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Administrivia

❖ HW0 due tonight

❖ EX3 out now, due Friday morning

❖ HW1 out now, due a week from Thursday

▪ Look through it and get started now!

▪ Header files / interfaces must not be changed, but 

ok to add local “helper” functions in .c files when 

appropriate

▪ Pace yourself and make steady progress
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More Administrivia

❖ Use git commits regularly!

▪ Finished implementing a bullet point in the spec? 

Commit and push!

▪ Provides backups for all sorts of situations

▪ Danni gets a pet for every commit and a treat for 

every push

❖ What goes in your repo?

▪ Yes: source code, tests, data, notes and documents, 

project schedules and tasks…

▪ No: compiled code, executable binaries, temporary 

files from your text editor
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Lecture Outline

❖ Heap-allocated Memory

▪ malloc() and free()

▪ Memory leaks

❖ structs and typedef
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Memory Allocation So Far

❖ So far, we have seen two kinds of memory allocation:

int counter = 0;    // global var

int main(int argc, char** argv) {

  counter++;

  printf("count = %d\n",counter);

  return 0;

}

int foo(int a) {

  int x = a + 1;     // local var

  return x;

}

int main(int argc, char** argv) {

  int y = foo(10);   // local var

  printf("y = %d\n",y);

  return 0;

}

▪ counter is statically-allocated

• Allocated when program is loaded

• Deallocated when program exits

▪ a, x, y are automatically-

allocated

• Allocated when function is called

• Deallocated when function returns
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Why Dynamic Allocation?

❖ When static and automatic allocation aren’t sufficient!

▪ Data that persists across multiple function calls but not for the whole lifetime 

of the program

▪ Data too large to fit in a stack frame

▪ We need memory whose size is not known in advance

– For example, read a file into memory….

// this is pseudo-C code

char* ReadFile(char* filename) {

  int size = GetFileSize(filename);

  char* buffer = AllocateMem(size);

  ReadFileIntoBuffer(filename, buffer);

  return buffer;

}
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Dynamic Allocation

❖ What we want is dynamically-allocated memory

▪ Your program explicitly requests a new block of memory

• The code allocates it at runtime, perhaps with help from OS

▪ Dynamically-allocated memory persists until either:

• Your code explicitly deallocates it  (manual memory management)

• A garbage collector collects it   (automatic memory management)

❖ C requires you to manually manage memory

▪ Gives you more control, but causes headaches
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The Heap

❖ The Heap is a large pool of available memory 

used to hold dynamically-allocated data

▪ malloc allocates chunks of data in the Heap; 

free deallocates those chunks

▪ malloc maintains bookkeeping data in the Heap 

to track allocated blocks

8

0xFF…FF

0x00…00

OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment
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Shared Libraries

Read-Only Segment
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Aside: NULL

❖ NULL is the name for a memory location that is guaranteed to be 

invalid

▪ In C on Linux, NULL is 0x0 and an attempt to dereference NULL causes a 

segmentation fault

❖ Useful as an indicator of an uninitialized (or currently unused) 

pointer or allocation error

▪ It’s better to cause a segfault than to allow the corruption of memory!
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int main(int argc, char** argv) {

  int* p = NULL;

  *p = 1;  // causes a segmentation fault

  return 0;

}

segfault.c
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malloc()

❖ General usage:

❖ malloc allocates a block of memory of the requested size

▪ Returns a pointer to the first byte of that memory

• And returns NULL if the memory allocation failed!

