
333 Section 9 SOLUTIONS - Concurrency and pthreads
1) Consider the following multithreaded program (in the original worksheet)…

Give three different possible outputs (there are many)

Here are a few

g = 6 g = 12 g = 7 g = 6 g = 7

g = 12 g = 12 g = 9 g = 11 g = 10

What are the possible final values of the global variable ‘g’? (circle all possible)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15+

2. It’s the payday! It’s time for UW to pay each of the 333 TAs their monthly salary. Each

of the bank accounts is inside the bank_accounts[] array and the person who is in

charge of paying the TAs is a 333 student and decided to use pthreads to pay the TAs by

adding 1000 into each bank account. Here is the program the student wrote:

// Assume all necessary libraries and header files are included

const int NUM_TAS = 10;

static int bank_accounts[NUM_TAS];

static pthread_mutex_t sum_lock;

void *thread_main(void *arg) {

 int *TA_index = reinterpret_cast<int*>(arg);

 pthread_mutex_lock(&sum_lock);

 bank_accounts[*TA_index] += 1000;

 pthread_mutex_unlock(&sum_lock);

 delete TA_index;

 return NULL;

}

int main(int argc, char** argv) {

 pthread_t thds[NUM_TAS];

 pthread_mutex_init(&sum_lock, NULL);

 for (int i = 0; i < NUM_TAS; i++) {

 int *num = new int(i);

 if (pthread_create(&thds[i], NULL, &thread_main, num) != 0) {

 /*report error*/

 }

 }

 pthread_mutex_destroy(&sum_lock);

 return 0;

}

a) Does the program increase the TAs’ bank accounts correctly? Why or why not?

 No its not correct. It needs to use pthread_join to wait for each thread to finish before

exiting the main program. pthread_exit() might not be the best solution here. You want to check

the return value of join to make sure the transaction applied rather than just exiting and trusting

the threads to finish successfully. Gotta get those TA dolla’s.

b) Could we implement this program using processes instead of threads? Why would or

why wouldn’t we want to do this?

 We could, but doing so would require some way for the processes to communicate with

each other so that the data structure can be “shared” (remember that inter-process

communication can be difficult and time consuming). It is much easier to just use threads since

each thread could directly access the data structure.

c) Assume that all the problems, if any, are now fixed. The student discovers that the

program they wrote is kinda slow even though its a multithreaded program. Why might it

be the case? And how would you fix that?

Because there is a lock over the entire bank account array, so only one thread can

increase the value of one account at a time and there is no difference from incrementing each

account sequentially. To fix this, we can have one lock per account so that multiple threads can

increment the account at the same time. (With the current setup, we could also just not use a

lock since we know that no thread will have a conflicting TA_index. For a more generalized

program, it would be better to use the first answer.)

Exercise 3 (Bonus!)

Write a function called ExtractRequestLine that takes in a well-formatted HTTP request as

a string and returns a map with the keys as method, uri, version and the values from the

corresponding request.

Example Input:

"GET /index.html HTTP/1.1\r\nHost: www.mywebsite.com\r\nConnect ion:

keep-alive\r\nUpgrade-Insecure-Requests: 1\r\n\r\n"

Map Returned:

{

 "method" : "GET"

 "uri" : "/index.html"

 "version" : "HTTP/1.1"

}

#include <map>

#include <string>

#include <vector>

#include <boost/algorithm/string.hpp>

using std::map;

using std::string;

Using std::vector;

map<string,string> ExtractRequestLine(const string& request) {

 vector<string> lines;

 boost::split(lines, request, boost::is_any_of("\r\n"),

 boost::token_compress_on);

 vector<string> components;

 string firstLine = lines[0];

 boost::split(components, firstLine, boost::is_any_of(" "),

 boost::token_compress_on);

 map<string, string> res;

 res["method"] = components[0];

 res["uri"] = components[1];

 res["version"] = components[2];

 return res;

}

	333 Section 9 SOLUTIONS - Concurrency and pthreads

