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Introductions: Course Instructors

❖ Professor Alterman Naomi!

▪ Electrical engineer by training

▪ Bopped around Silicon Valley hacking on 
everything from OS kernels to internet backbone 
routers to LIDAR firmware to mobile graphics 
libraries

▪ Discovered in industry that computers are boring

• But people on the other hand…

▪ Proud cat mom to Danni (aka Her Royal Majesty, 
Queen Baby)
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Introductions: Course Instructors

 Chris (he/him)
From Canada (with lots of moving around)

• Windsor (CA) → Toronto (CA) → Vancouver (CA) → Mexico City (MX) 
→ Vancouver (CA) → Oxford (UK) → Pasadena (USA) → Seattle (USA)

I like:  research, teaching, training, hiking with my dog, sci-fi

As a high school student (many years ago) I won a contest and 
was gifted a copy of “Visual Studio C++” and have been 
programming in C/C++ ever since

I research systems programming of molecules such as DNA!
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int main(int argc, char** argv) {

  make_triangle_from_DNA();

  return EXIT_SUCCESS;

}

Chris
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Introductions: Teaching Assistants

Available in section, office hours, and discussion board

❖ More than anything, we want you to feel…

▪ Comfortable and welcome in this space

▪ Able to learn and succeed in this course

▪ Comfortable reaching out if you need help or want change
4
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Introductions: Students

 ~250 students registered
There are no overload forms or waiting lists for CSE courses

• Majors must add using the UW system as space becomes available

 Expected background
Prereq:  CSE 351 – C, pointers, memory model, linker, system calls

CSE 391 or Linux skills needed for CSE 351 assumed
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Lecture Outline

 Course Policies
https://courses.cs.washington.edu/courses/cse333/25au/syllabus.html

Digest here, but you must read the full details online 

 Course Introduction

 C Reintroduction
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Communication

 Website:  http://cs.uw.edu/333
Schedule, policies, materials, assignments, etc.

❖ Discussion: https://edstem.org/us/courses/87133/discussion/

Announcements made here

Ask and answer questions – staff will monitor and contribute

 Office Hours:  spread throughout the week
Can fill out Google Form to schedule individual 1-on-1 

appointments

 Anonymous feedback
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Course Components

 Lectures (~28)
 Introduce the concepts; take notes!!!

 Sections (10)
Applied concepts, important tools and skills for assignments, 

clarification of lectures, exam review and preparation

 Programming Exercises (18)
One due at 10am before every lecture (cannot accept late submissions)

We are checking for: correctness, memory issues, code style/quality

 Programming Projects (0+4)
Warm-up, then 4 “homework” that build on each other

 In Class Exams (2)
Midterm  (tentatively evening of 10/27)

 Final
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Grading (tentative)
 Exercises:  30% total
 Submitted via GradeScope (under your UW email)

 Graded on correctness and style by autograders and TAs

 Projects:  40% total
 Submitted via GitLab; must tag commit that you want graded

 Binaries provided if you didn’t get previous part working

 Graded on test suite, manual tests, and style 

 Exams:  Midterm (12%) and Final (15%)
 In-class midterm and final

 Effort, Participation, Altruism:  3%
 Many ways to earn credit here, relatively lenient on this 9
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Deadlines and Student Conduct

 Academic Integrity (read the full policy on the web)
We trust you implicitly and will follow up if that trust is violated

In short:  don’t attempt to gain credit for something you didn’t do 
and don’t help others do so either

This does not mean suffer in silence – learn from the course staff 
and peers, talk, share ideas; but don’t share or copy work that is 
supposed to be yours

❖ If you find yourself in a situation where you are tempted 
to perform academic misconduct, please reach out to 
Chris & Naomi to explain your situation instead

▪ See the Extenuating Circumstances section of the syllabus
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Discipline?!?

❖ Cultivate good habits, encourage clean code

▪ Coding style conventions

▪ Unit testing, code coverage testing, regression testing

▪ Documentation (code comments, design docs)

▪ Code reviews

❖ Will take you a lifetime to learn
▪ But oh-so-important, especially for systems code

• Avoid write-once, read-never code

11



CSE333, Autumn 2025L01:  Intro, C

Deadlines & Late Policies

❖ Exercises:  no late submissions accepted, due 10 am 
before class

▪ Idea is to try out ideas introduced in lecture before the next class

❖ Projects:  Late policy will be updated prior to HW0 release

❖ Need to get things done on time – difficult to catch up!

▪ But we will work with you if unusual circumstances / problems
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And off we go…

❖ This week: Goal is to figure out setup and computing 
infrastructure right away so we don’t put that off and 
then have a crunch later in the quarter

❖ So:
▪ First exercise out today, due Friday morning 10 am before class

▪ Warmup/logistics for larger projects in sections Thursday

• HW0 (the warmup project) published and gitlab repos created before 
sections.  OK to ignore details until then.

▪ Poll Everywhere polls starting next lecture
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Deep Breath….

❖ Any questions, comments, observations, before we go on 
to, uh, some technical stuff?