▪ You should assume that the memory initially contains garbage

▪ You’ll typically use sizeof to calculate the size you need and cast the result to the 

desired pointer type

var = (type*) malloc(size in bytes)

// allocate a 10-float array

float* arr = (float*) malloc(10*sizeof(float));

if (arr == NULL) {

  return errcode;

}

...   // do stuff with arr

10



CSE333, Autumn 2025L04:  The Heap, Structs

calloc()

❖ General usage:

❖ Like malloc, but also zeros out the block of memory

▪ Helpful when zero-initialization wanted (but don’t use it to mask bugs – fix those)

▪ Slightly slower; but useful for non-performance-critical code or if you really are planning 

to zero out the new block of memory

▪ malloc and calloc are found in stdlib.h

var = (type*) calloc(num, bytes per element)

// allocate a 10-double array

double* arr = (double*) calloc(10, sizeof(double));

if (arr == NULL) {

  return errcode;

}

...   // do stuff with arr
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free()

❖ Usage:  free(pointer);

❖ Deallocates the memory pointed-to by the pointer

▪ Pointer must point to the first byte of heap-allocated memory (i.e. something 

previously returned by malloc or calloc)

▪ Freed memory becomes eligible for future (re-)allocation

▪ The bits in the pointer are not changed by calling free

• Defensive programming: can set pointer to NULL after freeing it
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free(pointer);

float* arr = (float*) malloc(10*sizeof(float));

if (arr == NULL)

  return errcode;

...           // do stuff with arr

free(arr);

arr = NULL;   // OPTIONAL
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Heap and Stack Example

13

#include <stdlib.h>

int* copy(int a[], int size) {

  int i, *a2;

  a2 = malloc(size*sizeof(int));

  if (a2 == NULL)

    return NULL;

  for (i = 0; i < size; i++)

    a2[i] = a[i];

  return a2;

}

int main(int argc, char** argv) {

  int nums[4] = {1, 2, 3, 4};

  int* ncopy = copy(nums, 4);

  // .. do stuff with the array ..

  free(ncopy);

  return 0;

}

arraycopy.c OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment

Read-Only Segment
(main, copy)

main
ncopy

nums

Note: Arrow points 
to next instruction.
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Heap and Stack Example

14

#include <stdlib.h>

int* copy(int a[], int size) {

  int i, *a2;

  a2 = malloc(size*sizeof(int));

  if (a2 == NULL)

    return NULL;

  for (i = 0; i < size; i++)

    a2[i] = a[i];

  return a2;

}

int main(int argc, char** argv) {

  int nums[4] = {1, 2, 3, 4};

  int* ncopy = copy(nums, 4);

  // .. do stuff with the array ..

  free(ncopy);

  return 0;

}

arraycopy.c OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment

Read-Only Segment
(main, copy)

main
ncopy

nums 1 2 3 4
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Heap and Stack Example
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#include <stdlib.h>

int* copy(int a[], int size) {

  int i, *a2;

  a2 = malloc(size*sizeof(int));

  if (a2 == NULL)

    return NULL;

  for (i = 0; i < size; i++)

    a2[i] = a[i];

  return a2;

}

int main(int argc, char** argv) {

  int nums[4] = {1, 2, 3, 4};

  int* ncopy = copy(nums, 4);

  // .. do stuff with the array ..

  free(ncopy);

  return 0;

}

arraycopy.c OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment

Read-Only Segment
(main, copy)

main
ncopy

copy
a size 4

nums 1 2 3 4

i a2
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Heap and Stack Example
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#include <stdlib.h>

int* copy(int a[], int size) {

  int i, *a2;

  a2 = malloc(size*sizeof(int));

  if (a2 == NULL)

    return NULL;

  for (i = 0; i < size; i++)

    a2[i] = a[i];

  return a2;

}

int main(int argc, char** argv) {

  int nums[4] = {1, 2, 3, 4};

  int* ncopy = copy(nums, 4);

  // .. do stuff with the array ..

  free(ncopy);

  return 0;

}

arraycopy.c OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment

Read-Only Segment
(main, copy)

malloc

main
ncopy

copy
a size 4

nums 1 2 3 4

i a2



CSE333, Autumn 2025L04:  The Heap, Structs

Heap and Stack Example
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#include <stdlib.h>

int* copy(int a[], int size) {

  int i, *a2;

  a2 = malloc(size*sizeof(int));

  if (a2 == NULL)

    return NULL;

  for (i = 0; i < size; i++)

    a2[i] = a[i];

  return a2;

}

int main(int argc, char** argv) {

  int nums[4] = {1, 2, 3, 4};

  int* ncopy = copy(nums, 4);

