
CSE333, Autumn 2025L01: Intro, C

Intro, C refresher
CSE 333 Autumn 2025

Instructor: Naomi Alterman & Chris Thachuk

Teaching Assistants:

Ann Baturytski Derek de Leuw Blake Diaz

Rishabh Jain Chendur Jayavelu Lucas Kwan

Irene Xin Jie Lau Nathan Li Maya Odenheim

Advay Patil Selim Saridede Deeksha Vatwani

Angela Wu Jiexiao Xu

CSE333, Autumn 2025L01: Intro, C

Introductions: Course Instructors

❖ Professor Alterman Naomi!

▪ Electrical engineer by training

▪ Bopped around Silicon Valley hacking on
everything from OS kernels to internet backbone
routers to LIDAR firmware to mobile graphics
libraries

▪ Discovered in industry that computers are boring

• But people on the other hand…

▪ Proud cat mom to Danni (aka Her Royal Majesty,
Queen Baby)

2

CSE333, Autumn 2025L01: Intro, C

Introductions: Course Instructors

 Chris (he/him)
From Canada (with lots of moving around)

• Windsor (CA) → Toronto (CA) → Vancouver (CA) → Mexico City (MX)
→ Vancouver (CA) → Oxford (UK) → Pasadena (USA) → Seattle (USA)

I like: research, teaching, training, hiking with my dog, sci-fi

As a high school student (many years ago) I won a contest and
was gifted a copy of “Visual Studio C++” and have been
programming in C/C++ ever since

I research systems programming of molecules such as DNA!

3

int main(int argc, char** argv) {

 make_triangle_from_DNA();

 return EXIT_SUCCESS;

}

Chris

CSE333, Autumn 2025L01: Intro, C

Introductions: Teaching Assistants

Available in section, office hours, and discussion board

❖ More than anything, we want you to feel…

▪ Comfortable and welcome in this space

▪ Able to learn and succeed in this course

▪ Comfortable reaching out if you need help or want change
4

CSE333, Autumn 2025L01: Intro, C

Introductions: Students

 ~250 students registered
There are no overload forms or waiting lists for CSE courses

• Majors must add using the UW system as space becomes available

 Expected background
Prereq: CSE 351 – C, pointers, memory model, linker, system calls

CSE 391 or Linux skills needed for CSE 351 assumed

5

CSE333, Autumn 2025L01: Intro, C

Lecture Outline

 Course Policies
https://courses.cs.washington.edu/courses/cse333/25au/syllabus.html

Digest here, but you must read the full details online

 Course Introduction

 C Reintroduction

6

CSE333, Autumn 2025L01: Intro, C

Communication

 Website: http://cs.uw.edu/333
Schedule, policies, materials, assignments, etc.

❖ Discussion: https://edstem.org/us/courses/87133/discussion/

Announcements made here

Ask and answer questions – staff will monitor and contribute

 Office Hours: spread throughout the week
Can fill out Google Form to schedule individual 1-on-1

appointments

 Anonymous feedback

7

CSE333, Autumn 2025L01: Intro, C

Course Components

 Lectures (~28)
 Introduce the concepts; take notes!!!

 Sections (10)
Applied concepts, important tools and skills for assignments,

clarification of lectures, exam review and preparation

 Programming Exercises (18)
One due at 10am before every lecture (cannot accept late submissions)

We are checking for: correctness, memory issues, code style/quality

 Programming Projects (0+4)
Warm-up, then 4 “homework” that build on each other

 In Class Exams (2)
Midterm (tentatively evening of 10/27)

 Final

8

CSE333, Autumn 2025L01: Intro, C

Grading (tentative)
 Exercises: 30% total
 Submitted via GradeScope (under your UW email)

 Graded on correctness and style by autograders and TAs

 Projects: 40% total
 Submitted via GitLab; must tag commit that you want graded

 Binaries provided if you didn’t get previous part working

 Graded on test suite, manual tests, and style

 Exams: Midterm (12%) and Final (15%)
 In-class midterm and final

 Effort, Participation, Altruism: 3%
 Many ways to earn credit here, relatively lenient on this 9

CSE333, Autumn 2025L01: Intro, C

Deadlines and Student Conduct

 Academic Integrity (read the full policy on the web)
We trust you implicitly and will follow up if that trust is violated

In short: don’t attempt to gain credit for something you didn’t do
and don’t help others do so either

This does not mean suffer in silence – learn from the course staff
and peers, talk, share ideas; but don’t share or copy work that is
supposed to be yours

❖ If you find yourself in a situation where you are tempted
to perform academic misconduct, please reach out to
Chris & Naomi to explain your situation instead

▪ See the Extenuating Circumstances section of the syllabus

10

CSE333, Autumn 2025L01: Intro, C

Discipline?!?

