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Administrivia

+» HWO due tonight

+» EX3 out now, due Friday morning

< HW1 out now, due a week from Thursday

Look through it and get started now!

Header files / interfaces must not be changed, but
ok to add local “helper” functions in .c files when
appropriate

Pace yourself and make steady progress
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More Administrivia

+» Use git commits regularly!

" Finished implementing a bullet point in the spec?
Commit and push!

= Provides backups for all sorts of situations

= Danni gets a pet for every commit and a treat for
every push

+» What goes in your repo?

" Yes: source code, tests, data, notes and documents,
project schedules and tasks...

"= No: compiled code, executable binaries, temporary
files from your text editor

CSE333, Autumn 2025
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Lecture Outline

+~ Heap-allocated Memory

" malloc () and free ()

=" Memory leaks

+ structsand typedef

LO4: The Heap, Structs
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Memory Allocation So Far

+ So far, we have seen two kinds of memory allocation:

-
int counter = 0; // global var

int main(int argc,
counter++;
printf ("count =
return O;

}

\.

char** argv) {

$d\n", counter) ;

N\

r

" counter is statically-allocated
- Allocated when program is loaded

- Deallocated when program exits

int foo(int a) {
int x = a + 1;
return Xx;

// local var

int argc, char** argv) {
foo (10) ; // local var
printf ("y = %d\n",y);

" a, x,yare automatically-
allocated

- Allocated when function is called

- Deallocated when function returns

CSE333, Autumn 2025
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Why Dynamic Allocation?

+ When static and automatic allocation aren’t sufficient!
= Data that persists across multiple function calls but not for the whole lifetime
of the program
= Data too large to fit in a stack frame

= We need memory whose size is not known in advance

— For example, read a file into memory....

(// this is pseudo-C code

char* ReadFile (char* filename) {
int size = GetFileSize (filename) ;
char* buffer = AllocateMem (size);

ReadFileIntoBuffer (filename, buffer):;
return buffer;
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Dynamic Allocation

+» What we want is dynamically-allocated memory
" Your program explicitly requests a new block of memory
- The code allocates it at runtime, perhaps with help from OS
" Dynamically-allocated memory persists until either:

+ Your code explicitly deallocates it (manual memory management)

- A garbage collector collects it (automatic memory management)

« Crequires you to manually manage memory

= Gives you more control, but causes headaches
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The Heap

+» The Heap is a large pool of available memory
used to hold dynamically-allocated data

" malloc allocates chunks of data in the Heap;
free deallocates those chunks

*" malloc maintains bookkeeping data in the Heap
to track allocated blocks

OxFF...FF

0x00...00

CSE333, Autumn 2025
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Aside: NULL

« NULL is the name for a memory location that is guaranteed to be
invalid

" |In Con Linux, NULL is 0x0 and an attempt to dereference NULL causes a
segmentation fault

+ Useful as an indicator of an uninitialized (or currently unused)
pointer or allocation error

" |t's better to cause a segfault than to allow the corruption of memory!

rint main (int argc, char** argv) {

int* p = NULL;

*o = 1; // causes a segmentation fault
return 0O;

segfault.c

| )
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malloc ()

+ General usage: [var = (type*) malloc (sizein bytes) ]

+» malloc allocates a block of memory of the requested size
= Returns a pointer to the first byte of that memory
« And returns NULL if the memory allocation failed!
" You should assume that the memory initially contains garbage

= You'll typically use sizeof to calculate the size you need and cast the result to the
desired pointer type

[ // allocate a 10-float array
float* arr = (float*) malloc(10*sizeof (float));
1f (arr == NULL) {

return errcode;

}
// do stuff with arr
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calloc ()
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+ General usage: [var = (type*) calloc (num, bytes per element)

Like malloc, but also zeros out the block of memory

= Helpful when zero-initialization wanted (but don’t use it to mask bugs — fix those)

= Slightly slower; but useful for non-performance-critical code or if you really are planning

to zero out the new block of memory

" mallocandcallocarefoundinstdlib.h

p
// allocate a 10-double array

double* arr = (double*) calloc (10, sizeof (double)):;

1f (arr == NULL) {
return errcode;

}
// do stuff with arr
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free ()

+» Usage: [free(pointer)f ]

+ Deallocates the memory pointed-to by the pointer

= Pointer must point to the first byte of heap-allocated memory (i.e. something
previously returned by malloc or calloc)

" Freed memory becomes eligible for future (re-)allocation

" The bits in the pointer are not changed by calling free

- Defensive programming: can set pointer to NULL after freeing it

N\

[ float* arr = (float*) malloc (10*sizeof (float)) ;
1f (arr == NULL)
return errcode;
. .. // do stuff with arr
free(arr);
arr = NULL; // OPTIONAL

\

12
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Heap and Stack Example

arraycopy.c

LO4: The Heap, Structs

/;include <stdlib.h>
int i, *a2;
1if (a2 == NULL)

return NULL;

for (1 = 0;
az2[i] = al[il;

return a2;

}

int main(int argc, char**

m—— int nums[4] = {1, 2, 3,
int* ncopy = copy (nums,
// .. do stuff with the

free (ncopy) ;
return 0;

U

int* copy(int a[], int size) {

a?2 = malloc(size*sizeof (int)) ;

1 < size; 1i++)

argv)
4}

array

{

Note: Arrow points
to next instruction.

