
CSE333, Autumn 2025L04: The Heap, Structs

The Heap and Structs
CSE 333 Autumn 2025

Instructors: Naomi Alterman, Chris Thachuk

Teaching Assistants:

Ann Baturytski Derek de Leuw Blake Diaz

Rishabh Jain Chendur Jel Jayavelu Lucas Kwan

Irene Xin Jie Lau Nathan Li Maya Odenheim

Advay Patil Selim Saridede Deeksha Vatwani

Angela Wu Jiexiao Xu

CSE333, Autumn 2025L04: The Heap, Structs

Administrivia

❖ HW0 due tonight

❖ EX3 out now, due Friday morning

❖ HW1 out now, due a week from Thursday

▪ Look through it and get started now!

▪ Header files / interfaces must not be changed, but

ok to add local “helper” functions in .c files when

appropriate

▪ Pace yourself and make steady progress

2

CSE333, Autumn 2025L04: The Heap, Structs

More Administrivia

❖ Use git commits regularly!

▪ Finished implementing a bullet point in the spec?

Commit and push!

▪ Provides backups for all sorts of situations

▪ Danni gets a pet for every commit and a treat for

every push

❖ What goes in your repo?

▪ Yes: source code, tests, data, notes and documents,

project schedules and tasks…

▪ No: compiled code, executable binaries, temporary

files from your text editor

3

CSE333, Autumn 2025L04: The Heap, Structs

Lecture Outline

❖ Heap-allocated Memory

▪ malloc() and free()

▪ Memory leaks

❖ structs and typedef

4

CSE333, Autumn 2025L04: The Heap, Structs

Memory Allocation So Far

❖ So far, we have seen two kinds of memory allocation:

int counter = 0; // global var

int main(int argc, char** argv) {

 counter++;

 printf("count = %d\n",counter);

 return 0;

}

int foo(int a) {

 int x = a + 1; // local var

 return x;

}

int main(int argc, char** argv) {

 int y = foo(10); // local var

 printf("y = %d\n",y);

 return 0;

}

▪ counter is statically-allocated

• Allocated when program is loaded

• Deallocated when program exits

▪ a, x, y are automatically-

allocated

• Allocated when function is called

• Deallocated when function returns

5

CSE333, Autumn 2025L04: The Heap, Structs

Why Dynamic Allocation?

❖ When static and automatic allocation aren’t sufficient!

▪ Data that persists across multiple function calls but not for the whole lifetime

of the program

▪ Data too large to fit in a stack frame

▪ We need memory whose size is not known in advance

– For example, read a file into memory….

// this is pseudo-C code

char* ReadFile(char* filename) {

 int size = GetFileSize(filename);

 char* buffer = AllocateMem(size);

 ReadFileIntoBuffer(filename, buffer);

 return buffer;

}

6

CSE333, Autumn 2025L04: The Heap, Structs

Dynamic Allocation

❖ What we want is dynamically-allocated memory

▪ Your program explicitly requests a new block of memory

• The code allocates it at runtime, perhaps with help from OS

▪ Dynamically-allocated memory persists until either:

• Your code explicitly deallocates it (manual memory management)

• A garbage collector collects it (automatic memory management)

❖ C requires you to manually manage memory

▪ Gives you more control, but causes headaches

7

CSE333, Autumn 2025L04: The Heap, Structs

The Heap

❖ The Heap is a large pool of available memory

used to hold dynamically-allocated data

▪ malloc allocates chunks of data in the Heap;

free deallocates those chunks

▪ malloc maintains bookkeeping data in the Heap

to track allocated blocks

8

0xFF…FF

0x00…00

OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

CSE333, Autumn 2025L04: The Heap, Structs

Aside: NULL

❖ NULL is the name for a memory location that is guaranteed to be

invalid

▪ In C on Linux, NULL is 0x0 and an attempt to dereference NULL causes a

segmentation fault

❖ Useful as an indicator of an uninitialized (or currently unused)

pointer or allocation error

▪ It’s better to cause a segfault than to allow the corruption of memory!