❖ Cultivate good habits, encourage clean code

▪ Coding style conventions

▪ Unit testing, code coverage testing, regression testing

▪ Documentation (code comments, design docs)

▪ Code reviews

❖ Will take you a lifetime to learn
▪ But oh-so-important, especially for systems code

• Avoid write-once, read-never code

11

CSE333, Autumn 2025L01: Intro, C

Deadlines & Late Policies

❖ Exercises: no late submissions accepted, due 10 am
before class

▪ Idea is to try out ideas introduced in lecture before the next class

❖ Projects: Late policy will be updated prior to HW0 release

❖ Need to get things done on time – difficult to catch up!

▪ But we will work with you if unusual circumstances / problems

12

CSE333, Autumn 2025L01: Intro, C

And off we go…

❖ This week: Goal is to figure out setup and computing
infrastructure right away so we don’t put that off and
then have a crunch later in the quarter

❖ So:
▪ First exercise out today, due Friday morning 10 am before class

▪ Warmup/logistics for larger projects in sections Thursday

• HW0 (the warmup project) published and gitlab repos created before
sections. OK to ignore details until then.

▪ Poll Everywhere polls starting next lecture

13

CSE333, Autumn 2025L01: Intro, C

Deep Breath….

❖ Any questions, comments, observations, before we go on
to, uh, some technical stuff?

14

CSE333, Autumn 2025L01: Intro, C

Lecture Outline

 Course Policies
https://courses.cs.washington.edu/courses/cse333/25au/syllabus/

 Summary here, but you must read the full details online

 Course Introduction

 C Reintroduction

15

CSE333, Autumn 2025L01: Intro, C

Course Map: 100,000 foot view

16

C application

C standard
library (glibc)

C++ STL/boost/
standard library

C++ application Java application

JRE

CPU memory storage network
GPU clock audio radio peripherals

HW/SW interface
(x86 + devices)

OS / app interface
(system calls)

operating system

hardware

CSE333, Autumn 2025L01: Intro, C

Systems Programming

❖ The programming skills, engineering discipline, and
knowledge you need to build a system

▪ Programming: C / C++

▪ Discipline: testing, debugging, performance analysis

▪ Knowledge: long list of interesting topics

• Concurrency, OS interfaces and semantics, techniques for consistent
data management, distributed systems algorithms, …

• Most important: a deep(er) understanding of the “layer below”

17

CSE333, Autumn 2025L01: Intro, C

Lecture Outline

❖ Course Introduction

❖ Course Policies
▪ https://courses.cs.washington.edu/courses/cse333/25au/syllabus.html

❖ C Intro
▪ Workflow, Variables, Functions

18

CSE333, Autumn 2025L01: Intro, C

C

❖ Created in 1972 by Dennis Ritchie

▪ Designed for creating system software

▪ Portable across machine architectures

▪ More recently updated in 1999 (C99) and 2011 (C11)
and 2017 (C17) and 2023 (C23)

• But core ideas have been stable for decades

❖ Characteristics
▪ “Low-level” language that allows us to exploit underlying features

of the architecture – but easy to fail spectacularly (!)

▪ Procedural (not object-oriented)

▪ Typed but unsafe (possible to bypass the type system)

▪ Small, basic library compared to Java, C++, most others….

19

CSE333, Autumn 2025L01: Intro, C

Generic C Program Layout

20

#include <system_files>

#include "local_files"

#define macro_name macro_expr

/* declare functions */

/* declare external variables & structs */

int main(int argc, char* argv[]) {

 /* the innards */

}

/* define other functions */

CSE333, Autumn 2025L01: Intro, C

C Syntax: main

❖ To get command-line arguments in main, use:

▪ int main(int argc, char* argv[])

❖ What does this mean?

▪ argc contains the number of strings on the command line (the

executable name counts as one, plus one for each argument).

▪ argv is an array containing pointers to the arguments as strings

(more on pointers later)

❖ Example: $./foo hello 87
▪ argc = 3

▪ argv[0]="./foo", argv[1]="hello", argv[2]="87"

21

int main(int argc, char* argv[])

CSE333, Autumn 2025L01: Intro, C

C Workflow

Editor (emacs, vi) or IDE (vscode,…)

22

Source files
(.c, .h)

Object files (.o)

“COMPILE” (compile + assemble)

LINK

LOAD

EXECUTE, DEBUG, …

EDIT

foo.c bar.cfoo.h

foo.o bar.o
libZ.a

bar

Statically-linked
libraries

bar

LINK

libc.soShared libraries

LINK

CSE333, Autumn 2025L01: Intro, C

C to Machine Code

23

C source file
(sumstore.c)