14



CSE333, Autumn 2025L01:  Intro, C

Lecture Outline

 Course Policies
https://courses.cs.washington.edu/courses/cse333/25au/syllabus/

 Summary here, but you must read the full details online 

 Course Introduction

 C Reintroduction
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Course Map:  100,000 foot view
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C application

C standard 
library (glibc)

C++ STL/boost/ 
standard library

C++ application Java application

JRE

CPU     memory     storage     network
GPU clock   audio   radio   peripherals

HW/SW interface
(x86 + devices)

OS / app interface
(system calls)

operating system

hardware
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Systems Programming

❖ The programming skills, engineering discipline, and 
knowledge you need to build a system

▪ Programming:  C / C++

▪ Discipline:  testing, debugging, performance analysis

▪ Knowledge:  long list of interesting topics

• Concurrency, OS interfaces and semantics, techniques for consistent 
data management, distributed systems algorithms, …

• Most important:  a deep(er) understanding of the “layer below”
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Lecture Outline

❖ Course Introduction

❖ Course Policies
▪ https://courses.cs.washington.edu/courses/cse333/25au/syllabus.html

❖ C Intro
▪ Workflow, Variables, Functions
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C

❖ Created in 1972 by Dennis Ritchie

▪ Designed for creating system software

▪ Portable across machine architectures

▪ More recently updated in 1999 (C99) and 2011 (C11)
and 2017 (C17) and 2023 (C23)

• But core ideas have been stable for decades

❖ Characteristics
▪ “Low-level” language that allows us to exploit underlying features 

of the architecture – but easy to fail spectacularly (!)

▪ Procedural (not object-oriented)

▪ Typed but unsafe (possible to bypass the type system)

▪ Small, basic library compared to Java, C++, most others….
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Generic C Program Layout

20

#include <system_files>

#include "local_files"

#define macro_name macro_expr

/* declare functions */

/* declare external variables & structs */

int main(int argc, char* argv[]) {

  /* the innards */

}

/* define other functions */
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C Syntax: main

❖ To get command-line arguments in main, use:

▪ int main(int argc, char* argv[])

❖ What does this mean?

▪ argc contains the number of strings on the command line (the 

executable name counts as one, plus one for each argument). 

▪ argv is an array containing pointers to the arguments as strings 

(more on pointers later)

❖ Example:  $ ./foo hello 87
▪ argc = 3

▪ argv[0]="./foo",  argv[1]="hello",  argv[2]="87"

21

int main(int argc, char* argv[])
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C Workflow

Editor (emacs, vi) or IDE (vscode,…)
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Source files 
(.c, .h)

Object files (.o)

“COMPILE” (compile + assemble)

LINK

LOAD

EXECUTE, DEBUG, …

EDIT

foo.c bar.cfoo.h

foo.o bar.o
libZ.a

bar

Statically-linked
libraries

bar

LINK

libc.soShared libraries

LINK
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C to Machine Code

23

C source file
(sumstore.c)

Assembly file 
(sumstore.s)

C compiler (gcc –S)

Assembler (gcc -c or as)

EDIT

void sumstore(int x, int y,

              int* dest) {

  *dest = x + y;

}

sumstore:

       addl    %edi, %esi

       movl    %esi, (%rdx)

       ret

Machine code
(sumstore.o)

400575: 01 fe

        89 32

        c3

C compiler 
(gcc –c)
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When Things Go South…

❖ Errors and Exceptions
▪ C does not have exception handling (no try/catch)

▪ Errors are returned as integer error codes from functions

▪ Because of this, error handling is ugly and inelegant

❖ Processes return an “exit code” when they terminate

▪ Can be read and used by parent process (shell or other)

• In main: return EXIT_SUCCESS; or return EXIT_FAILURE;  (e.g., 0 or 1)

❖ Crashes

▪ If you do something bad, you hope to get a “segmentation fault” 
(believe it or not, this is the “good” option)
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Java vs. C  (351 refresher)

❖ Are Java and C mostly similar (S) or significantly different 
(D) in the following categories?

25

Language Feature S/D Differences in C

Control structures S

Primitive datatypes S/D Similar but sizes can differ (char, esp.), unsigned, 
no boolean, uninitialized data, …

Operators S Java has >>>, C has ->

Casting D Java enforces type safety, C does not

Arrays D Not objects, don’t know their own length, no 
bounds checking

Memory management D Manual (malloc/free), no garbage collection
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Primitive Types in C

❖ Integer types
▪ char, int

❖ Floating point
▪ float, double

❖ Modifiers
▪ short [int]

▪ long [int, double]

▪ signed [char, int]

▪ unsigned [char, int]
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C Data Type 32-bit 64-bit printf

char 1 1 %c

short int 2 2 %hd

unsigned short int 2 2 %hu

int 4 4 %d / %i

unsigned int 4 4 %u

long int 4 8 %ld

long long int 8 8 %lld

float 4 4 %f

double 8 8 %lf

long double 12 16 %Lf

pointer 4 8 %p

Typical sizes – see sizeofs.c
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C99 Extended Integer Types

❖ Solves the conundrum of “how big is an long int?”
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void sumstore(int x, int y, int* dest) {

void sumstore(int32_t x, int32_t y, int32_t* dest) {

#include <stdint.h>

void foo(void) {

  int8_t a;  // exactly 8 bits, signed

  int16_t b;  // exactly 16 bits, signed

  int32_t c;  // exactly 32 bits, signed

  int64_t d;  // exactly 64 bits, signed

  uint8_t w;  // exactly 8 bits, unsigned

  ...