9

int main(int argc, char** argv) {

 int* p = NULL;

 *p = 1; // causes a segmentation fault

 return 0;

}

segfault.c

CSE333, Autumn 2025L04: The Heap, Structs

malloc()

❖ General usage:

❖ malloc allocates a block of memory of the requested size

▪ Returns a pointer to the first byte of that memory

• And returns NULL if the memory allocation failed!

▪ You should assume that the memory initially contains garbage

▪ You’ll typically use sizeof to calculate the size you need and cast the result to the

desired pointer type

var = (type*) malloc(size in bytes)

// allocate a 10-float array

float* arr = (float*) malloc(10*sizeof(float));

if (arr == NULL) {

 return errcode;

}

... // do stuff with arr

10

CSE333, Autumn 2025L04: The Heap, Structs

calloc()

❖ General usage:

❖ Like malloc, but also zeros out the block of memory

▪ Helpful when zero-initialization wanted (but don’t use it to mask bugs – fix those)

▪ Slightly slower; but useful for non-performance-critical code or if you really are planning

to zero out the new block of memory

▪ malloc and calloc are found in stdlib.h

var = (type*) calloc(num, bytes per element)

// allocate a 10-double array

double* arr = (double*) calloc(10, sizeof(double));

if (arr == NULL) {

 return errcode;

}

... // do stuff with arr

11

CSE333, Autumn 2025L04: The Heap, Structs

free()

❖ Usage: free(pointer);

❖ Deallocates the memory pointed-to by the pointer

▪ Pointer must point to the first byte of heap-allocated memory (i.e. something

previously returned by malloc or calloc)

▪ Freed memory becomes eligible for future (re-)allocation

▪ The bits in the pointer are not changed by calling free

• Defensive programming: can set pointer to NULL after freeing it

12

free(pointer);

float* arr = (float*) malloc(10*sizeof(float));

if (arr == NULL)

 return errcode;

... // do stuff with arr

free(arr);

arr = NULL; // OPTIONAL

CSE333, Autumn 2025L04: The Heap, Structs

Heap and Stack Example

13

#include <stdlib.h>

int* copy(int a[], int size) {

 int i, *a2;

 a2 = malloc(size*sizeof(int));

 if (a2 == NULL)

 return NULL;

 for (i = 0; i < size; i++)

 a2[i] = a[i];

 return a2;

}

int main(int argc, char** argv) {

 int nums[4] = {1, 2, 3, 4};

 int* ncopy = copy(nums, 4);

 // .. do stuff with the array ..

 free(ncopy);

 return 0;

}

arraycopy.c OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment

Read-Only Segment
(main, copy)

main
ncopy

nums

Note: Arrow points
to next instruction.

CSE333, Autumn 2025L04: The Heap, Structs

Heap and Stack Example

14

#include <stdlib.h>

int* copy(int a[], int size) {

 int i, *a2;

 a2 = malloc(size*sizeof(int));

 if (a2 == NULL)

 return NULL;

 for (i = 0; i < size; i++)

 a2[i] = a[i];

 return a2;

}

int main(int argc, char** argv) {

 int nums[4] = {1, 2, 3, 4};

 int* ncopy = copy(nums, 4);

 // .. do stuff with the array ..

 free(ncopy);

 return 0;

}

arraycopy.c OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment

Read-Only Segment
(main, copy)

main
ncopy

nums 1 2 3 4

CSE333, Autumn 2025L04: The Heap, Structs

Heap and Stack Example

15

#include <stdlib.h>

int* copy(int a[], int size) {

 int i, *a2;

 a2 = malloc(size*sizeof(int));

 if (a2 == NULL)

 return NULL;

 for (i = 0; i < size; i++)

 a2[i] = a[i];

 return a2;

}

int main(int argc, char** argv) {

 int nums[4] = {1, 2, 3, 4};

 int* ncopy = copy(nums, 4);

 // .. do stuff with the array ..

