken (Point p) { p.x *= 2; 1}
vold DoubleXWorks (PointPtr p) { p->x *= 2; }
int main(int argc, char** argv) {
Point a = {111};
DoubleXBroken (a) ;
printf (" (%d, %d) \n", a.x, a.y): // prints: (,)
DoubleXWorks (&a) ;
printf (" (%d, %d) \n", a.x, a.y): // prints: (,)
return 0O;
}
\ J 33

WA/ UNIVERSITY of WASHINGTON LO4: The Heap, Structs

Returning Structs

\/
0’0

Exact method of return depends on calling conventions
= Oftenin $rax and $rdx for small structs

= Often returned in memory for larger structs

(// a complex number is a + bi B
typedef struct complex st ({
double real; // real component
double imag; // imaginary component
} Complex, *ComplexPtr;
Complex MultiplyComplex (Complex x, Complex y) {
Complex retval;
retval.real = (x.real * y.real) - (x.imag * y.imag);
retval.imag = (x.imag * y.real) - (x.real * y.imagqg);
return retval; // returns a copy of retval
\} J

complexstruct.c

CSE333, Autumn 2025

34

WA/ UNIVERSITY of WASHINGTON LO4: The Heap, Structs CSE333, Autumn 2025

Pass Copy of Struct or Pointer?

+~ Value passed: passing a pointer is cheaper and takes less space unless struct is
small

» Field access: indirect accesses through pointers are a bit more expensive and
can be harder for compiler to optimize

» For small stucts (like struct complex st), passing a copy of the struct
can be faster and often preferred if function only reads data; for large structs
or if the function should change caller’s data, use pointers

35

WA/ UNIVERSITY of WASHINGTON LO4: The Heap, Structs CSE333, Autumn 2025

Extra Exercise #1

+~ Worite a program that defines:
" A new structured type Point
- Represent it with £1oats for the x and y coordinates

= A new structured type Rectangle
- Assume its sides are parallel to the x-axis and y-axis

- Represent it with the bottom-left and top-right Points
= A function that computes and returns the area of a Rectangle

= A function that tests whether a Point is inside of a Rectangle

36

WA/ UNIVERSITY of WASHINGTON

LO4: The Heap, Structs

Extra Exercise #2

Implement AllocSet () and FreeSet ()

= AllocSet() needs to use malloc twice: once to allocate a new

ComplexSet and once to allocate the “points” field inside it

= FreeSet() needs to use free twice

CSE333, Autumn 2025

(typedef struct complex st {

double real; // real component
double imag; // imaginary component
} Complex;

typedef struct complex set st {
double num points in set;

Complex* points; // an array of Complex
} ComplexSet;

ComplexSet* AllocSet (Complex c arr[], int size);
voilid FreeSet (ComplexSet* set);

\.

	Slide 1: The Heap and Structs CSE 333 Autumn 2025
	Slide 2: Administrivia
	Slide 3: More Administrivia
	Slide 4: Lecture Outline
	Slide 5: Memory Allocation So Far
	Slide 6: Why Dynamic Allocation?
	Slide 7: Dynamic Allocation
	Slide 8: The Heap
	Slide 9: Aside: NULL
	Slide 10: malloc()
	Slide 11: calloc()
	Slide 12: free()
	Slide 13: Heap and Stack Example
	Slide 14: Heap and Stack Example
	Slide 15: Heap and Stack Example
	Slide 16: Heap and Stack Example
	Slide 17: Heap and Stack Example
	Slide 18: Heap and Stack Example
	Slide 19: Heap and Stack Example
	Slide 20: Heap and Stack Example
	Slide 21: Heap and Stack Example
	Slide 22: Heap and Stack Example
	Slide 23: Heap and Stack Example
	Slide 24: Participation time!
	Slide 25: Memory Corruption - What Happens?
	Slide 26: Memory Leak
	Slide 27: Lecture Outline
	Slide 28: Structured Data
	Slide 29: Using structs
	Slide 30: Copy by Assignment
	Slide 31: typedef
	Slide 32: Dynamically-allocated Structs
	Slide 33: Structs as Arguments
	Slide 34: Returning Structs
	Slide 35: Pass Copy of Struct or Pointer?
	Slide 36: Extra Exercise #1
	Slide 37: Extra Exercise #2