Assembly file
(sumstore.s)

C compiler (gcc –S)

Assembler (gcc -c or as)

EDIT

void sumstore(int x, int y,

 int* dest) {

 *dest = x + y;

}

sumstore:

 addl %edi, %esi

 movl %esi, (%rdx)

 ret

Machine code
(sumstore.o)

400575: 01 fe

 89 32

 c3

C compiler
(gcc –c)

CSE333, Autumn 2025L01: Intro, C

When Things Go South…

❖ Errors and Exceptions
▪ C does not have exception handling (no try/catch)

▪ Errors are returned as integer error codes from functions

▪ Because of this, error handling is ugly and inelegant

❖ Processes return an “exit code” when they terminate

▪ Can be read and used by parent process (shell or other)

• In main: return EXIT_SUCCESS; or return EXIT_FAILURE; (e.g., 0 or 1)

❖ Crashes

▪ If you do something bad, you hope to get a “segmentation fault”
(believe it or not, this is the “good” option)

24

CSE333, Autumn 2025L01: Intro, C

Java vs. C (351 refresher)

❖ Are Java and C mostly similar (S) or significantly different
(D) in the following categories?

25

Language Feature S/D Differences in C

Control structures S

Primitive datatypes S/D Similar but sizes can differ (char, esp.), unsigned,
no boolean, uninitialized data, …

Operators S Java has >>>, C has ->

Casting D Java enforces type safety, C does not

Arrays D Not objects, don’t know their own length, no
bounds checking

Memory management D Manual (malloc/free), no garbage collection

CSE333, Autumn 2025L01: Intro, C

Primitive Types in C

❖ Integer types
▪ char, int

❖ Floating point
▪ float, double

❖ Modifiers
▪ short [int]

▪ long [int, double]

▪ signed [char, int]

▪ unsigned [char, int]

26

C Data Type 32-bit 64-bit printf

char 1 1 %c

short int 2 2 %hd

unsigned short int 2 2 %hu

int 4 4 %d / %i

unsigned int 4 4 %u

long int 4 8 %ld

long long int 8 8 %lld

float 4 4 %f

double 8 8 %lf

long double 12 16 %Lf

pointer 4 8 %p

Typical sizes – see sizeofs.c

CSE333, Autumn 2025L01: Intro, C

C99 Extended Integer Types

❖ Solves the conundrum of “how big is an long int?”

27

void sumstore(int x, int y, int* dest) {

void sumstore(int32_t x, int32_t y, int32_t* dest) {

#include <stdint.h>

void foo(void) {

 int8_t a; // exactly 8 bits, signed

 int16_t b; // exactly 16 bits, signed

 int32_t c; // exactly 32 bits, signed

 int64_t d; // exactly 64 bits, signed

 uint8_t w; // exactly 8 bits, unsigned

 ...

}

Use extended types in most cse333 code

But int is usually fine for simple ints

CSE333, Autumn 2025L01: Intro, C

Basic Data Structures

❖ C does not support objects!!!

❖ Arrays are contiguous chunks of memory
▪ Arrays have no methods and do not know their own length

▪ Can easily run off ends of arrays in C – security bugs!!!

❖ Strings are null-terminated char arrays
▪ Strings have no methods, but string.h has helpful utility functions

❖ Structs are the most object-like feature, but are just collections
of fields – no “methods” or functions

• (but can contain pointers to functions!)

28

x h e l l o \n \0char* x = "hello\n";

CSE333, Autumn 2025L01: Intro, C

Function Definitions

❖ Generic format:

29

// sum of integers from 1 to max

int sumTo(int max) {

 int i, sum = 0;

 for (i = 1; i <= max; i++) {

 sum += i;

 }

 return sum;

}

returnType fname(type param1, …, type paramN) {

 // statements

}

CSE333, Autumn 2025L01: Intro, C

Function Ordering

❖ You shouldn’t call a function that hasn’t been declared yet

30

#include <stdio.h>

int main(int argc, char** argv) {

 printf("sumTo(5) is: %d\n", sumTo(5));

 return 0;

}

// sum of integers from 1 to max

int sumTo(int max) {

 int i, sum = 0;

 for (i = 1; i <= max; i++) {

 sum += i;

 }

 return sum;

}

sum_badorder.c

CSE333, Autumn 2025L01: Intro, C

Solution 1: Reverse Ordering

❖ Simple solution; however, imposes ordering restriction on
writing functions (who-calls-what?)