 free(ncopy);

 return 0;

}

arraycopy.c OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment

Read-Only Segment
(main, copy)

main
ncopy

copy
a size 4

nums 1 2 3 4

i a2

CSE333, Autumn 2025L04: The Heap, Structs

Heap and Stack Example

16

#include <stdlib.h>

int* copy(int a[], int size) {

 int i, *a2;

 a2 = malloc(size*sizeof(int));

 if (a2 == NULL)

 return NULL;

 for (i = 0; i < size; i++)

 a2[i] = a[i];

 return a2;

}

int main(int argc, char** argv) {

 int nums[4] = {1, 2, 3, 4};

 int* ncopy = copy(nums, 4);

 // .. do stuff with the array ..

 free(ncopy);

 return 0;

}

arraycopy.c OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment

Read-Only Segment
(main, copy)

malloc

main
ncopy

copy
a size 4

nums 1 2 3 4

i a2

CSE333, Autumn 2025L04: The Heap, Structs

Heap and Stack Example

17

#include <stdlib.h>

int* copy(int a[], int size) {

 int i, *a2;

 a2 = malloc(size*sizeof(int));

 if (a2 == NULL)

 return NULL;

 for (i = 0; i < size; i++)

 a2[i] = a[i];

 return a2;

}

int main(int argc, char** argv) {

 int nums[4] = {1, 2, 3, 4};

 int* ncopy = copy(nums, 4);

 // .. do stuff with the array ..

 free(ncopy);

 return 0;

}

arraycopy.c OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment

Read-Only Segment
(main, copy)

main
ncopy

copy
a size 4

nums 1 2 3 4

i a2

CSE333, Autumn 2025L04: The Heap, Structs

Heap and Stack Example

18

#include <stdlib.h>

int* copy(int a[], int size) {

 int i, *a2;

 a2 = malloc(size*sizeof(int));

 if (a2 == NULL)

 return NULL;

 for (i = 0; i < size; i++)

 a2[i] = a[i];

 return a2;

}

int main(int argc, char** argv) {

 int nums[4] = {1, 2, 3, 4};

 int* ncopy = copy(nums, 4);

 // .. do stuff with the array ..

 free(ncopy);

 return 0;

}

arraycopy.c OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment

Read-Only Segment
(main, copy)

main
ncopy

copy
a size 4

nums 1 2 3 4

i 0 a2

CSE333, Autumn 2025L04: The Heap, Structs

Heap and Stack Example

19

#include <stdlib.h>

int* copy(int a[], int size) {

 int i, *a2;

 a2 = malloc(size*sizeof(int));

 if (a2 == NULL)

 return NULL;

 for (i = 0; i < size; i++)

 a2[i] = a[i];

 return a2;

}

int main(int argc, char** argv) {

 int nums[4] = {1, 2, 3, 4};

 int* ncopy = copy(nums, 4);

 // .. do stuff with the array ..

 free(ncopy);

 return 0;

}

arraycopy.c OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment

Read-Only Segment
(main, copy)

1 2 3 4

main
ncopy

copy
a size 4

nums 1 2 3 4

i 4 a2

CSE333, Autumn 2025L04: The Heap, Structs

Heap and Stack Example

20

#include <stdlib.h>

int* copy(int a[], int size) {

 int i, *a2;

 a2 = malloc(size*sizeof(int));

 if (a2 == NULL)

 return NULL;

 for (i = 0; i < size; i++)

 a2[i] = a[i];

 return a2;

}

int main(int argc, char** argv) {

 int nums[4] = {1, 2, 3, 4};

 int* ncopy = copy(nums, 4);

 // .. do stuff with the array ..

 free(ncopy);

 return 0;

}

arraycopy.c OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment

Read-Only Segment
(main, copy)

1 2 3 4

main
ncopy

nums 1 2 3 4

CSE333, Autumn 2025L04: The Heap, Structs

Heap and Stack Example

21

#include <stdlib.h>

int* copy(int a[], int size) {

 int i, *a2;

 a2 = malloc(size*sizeof(int));

 if (a2 == NULL)

 return NULL;

 for (i = 0; i < size; i++)

 a2[i] = a[i];

 return a2;