}

Use extended types in most cse333 code

But int is usually fine for simple ints
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Basic Data Structures

❖ C does not support objects!!!

❖ Arrays are contiguous chunks of memory
▪ Arrays have no methods and do not know their own length

▪ Can easily run off ends of arrays in C – security bugs!!!

❖ Strings are null-terminated char arrays
▪ Strings have no methods, but string.h has helpful utility functions

❖ Structs are the most object-like feature, but are just collections 
of fields – no “methods” or functions

• (but can contain pointers to functions!)

28

x h e l l o \n \0char* x = "hello\n";
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Function Definitions

❖ Generic format:
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// sum of integers from 1 to max

int sumTo(int max) {

  int i, sum = 0;

  for (i = 1; i <= max; i++) {

    sum += i;

  }

  return sum;

}

returnType fname(type param1, …, type paramN) {

   // statements

}
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Function Ordering

❖ You shouldn’t call a function that hasn’t been declared yet
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#include <stdio.h>

int main(int argc, char** argv) {

  printf("sumTo(5) is: %d\n", sumTo(5));

  return 0;

}

// sum of integers from 1 to max

int sumTo(int max) {

  int i, sum = 0;

  for (i = 1; i <= max; i++) {

    sum += i;

  }

  return sum;

}

sum_badorder.c
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Solution 1: Reverse Ordering

❖ Simple solution; however, imposes ordering restriction on 
writing functions (who-calls-what?)
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#include <stdio.h>

// sum of integers from 1 to max

int sumTo(int max) {

  int i, sum = 0;

  for (i = 1; i <= max; i++) {

    sum += i;

  }

  return sum;

}

int main(int argc, char** argv) {

  printf("sumTo(5) is: %d\n", sumTo(5));

  return 0;

}

sum_betterorder.c
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Solution 2: Function Declaration

❖ Teaches the compiler arguments and return types; function 
definitions can then be in a logical order
▪ We will use this for all functions – either local or libraries

32

sum_declared.c #include <stdio.h>

// = sum of integers from 1 to max

int sumTo(int max);  // func prototype

int main(int argc, char** argv) {

  printf("sumTo(5) is: %d\n", sumTo(5));

  return 0;

}

int sumTo(int max) {

  int i, sum = 0;

  for (i = 1; i <= max; i++) {

    sum += i;

  }

  return sum;

}

Hint: code examples 
from slides are on the 
course web for you to 
experiment with
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Function Declaration vs. Definition

❖ C/C++ make a careful distinction between these two

❖ Definition:  the thing itself
▪ e.g. code for function, variable definition that creates storage

▪ Must be exactly one definition of each thing (no duplicates)

❖ Declaration:  description of a thing defined elsewhere
▪ e.g. function prototype, external variable declaration

• Often in header files and incorporated via #include

• Should also #include declaration in the file with the actual 
definition to check for consistency

▪ Needs to appear in all files that use the thing

• Should appear before first use
33
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Multi-file C Programs

34

void sumstore(int x, int y, int* dest) {

  *dest = x + y;

}

#include <stdio.h>

void sumstore(int x, int y, int* dest);

int main(int argc, char** argv) {

  int z, x = 351, y = 333;

  sumstore(x,y,&z);

  printf("%d + %d = %d\n",x,y,z);

  return 0;

}

C source file 1
(sumstore.c)

C source file 2
(sumnum.c)

Compile together:  
$ gcc -o sumnum sumnum.c sumstore.c

definition

declaration
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Compiling Multi-file Programs

❖ The linker combines multiple object files plus statically-
linked libraries to produce an executable (details later)
▪ Includes many standard libraries (e.g. libc, crt1)

• A library is just a pre-assembled collection of .o files

35

sumstore.c

sumnum.c

sumstore.o

sumnum.o

libraries
(e.g. libc)

sumnum

gcc -c

gcc -c

ld or 
gcc
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To-do List

❖ Explore the website thoroughly:  http://cs.uw.edu/333

❖ Computer setup:  CSE labs, attu, or CSE Linux VM

❖ Exercise 0 is due 10 am sharp Friday before class
▪ Find exercise spec on website, submit via Gradescope

▪ Sample solution will be posted Wednesday after class

▪ Give it your best shot and be sure to finish and submit on time

❖ Gradescope accounts created
▪ Userid is your uw.edu email address

▪ Exercise submission: find CSE 333 25au in gradescope, click on the 
exercise, drag-n-drop file(s)!  That’s it!!

• See resources page on course web for how to transfer files from attu / 
vscode / etc. to your local laptop to do drag-n-drop

❖ Project repos created and hw0 out before sections this week
▪ All will become clear in sections this week!

37

http://cs.uw.edu/333
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