  // .. do stuff with the array ..

  free(ncopy);

  return 0;

}

arraycopy.c OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment

Read-Only Segment
(main, copy)

main
ncopy

copy
a size 4

nums 1 2 3 4

i a2
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Heap and Stack Example
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#include <stdlib.h>

int* copy(int a[], int size) {

  int i, *a2;

  a2 = malloc(size*sizeof(int));

  if (a2 == NULL)

    return NULL;

  for (i = 0; i < size; i++)

    a2[i] = a[i];

  return a2;

}

int main(int argc, char** argv) {

  int nums[4] = {1, 2, 3, 4};

  int* ncopy = copy(nums, 4);

  // .. do stuff with the array ..

  free(ncopy);

  return 0;

}

arraycopy.c OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment

Read-Only Segment
(main, copy)

main
ncopy

copy
a size 4

nums 1 2 3 4

i 0 a2
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Heap and Stack Example
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#include <stdlib.h>

int* copy(int a[], int size) {

  int i, *a2;

  a2 = malloc(size*sizeof(int));

  if (a2 == NULL)

    return NULL;

  for (i = 0; i < size; i++)

    a2[i] = a[i];

  return a2;

}

int main(int argc, char** argv) {

  int nums[4] = {1, 2, 3, 4};

  int* ncopy = copy(nums, 4);

  // .. do stuff with the array ..

  free(ncopy);

  return 0;

}

arraycopy.c OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment

Read-Only Segment
(main, copy)

1 2 3 4

main
ncopy

copy
a size 4

nums 1 2 3 4

i 4 a2
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Heap and Stack Example
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#include <stdlib.h>

int* copy(int a[], int size) {

  int i, *a2;

  a2 = malloc(size*sizeof(int));

  if (a2 == NULL)

    return NULL;

  for (i = 0; i < size; i++)

    a2[i] = a[i];

  return a2;

}

int main(int argc, char** argv) {

  int nums[4] = {1, 2, 3, 4};

  int* ncopy = copy(nums, 4);

  // .. do stuff with the array ..

  free(ncopy);

  return 0;

}

arraycopy.c OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment

Read-Only Segment
(main, copy)

1 2 3 4

main
ncopy

nums 1 2 3 4



CSE333, Autumn 2025L04:  The Heap, Structs

Heap and Stack Example
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#include <stdlib.h>

int* copy(int a[], int size) {

  int i, *a2;

  a2 = malloc(size*sizeof(int));

  if (a2 == NULL)

    return NULL;

  for (i = 0; i < size; i++)

    a2[i] = a[i];

  return a2;

}

int main(int argc, char** argv) {

  int nums[4] = {1, 2, 3, 4};

  int* ncopy = copy(nums, 4);

  // .. do stuff with the array ..

  free(ncopy);

  return 0;

}

arraycopy.c OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment

Read-Only Segment
(main, copy)

1 2 3 4

main
ncopy

nums 1 2 3 4
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Heap and Stack Example
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#include <stdlib.h>

int* copy(int a[], int size) {

  int i, *a2;

  a2 = malloc(size*sizeof(int));

  if (a2 == NULL)

    return NULL;

  for (i = 0; i < size; i++)

    a2[i] = a[i];

  return a2;

}

int main(int argc, char** argv) {

  int nums[4] = {1, 2, 3, 4};

  int* ncopy = copy(nums, 4);

  // .. do stuff with the array ..

  free(ncopy);

  return 0;

}

arraycopy.c OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment

Read-Only Segment
(main, copy)

main
ncopy

nums 1 2 3 4

free
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Heap and Stack Example

23

#include <stdlib.h>

int* copy(int a[], int size) {

  int i, *a2;

  a2 = malloc(size*sizeof(int));

  if (a2 == NULL)

    return NULL;

  for (i = 0; i < size; i++)

    a2[i] = a[i];

  return a2;

}

int main(int argc, char** argv) {

  int nums[4] = {1, 2, 3, 4};

  int* ncopy = copy(nums, 4);

  // .. do stuff with the array ..

  free(ncopy);

  return 0;

}

arraycopy.c OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment

Read-Only Segment
(main, copy)

main
ncopy

nums 1 2 3 4
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Participation time!