}

int main(int argc, char** argv) {

 int nums[4] = {1, 2, 3, 4};

 int* ncopy = copy(nums, 4);

 // .. do stuff with the array ..

 free(ncopy);

 return 0;

}

arraycopy.c OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment

Read-Only Segment
(main, copy)

1 2 3 4

main
ncopy

nums 1 2 3 4

CSE333, Autumn 2025L04: The Heap, Structs

Heap and Stack Example

22

#include <stdlib.h>

int* copy(int a[], int size) {

 int i, *a2;

 a2 = malloc(size*sizeof(int));

 if (a2 == NULL)

 return NULL;

 for (i = 0; i < size; i++)

 a2[i] = a[i];

 return a2;

}

int main(int argc, char** argv) {

 int nums[4] = {1, 2, 3, 4};

 int* ncopy = copy(nums, 4);

 // .. do stuff with the array ..

 free(ncopy);

 return 0;

}

arraycopy.c OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment

Read-Only Segment
(main, copy)

main
ncopy

nums 1 2 3 4

free

CSE333, Autumn 2025L04: The Heap, Structs

Heap and Stack Example

23

#include <stdlib.h>

int* copy(int a[], int size) {

 int i, *a2;

 a2 = malloc(size*sizeof(int));

 if (a2 == NULL)

 return NULL;

 for (i = 0; i < size; i++)

 a2[i] = a[i];

 return a2;

}

int main(int argc, char** argv) {

 int nums[4] = {1, 2, 3, 4};

 int* ncopy = copy(nums, 4);

 // .. do stuff with the array ..

 free(ncopy);

 return 0;

}

arraycopy.c OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment

Read-Only Segment
(main, copy)

main
ncopy

nums 1 2 3 4

CSE333, Autumn 2025L04: The Heap, Structs

Participation time!

❖ What (if anything) is wrong

with each of these lines of

code?

▪ Discuss amongst your neighbors

▪ Respond individually @

http://PollEv.com/naomila

24

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char** argv) {

 int a[2];

 int* b = malloc(2*sizeof(int));

 int* c;

 /*1*/ a[2] = 5;

 /*2*/ b[0] += 2;

 /*3*/ c = b+3;

 /*4*/ free(&(a[0]));

 /*5*/ free(b);

 /*6*/ free(b);

 /*7*/ b[0] = 5;

 return 0;

}

http://pollev.com/naomila
http://pollev.com/naomila
http://pollev.com/naomila
http://pollev.com/naomila

CSE333, Autumn 2025L04: The Heap, Structs

Memory Corruption - What Happens?

25

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char** argv) {

 int a[2];

 int* b = malloc(2*sizeof(int));

 int* c;

 a[2] = 5; // assign past the end of an array

 b[0] += 2; // assume malloc zeros out memory

 c = b+3; // mess up your pointer arithmetic

 free(&(a[0])); // free something not malloc'ed

 free(b);

 free(b); // double-free the same block

 b[0] = 5; // use a freed (dangling) pointer

 // any many more!

 return 0;

}

memcorrupt.c

stack:

heap:

main

a

b

c

?

?

?

?

???

X

CSE333, Autumn 2025L04: The Heap, Structs

Memory Leak

❖ A memory leak occurs when code fails to deallocate dynamically-allocated memory

that is no longer used

▪ e.g. forget to free malloc-ed block, lose/change pointer to the block

▪ Takes real work to prevent – as pointers are passed around, what part of the program is

responsible for freeing each malloc-ed block?