Stack

nums

main

ncopy

1

Heap (malloc/free)

Read/Write Segment

Read-Only Segment
(main, copy)

CSE333, Autumn 2025
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Heap and Stack Example

arraycopy.c
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/;include <stdlib.h>
int i, *a2;
1if (a2 == NULL)

return NULL;

for (1 = 0;
az2[i] = al[il;

return a2;

}

int main(int argc, char**

int nums[4] = {1, 2, 3,
= int* ncopy = copy (nums,
// .. do stuff with the

free (ncopy) ;
return 0;

U

int* copy(int a[], int size) {

a?2 = malloc(size*sizeof (int)) ;

1 < size; 1i++)

argv)
4}

array

{

Stack

nums|{ 1| 2| 3

main

ncopy

1

Heap (malloc/free)

Read/Write Segment

Read-Only Segment
(main, copy)

CSE333, Autumn 2025
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Heap and Stack Example

arraycopy.c
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/;include <stdlib.h>

int i, *az2;

= 32 = malloc(size*sizeof (int));

1f (a2 == NULL)
return NULL;

for (1 = 0;
az2[i] = al1i];

return a2;

}

int main(int argc, char**
int nums(4] = {1, 2, 3,
int* ncopy = copy (nums,
// .. do stuff with the
free (ncopy) ;
return O;

U

int* copy(int al[], int size) {

1 < size; 1i++)

argv)
4t

array

{

CSE333, Autumn 2025
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Heap and Stack Example

arraycopy.c
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/;include <stdlib.h>

int i, *az2;

= 32 = malloc(size*sizeof (int));

1f (a2 == NULL)
return NULL;

for (1 = 0;
az2[i] = al1i];

return a2;

}

int main(int argc, char**
int nums(4] = {1, 2, 3,
int* ncopy = copy (nums,
// .. do stuff with the
free (ncopy) ;
return O;

U

int* copy(int al[], int size) {

1 < size; 1i++)

argv)
4t

array

{

CSE333, Autumn 2025
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Heap and Stack Example

arraycopy.c
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/;include <stdlib.h>

int i, *az2;

return NULL;

for (1 = 0;
az2[i] = al1i];

return a2;

}

int main(int argc, char**
int nums(4] = {1, 2, 3,
int* ncopy = copy (nums,
// .. do stuff with the
free (ncopy) ;
return O;

U

int* copy(int al[], int size) {

a2 = malloc(size*sizeof (int));

) 1f (a2 == NULL)

1 < size; 1i++)

argv)
4t

array

{

CSE333, Autumn 2025
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Heap and Stack Example

arraycopy.c
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/;include <stdlib.h>
int i, *az2;

1f (a2 == NULL)
return NULL;

a2[i] = al1i]l;

return a2;

}

int main(int argc, char**
int nums(4] = {1, 2, 3,
int* ncopy = copy (nums,
// .. do stuff with the
free (ncopy) ;
return O;

U

int* copy(int al[], int size) {

a2 = malloc(size*sizeof (int));

1 < size; 1i++)

argv)
4t

array

{

CSE333, Autumn 2025
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Heap and Stack Example

arraycopy.c
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/;include <stdlib.h>
int i, *az2;

1f (a2 == NULL)
return NULL;

for (1 = 0;
az2[i] = al1i];

— rcocturn a2;
}

int main(int argc, char**
int nums(4] = {1, 2, 3,
int* ncopy = copy (nums,
// .. do stuff with the
free (ncopy) ;
return O;

U

int* copy(int al[], int size) {

a2 = malloc(size*sizeof (int));

1 < size; 1i++)

argv)
4t

array

{

CSE333, Autumn 2025
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Heap and Stack Example

arraycopy.c
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/;include <stdlib.h>
int i, *az2;

1f (a2 == NULL)
return NULL;

for (1 = 0;
az2[i] = al1i];

return a2;

}

int main(int argc, char**
int nums(4] = {1, 2, 3,
int* ncopy = copy (nums,

— // .. do stuff with the

free (ncopy) ;

return O;

U

int* copy(int al[], int size) {

a2 = malloc(size*sizeof (int));