❖ What (if anything) is wrong 

with each of these lines of 

code?

▪ Discuss amongst your neighbors

▪ Respond individually @ 

http://PollEv.com/naomila 
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#include <stdio.h>

#include <stdlib.h>

int main(int argc, char** argv) {

  int a[2];

  int* b = malloc(2*sizeof(int));

  int* c;

  /*1*/ a[2] = 5;

 /*2*/ b[0] += 2;

 /*3*/ c = b+3;

 /*4*/ free(&(a[0]));

  /*5*/ free(b);

  /*6*/ free(b);

 /*7*/ b[0] = 5;

  return 0;

}

http://pollev.com/naomila
http://pollev.com/naomila
http://pollev.com/naomila
http://pollev.com/naomila
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Memory Corruption - What Happens?

25

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char** argv) {

  int a[2];

  int* b = malloc(2*sizeof(int));

  int* c;

  a[2] = 5;   // assign past the end of an array

  b[0] += 2;  // assume malloc zeros out memory

  c = b+3;    // mess up your pointer arithmetic

  free(&(a[0]));  // free something not malloc'ed

  free(b);

  free(b);    // double-free the same block

  b[0] = 5;   // use a freed (dangling) pointer

  // any many more!

  return 0;

}

memcorrupt.c

stack:

heap:

main

a

b

c

?

?

?

?

???

X
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Memory Leak

❖ A memory leak occurs when code fails to deallocate dynamically-allocated memory 

that is no longer used

▪ e.g. forget to free malloc-ed block, lose/change pointer to the block

▪ Takes real work to prevent – as pointers are passed around, what part of the program is 

responsible for freeing each malloc-ed block?

❖ What happens: program’s “memory footprint” will keep growing

▪ This might be OK for short-lived program, since all memory is deallocated when program ends

▪ Usually has bad repercussions for long-lived programs

• Might slow down over time (e.g. lead to VM thrashing)

• Might exhaust all available memory and crash

• Other programs might get starved of memory

26
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Lecture Outline

❖ Heap-allocated Memory

▪ malloc() and free()

▪ Memory leaks

❖ structs and typedef

27
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Structured Data

❖ A struct is a C datatype that contains a set of fields

▪ Similar to a Java class, but with no methods or constructors

▪ Useful for defining new structured types of data

▪ Act similarly to primitive variables (can assign, pass by value, …)

▪ A struct tagname is a tag; not a full first-class type name

❖ Generic declaration:

28

struct tagname {

  type1 name1;

  ...

  typeN nameN;

};

// the following defines a new

// structured datatype called

// a "struct Point"

struct Point {

  float x, y;

};

// declare and initialize a 

// struct Point variable

struct Point origin = {0.0,0.0};
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Using structs

❖ Use “.” to refer to a field in a struct

❖ Use “->” to refer to a field from a struct pointer

▪ Shorthand for: dereference pointer first, then accesses field

• Using p->x instead of (*p).x is standard practice – do it that way

29

struct Point {

  float x, y;

};

int main(int argc, char** argv) {

  struct Point p1 = {0.0, 0.0};  // p1 is stack allocated

  struct Point* p1_ptr = &p1;

  p1.x = 1.0;

  p1_ptr->y = 2.0;  // equivalent to (*p1_ptr).y = 2.0;

  return 0;

}

simplestruct.c
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Copy by Assignment

❖ You can assign the value of a struct from a struct of the 

same type – this copies the entire contents!

30

#include <stdio.h>

struct Point {

  float x, y;

};

int main(int argc, char** argv) {

  struct Point p1 = {0.0, 2.0};

  struct Point p2 = {4.0, 6.0};

  printf("p1: {%f,%f}  p2: {%f,%f}\n", p1.x, p1.y, p2.x, p2.y);

  p2 = p1;

  printf("p1: {%f,%f}  p2: {%f,%f}\n", p1.x, p1.y, p2.x, p2.y);

  return 0;

}

structassign.c
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typedef

❖ Generic format:  typedef type name;

❖ Allows you to define new data type names/synonyms

▪ Both type and name are usable and refer to the same type

▪ Be careful with pointers – * before name is part of type!