❖ What happens: program’s “memory footprint” will keep growing

▪ This might be OK for short-lived program, since all memory is deallocated when program ends

▪ Usually has bad repercussions for long-lived programs

• Might slow down over time (e.g. lead to VM thrashing)

• Might exhaust all available memory and crash

• Other programs might get starved of memory

26

CSE333, Autumn 2025L04: The Heap, Structs

Lecture Outline

❖ Heap-allocated Memory

▪ malloc() and free()

▪ Memory leaks

❖ structs and typedef

27

CSE333, Autumn 2025L04: The Heap, Structs

Structured Data

❖ A struct is a C datatype that contains a set of fields

▪ Similar to a Java class, but with no methods or constructors

▪ Useful for defining new structured types of data

▪ Act similarly to primitive variables (can assign, pass by value, …)

▪ A struct tagname is a tag; not a full first-class type name

❖ Generic declaration:

28

struct tagname {

 type1 name1;

 ...

 typeN nameN;

};

// the following defines a new

// structured datatype called

// a "struct Point"

struct Point {

 float x, y;

};

// declare and initialize a

// struct Point variable

struct Point origin = {0.0,0.0};

CSE333, Autumn 2025L04: The Heap, Structs

Using structs

❖ Use “.” to refer to a field in a struct

❖ Use “->” to refer to a field from a struct pointer

▪ Shorthand for: dereference pointer first, then accesses field

• Using p->x instead of (*p).x is standard practice – do it that way

29

struct Point {

 float x, y;

};

int main(int argc, char** argv) {

 struct Point p1 = {0.0, 0.0}; // p1 is stack allocated

 struct Point* p1_ptr = &p1;

 p1.x = 1.0;

 p1_ptr->y = 2.0; // equivalent to (*p1_ptr).y = 2.0;

 return 0;

}

simplestruct.c

CSE333, Autumn 2025L04: The Heap, Structs

Copy by Assignment

❖ You can assign the value of a struct from a struct of the

same type – this copies the entire contents!

30

#include <stdio.h>

struct Point {

 float x, y;

};

int main(int argc, char** argv) {

 struct Point p1 = {0.0, 2.0};

 struct Point p2 = {4.0, 6.0};

 printf("p1: {%f,%f} p2: {%f,%f}\n", p1.x, p1.y, p2.x, p2.y);

 p2 = p1;

 printf("p1: {%f,%f} p2: {%f,%f}\n", p1.x, p1.y, p2.x, p2.y);

 return 0;

}

structassign.c

CSE333, Autumn 2025L04: The Heap, Structs

typedef

❖ Generic format: typedef type name;

❖ Allows you to define new data type names/synonyms

▪ Both type and name are usable and refer to the same type

▪ Be careful with pointers – * before name is part of type!

31

typedef type name;

// make "superlong" a synonym for "unsigned long long"

typedef unsigned long long superlong;

// make "str" a synonym for "char*"

typedef char *str;

// make "Point" a synonym for "struct point_st { ... }“

// make "PointPtr" a synonym for "struct point_st*"

typedef struct point_st {

 superlong x;

 superlong y;

} Point, *PointPtr; // similar syntax to "int n, *p;"

Point origin = {0, 0};

CSE333, Autumn 2025L04: The Heap, Structs

Dynamically-allocated Structs

❖ You can malloc and free structs, just like other data

type

▪ sizeof is particularly helpful here

32

// a complex number is a + bi

typedef struct complex_st {

 double real; // real component

 double imag; // imaginary component

} Complex, *ComplexPtr;

// note that ComplexPtr is equivalent to Complex*

ComplexPtr AllocComplex(double real, double imag) {

 Complex* retval = (Complex*) malloc(sizeof(Complex));

 if (retval != NULL) {

 retval->real = real;

 retval->imag = imag;

 }

 return retval;

}

complexstruct.c

CSE333, Autumn 2025L04: The Heap, Structs

Structs as Arguments

❖ Structs are passed by value, like everything else in C

▪ Entire struct is copied – where?