1 < size; 1i++)

argv)
4t

array

{

CSE333, Autumn 2025
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Heap and Stack Example

arraycopy.c
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/;include <stdlib.h>
int i, *az2;

1f (a2 == NULL)
return NULL;

for (1 = 0;
az2[i] = al1i];

return a2;

}

int main(int argc, char**
int nums(4] = {1, 2, 3,
int* ncopy = copy (nums,
// .. do stuff with the

=P free (ncopy);

return 0;

U

int* copy(int al[], int size) {

a2 = malloc(size*sizeof (int));

1 < size; 1i++)

argv)
4t

array

{

CSE333, Autumn 2025
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Heap and Stack Example

arraycopy.c
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/;include <stdlib.h>
int i, *az2;

1f (a2 == NULL)
return NULL;

for (1 = 0;
az2[i] = al1i];

return a2;

}

int main(int argc, char**
int nums(4] = {1, 2, 3,
int* ncopy = copy (nums,
// .. do stuff with the

=P free (ncopy);

return 0;

U

int* copy(int al[], int size) {

a2 = malloc(size*sizeof (int));

1 < size; 1i++)

argv)
4t

array

{

CSE333, Autumn 2025
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Heap and Stack Example

arraycopy.c
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/;include <stdlib.h>
int i, *az2;

1f (a2 == NULL)
return NULL;

for (1 = 0;
az2[i] = al1i];

return a2;

}

int main(int argc, char**
int nums(4] = {1, 2, 3,
int* ncopy = copy (nums,
// .. do stuff with the
free (ncopy) ;

—( return 0;
}

int* copy(int al[], int size) {

a2 = malloc(size*sizeof (int));

1 < size; 1i++)

argv)
4t

array

{

CSE333, Autumn 2025
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Participation time!

+» What (if anything) is wrong
with each of these lines of
code?
= Discuss amongst your neighbors

= Respond individually @
http://PollEv.com/naomila

LO4: The Heap, Structs
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/¥include <stdio.h>
#include <stdlib.h>

int main(int argc,
int al[2];

int* c;

e avi
&y avi
/*3*/ ¢
/*4*/
/*5%/
/*e*/
S*T*/

return 0;

char** argv)

int* b = malloc(2*sizeof (int)) ;

{

24
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Memory Corruption - What Happens?

stack: main

da

heap:

memcorrupt.c

— 777

CSE333, Autumn 2025

-

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char** argv) {
int al[2];
int* b = malloc(2*sizeof (int)) ;

int* c;

al[2] = 5; // assign past the end of an array
b[0] += 2; // assume malloc zeros out memory

c = b+3; // mess up your polnter arithmetic

free(&(a[0])); // free something not malloc'ed
free (b) ;

free (b) ; // double-free the same block

b[0] = 5; // use a freed (dangling) pointer

// any many more!
return 0O;
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Memory Leak

\/
0’0

A memory leak occurs when code fails to deallocate dynamically-allocated memory
that is no longer used

= e.g. forget to £ree malloc-ed block, lose/change pointer to the block

= Takes real work to prevent — as pointers are passed around, what part of the program is
responsible for freeing each malloc-ed block?

e

» What happens: program’s “memory footprint” will keep growing
= This might be OK for short-lived program, since all memory is deallocated when program ends
= Usually has bad repercussions for long-lived programs

- Might slow down over time (e.g. lead to VM thrashing)

- Might exhaust all available memory and crash

« Other programs might get starved of memory

26
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Lecture Outline

+» Heap-allocated Memory

" malloc () and free ()

" Memory leaks

+ structs and typedef

LO4: The Heap, Structs

CSE333, Autumn 2025
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Structured Data

« A struct isa Cdatatype that contains a set of fields
= Similar to a Java class, but with no methods or constructors
= Useful for defining new structured types of data
= Act similarly to primitive variables (can assign, pass by value, ...)

= A struct tagname is a tag; not a full first-class type name

«» @eneric declaration: (// the following defines a new
4 ) // structured datatype called
struct tagname { /) a "struct Point"

typel namel; struct Point {
float x, y;

e o o };
typeN nameN;

// declare and initialize a
Y // struct Point variable

~ 4 kstruct Point origin = {0.0,0.0};)

CSE333, Autumn 2025
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Using structs

« Use “.” toreferto afieldin a struct

+» Use “—>" to refer to a field from a struct pointer

= Shorthand for: dereference pointer first, then accesses field
- Using p->x instead of (*p).x is standard practice — do it that way

(Struct Point {
float x, vy;

b g

int main(int argc, char** argv) {
struct Point pl = {0.0, 0.0}, // pl is stack allocated

struct Point* pl ptr = &pl;

pl.x = 1.0;
pl ptr->y =
return 0;

) y,

2.0; // equivalent to (*pl ptr).y = 2.0;

\_
simplestruct.c

29
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Copy by Assignment

LO4: The Heap, Structs

+ You can assign the value of a struct from a struct of the
same type — this copies the entire contents!