31

#include <stdio.h>

// sum of integers from 1 to max

int sumTo(int max) {

 int i, sum = 0;

 for (i = 1; i <= max; i++) {

 sum += i;

 }

 return sum;

}

int main(int argc, char** argv) {

 printf("sumTo(5) is: %d\n", sumTo(5));

 return 0;

}

sum_betterorder.c

CSE333, Autumn 2025L01: Intro, C

Solution 2: Function Declaration

❖ Teaches the compiler arguments and return types; function
definitions can then be in a logical order
▪ We will use this for all functions – either local or libraries

32

sum_declared.c #include <stdio.h>

// = sum of integers from 1 to max

int sumTo(int max); // func prototype

int main(int argc, char** argv) {

 printf("sumTo(5) is: %d\n", sumTo(5));

 return 0;

}

int sumTo(int max) {

 int i, sum = 0;

 for (i = 1; i <= max; i++) {

 sum += i;

 }

 return sum;

}

Hint: code examples
from slides are on the
course web for you to
experiment with

CSE333, Autumn 2025L01: Intro, C

Function Declaration vs. Definition

❖ C/C++ make a careful distinction between these two

❖ Definition: the thing itself
▪ e.g. code for function, variable definition that creates storage

▪ Must be exactly one definition of each thing (no duplicates)

❖ Declaration: description of a thing defined elsewhere
▪ e.g. function prototype, external variable declaration

• Often in header files and incorporated via #include

• Should also #include declaration in the file with the actual
definition to check for consistency

▪ Needs to appear in all files that use the thing

• Should appear before first use
33

CSE333, Autumn 2025L01: Intro, C

Multi-file C Programs

34

void sumstore(int x, int y, int* dest) {

 *dest = x + y;

}

#include <stdio.h>

void sumstore(int x, int y, int* dest);

int main(int argc, char** argv) {

 int z, x = 351, y = 333;

 sumstore(x,y,&z);

 printf("%d + %d = %d\n",x,y,z);

 return 0;

}

C source file 1
(sumstore.c)

C source file 2
(sumnum.c)

Compile together:
$ gcc -o sumnum sumnum.c sumstore.c

definition

declaration

CSE333, Autumn 2025L01: Intro, C

Compiling Multi-file Programs

❖ The linker combines multiple object files plus statically-
linked libraries to produce an executable (details later)
▪ Includes many standard libraries (e.g. libc, crt1)

• A library is just a pre-assembled collection of .o files

35

sumstore.c

sumnum.c

sumstore.o

sumnum.o

libraries
(e.g. libc)

sumnum

gcc -c

gcc -c

ld or
gcc

CSE333, Autumn 2025L01: Intro, C

To-do List

❖ Explore the website thoroughly: http://cs.uw.edu/333

❖ Computer setup: CSE labs, attu, or CSE Linux VM

❖ Exercise 0 is due 10 am sharp Friday before class
▪ Find exercise spec on website, submit via Gradescope

▪ Sample solution will be posted Wednesday after class

▪ Give it your best shot and be sure to finish and submit on time

❖ Gradescope accounts created
▪ Userid is your uw.edu email address

▪ Exercise submission: find CSE 333 25au in gradescope, click on the
exercise, drag-n-drop file(s)! That’s it!!

• See resources page on course web for how to transfer files from attu /
vscode / etc. to your local laptop to do drag-n-drop

❖ Project repos created and hw0 out before sections this week
▪ All will become clear in sections this week!

37

http://cs.uw.edu/333

	Slide 1: Intro, C refresher CSE 333 Autumn 2025
	Slide 2: Introductions: Course Instructors
	Slide 3: Introductions: Course Instructors
	Slide 4: Introductions: Teaching Assistants
	Slide 5: Introductions: Students
	Slide 6: Lecture Outline
	Slide 7: Communication
	Slide 8: Course Components
	Slide 9: Grading (tentative)
	Slide 10: Deadlines and Student Conduct
	Slide 11: Discipline?!?
	Slide 12: Deadlines & Late Policies
	Slide 13: And off we go…
	Slide 14: Deep Breath….
	Slide 15: Lecture Outline
	Slide 16: Course Map: 100,000 foot view
	Slide 17: Systems Programming
	Slide 18: Lecture Outline
	Slide 19: C
	Slide 20: Generic C Program Layout
	Slide 21: C Syntax: main
	Slide 22: C Workflow
	Slide 23: C to Machine Code
	Slide 24: When Things Go South…
	Slide 25: Java vs. C (351 refresher)
	Slide 26: Primitive Types in C
	Slide 27: C99 Extended Integer Types
	Slide 28: Basic Data Structures
	Slide 29: Function Definitions
	Slide 30: Function Ordering
	Slide 31: Solution 1: Reverse Ordering
	Slide 32: Solution 2: Function Declaration
	Slide 33: Function Declaration vs. Definition
	Slide 34: Multi-file C Programs
	Slide 35: Compiling Multi-file Programs
	Slide 37: To-do List