▪ To manipulate a struct argument, pass a pointer instead

33

typedef struct point_st {

 int x, y;

} Point, *PointPtr;

void DoubleXBroken(Point p) { p.x *= 2; }

void DoubleXWorks(PointPtr p) { p->x *= 2; }

int main(int argc, char** argv) {

 Point a = {1,1};

 DoubleXBroken(a);

 printf("(%d,%d)\n", a.x, a.y); // prints: (,)

 DoubleXWorks(&a);

 printf("(%d,%d)\n", a.x, a.y); // prints: (,)

 return 0;

}

CSE333, Autumn 2025L04: The Heap, Structs

Returning Structs

❖ Exact method of return depends on calling conventions

▪ Often in %rax and %rdx for small structs

▪ Often returned in memory for larger structs

34

// a complex number is a + bi

typedef struct complex_st {

 double real; // real component

 double imag; // imaginary component

} Complex, *ComplexPtr;

Complex MultiplyComplex(Complex x, Complex y) {

 Complex retval;

 retval.real = (x.real * y.real) - (x.imag * y.imag);

 retval.imag = (x.imag * y.real) - (x.real * y.imag);

 return retval; // returns a copy of retval

}

complexstruct.c

CSE333, Autumn 2025L04: The Heap, Structs

Pass Copy of Struct or Pointer?

❖ Value passed: passing a pointer is cheaper and takes less space unless struct is

small

❖ Field access: indirect accesses through pointers are a bit more expensive and

can be harder for compiler to optimize

❖ For small stucts (like struct complex_st), passing a copy of the struct

can be faster and often preferred if function only reads data; for large structs

or if the function should change caller’s data, use pointers

35

CSE333, Autumn 2025L04: The Heap, Structs

Extra Exercise #1

❖ Write a program that defines:

▪ A new structured type Point

• Represent it with floats for the x and y coordinates

▪ A new structured type Rectangle

• Assume its sides are parallel to the x-axis and y-axis

• Represent it with the bottom-left and top-right Points

▪ A function that computes and returns the area of a Rectangle

▪ A function that tests whether a Point is inside of a Rectangle

36

CSE333, Autumn 2025L04: The Heap, Structs

Extra Exercise #2

❖ Implement AllocSet() and FreeSet()

▪ AllocSet() needs to use malloc twice: once to allocate a new

ComplexSet and once to allocate the “points” field inside it

▪ FreeSet() needs to use free twice

37

typedef struct complex_st {

 double real; // real component

 double imag; // imaginary component

} Complex;

typedef struct complex_set_st {

 double num_points_in_set;

 Complex* points; // an array of Complex

} ComplexSet;

ComplexSet* AllocSet(Complex c_arr[], int size);

void FreeSet(ComplexSet* set);

	Slide 1: The Heap and Structs CSE 333 Autumn 2025
	Slide 2: Administrivia
	Slide 3: More Administrivia
	Slide 4: Lecture Outline
	Slide 5: Memory Allocation So Far
	Slide 6: Why Dynamic Allocation?
	Slide 7: Dynamic Allocation
	Slide 8: The Heap
	Slide 9: Aside: NULL
	Slide 10: malloc()
	Slide 11: calloc()
	Slide 12: free()
	Slide 13: Heap and Stack Example
	Slide 14: Heap and Stack Example
	Slide 15: Heap and Stack Example
	Slide 16: Heap and Stack Example
	Slide 17: Heap and Stack Example
	Slide 18: Heap and Stack Example
	Slide 19: Heap and Stack Example
	Slide 20: Heap and Stack Example
	Slide 21: Heap and Stack Example
	Slide 22: Heap and Stack Example
	Slide 23: Heap and Stack Example
	Slide 24: Participation time!
	Slide 25: Memory Corruption - What Happens?
	Slide 26: Memory Leak
	Slide 27: Lecture Outline
	Slide 28: Structured Data
	Slide 29: Using structs
	Slide 30: Copy by Assignment
	Slide 31: typedef
	Slide 32: Dynamically-allocated Structs
	Slide 33: Structs as Arguments
	Slide 34: Returning Structs
	Slide 35: Pass Copy of Struct or Pointer?
	Slide 36: Extra Exercise #1
	Slide 37: Extra Exercise #2