31

typedef type name;

// make "superlong" a synonym for "unsigned long long"

typedef unsigned long long superlong;

// make "str" a synonym for "char*"

typedef char *str;

// make "Point" a synonym for "struct point_st { ... }“

// make "PointPtr" a synonym for "struct point_st*"

typedef struct point_st {

  superlong x;

  superlong y;

} Point, *PointPtr;  // similar syntax to "int n, *p;"

Point origin = {0, 0};
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Dynamically-allocated Structs

❖ You can malloc and free structs, just like other data 

type

▪ sizeof is particularly helpful here

32

// a complex number is a + bi

typedef struct complex_st {

  double real;   // real component

  double imag;   // imaginary component

} Complex, *ComplexPtr;

// note that ComplexPtr is equivalent to Complex*

ComplexPtr AllocComplex(double real, double imag) {

  Complex* retval = (Complex*) malloc(sizeof(Complex));

  if (retval != NULL) {

    retval->real = real;

    retval->imag = imag;

  }

  return retval;

}

complexstruct.c
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Structs as Arguments

❖ Structs are passed by value, like everything else in C

▪ Entire struct is copied – where?

▪ To manipulate a struct argument, pass a pointer instead

33

typedef struct point_st {

  int x, y;

} Point, *PointPtr;

void DoubleXBroken(Point p)   {  p.x *= 2; }

void DoubleXWorks(PointPtr p) { p->x *= 2; }

int main(int argc, char** argv) {

  Point a = {1,1};

  DoubleXBroken(a);

  printf("(%d,%d)\n", a.x, a.y);  // prints: (  ,  )

  DoubleXWorks(&a);

  printf("(%d,%d)\n", a.x, a.y);   // prints: (  ,  )

  return 0;

}
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Returning Structs

❖ Exact method of return depends on calling conventions

▪ Often in %rax and %rdx for small structs

▪ Often returned in memory for larger structs

34

// a complex number is a + bi

typedef struct complex_st {

  double real;    // real component

  double imag;    // imaginary component

} Complex, *ComplexPtr;

Complex MultiplyComplex(Complex x, Complex y) {

  Complex retval;

  retval.real = (x.real * y.real) - (x.imag * y.imag);

  retval.imag = (x.imag * y.real) - (x.real * y.imag);

  return retval;  // returns a copy of retval

}

complexstruct.c
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Pass Copy of Struct or Pointer?

❖ Value passed:  passing a pointer is cheaper and takes less space unless struct is 

small

❖ Field access:  indirect accesses through pointers are a bit more expensive and 

can be harder for compiler to optimize

❖ For small stucts (like struct complex_st), passing a copy of the struct 

can be faster and often preferred if function only reads data; for large structs 

or if the function should change caller’s data, use pointers

35
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Extra Exercise #1

❖ Write a program that defines:

▪ A new structured type Point

• Represent it with floats for the x and y coordinates

▪ A new structured type Rectangle

• Assume its sides are parallel to the x-axis and y-axis

• Represent it with the bottom-left and top-right Points

▪ A function that computes and returns the area of a Rectangle

▪ A function that tests whether a Point is inside of a Rectangle

36
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Extra Exercise #2

❖ Implement AllocSet() and FreeSet()

▪ AllocSet() needs to use malloc twice: once to allocate a new 

ComplexSet and once to allocate the “points” field inside it

▪ FreeSet() needs to use free twice

37

typedef struct complex_st {

  double real;    // real component

  double imag;    // imaginary component

} Complex;

typedef struct complex_set_st {

  double   num_points_in_set;

  Complex* points;        // an array of Complex

} ComplexSet;

ComplexSet* AllocSet(Complex c_arr[], int size);

void FreeSet(ComplexSet* set);
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