(#include <stdio.h>

struct Point {
float x, y;
}i

int main(int argc,
struct Point pl
struct Point p2
printf ("pl: {%f,
p2 = pl;
printf ("pl:
return 0O;

{51,

\}

char** argv) {
= {0.0, 2.0};
= {4.0, 6.0};

$f} p2: {%f,%f}\n", pl.x,

$f} p2: {%f,%f}\n", pl.x,

pl.y,

pl.y,

pP2.x%,

pP2.x%,

pP2.y);

pP2.y);

structassign.c

CSE333, Autumn 2025
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typedef

+ Generic format: [typedef Cype name; ]

+ Allows you to define new data type names/synonyms
= Both type and name are usable and refer to the same type

= Be careful with pointers — * before name is part of type!

f// make "superlong" a synonym for "unsigned long long"
typedef unsigned long long superlong;

// make "str" a synonym for "char*"
typedef char *str;

// make '"Point" a synonym for "struct point st { ... }"
// make "PointPtr'" a synonym for "struct point st*"
typedef struct point st {

superlong Xx;

superlong y;
} Point, *PointPtr; // similar syntax to "int n, *p;"

\Point origin = {0, 0};

31
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Dynamically-allocated Structs

+ Youcanmalloc and £ree structs, just like other data
type

" sizeof is particularly helpful here

(// a complex number 1is a + bi
typedef struct complex st ({

double real;
double imag;

// real component
// imaginary component

} Complex, *ComplexPtr;

// note that ComplexPtr is equivalent to Complex*
ComplexPtr AllocComplex (double real, double imag) {

Complex* retval = (Complex*) malloc(sizeof (Complex)):
1f (retval != NULL) {

retval->real = real;

retval->imag = imag;

}

return retval;
W y
complexstruct.c 32
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Structs as Arguments

+ Structs are passed by value, like everything else in C

" Entire struct is copied — where?

" To manipulate a struct argument, pass a pointer instead

(typedef struct poilnt st { R
int x, y;
} Point, *PointPtr;
vold DoubleXBroken (Point p) { p.x *= 2; 1}
vold DoubleXWorks (PointPtr p) { p->x *= 2; }
int main(int argc, char** argv) {
Point a = {111};
DoubleXBroken (a) ;
printf (" (%d, %d) \n", a.x, a.y): // prints: ( , )
DoubleXWorks (&a) ;
printf (" (%d, %d) \n", a.x, a.y): // prints: ( , )
return 0O;
}
\ J 33
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Returning Structs

\/
0’0

Exact method of return depends on calling conventions
= Oftenin $rax and $rdx for small structs

= Often returned in memory for larger structs

(// a complex number is a + bi B
typedef struct complex st ({
double real; // real component
double imag; // imaginary component
} Complex, *ComplexPtr;
Complex MultiplyComplex (Complex x, Complex y) {
Complex retval;
retval.real = (x.real * y.real) - (x.imag * y.imag);
retval.imag = (x.imag * y.real) - (x.real * y.imagqg);
return retval; // returns a copy of retval
\} J

complexstruct.c

CSE333, Autumn 2025
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Pass Copy of Struct or Pointer?

+~ Value passed: passing a pointer is cheaper and takes less space unless struct is
small

» Field access: indirect accesses through pointers are a bit more expensive and
can be harder for compiler to optimize

» For small stucts (like struct complex st), passing a copy of the struct
can be faster and often preferred if function only reads data; for large structs
or if the function should change caller’s data, use pointers

35
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Extra Exercise #1

+~ Worite a program that defines:
" A new structured type Point
- Represent it with £1oats for the x and y coordinates

= A new structured type Rectangle
- Assume its sides are parallel to the x-axis and y-axis

- Represent it with the bottom-left and top-right Points
= A function that computes and returns the area of a Rectangle

= A function that tests whether a Point is inside of a Rectangle

36
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Extra Exercise #2

Implement AllocSet () and FreeSet ()

= AllocSet() needs to use malloc twice: once to allocate a new

ComplexSet and once to allocate the “points” field inside it

= FreeSet() needs to use free twice

CSE333, Autumn 2025

(typedef struct complex st {

double real; // real component
double imag; // imaginary component
} Complex;

typedef struct complex set st {
double num points in set;

Complex* points; // an array of Complex
} ComplexSet;

ComplexSet* AllocSet (Complex c arr[], int size);
voilid FreeSet (ComplexSet* set);

\.
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