
CSE 333
Section 9
Concurrency, pthreads

Logistics

● Homework 4

○ Due next Thursday (3/7) @ 11:00pm

● Exercise 17

○ Out later today

○ Due Monday (3/4) @ 10:00am

HW4 and nc

Web Server
1. Establish client connections

a. Server socket set up

in hw4/ServerSocket.cc

2. Read client requests

a. Parse HTTP requests

in hw4/HttpConnection.cc

3. Respond to requests

a. Write HTTP responses

in hw4/HttpServer.cc

4. Fix security vulnerabilities

a. Escape characters

in hw4/Utils.cc
4

Steps 2, 3, and 4 involve a lot of
string manipulation which can be

tedious! There might be something
to help with that ☺

Okay to copy and modify
lecture/exercise code for HW4, just
make sure you know what’s going

on!

Using telnet with HW4

1. Launch the server

./http333d <port> ../projdocs/ unit_test_indices/*

2. Connect with telnet

nc -C <HostName> <port>

3. Write an HTTP request and send it

(Note: nc –C is needed on attu/vm/CSE workstations to use \r\n for newlines when talking

to web servers. The option might be different on other machines (e.g., macs)

Writing an HTTP Request

● Example HTTP Request layout can be found in HttpRequest.h

● Example HW4 file request:

○ GET /static/test_tree/books/artofwar.txt HTTP/1.1

● Example HW4 query request:
○ GET /query?terms=books+of+war HTTP/1.1

● To send a request, hit [Enter] twice

● Compare the output of solution_binaries/http333d to ./http333d

Boost Library

Boost

Boost is a free C++ library that provides support for various tasks in C++

● Note: Boost does NOT follow the Google style guide!!!

● These will be helpful for you in hw4 to parse HTTP Requests!

Boost adds many string algorithms that you may have seen in Java

● Include with #include <boost/algorithm/string.hpp>

● Documentation: https://www.boost.org/doc/libs/1_60_0/doc/html/string_algo.html

● The worksheet contains some examples (googling helps as well)

● DO NOT use the regex library, the string library should be enough.
○ i.e., OK to use any boost libraries that do not require changing hw4 Makefile

https://www.boost.org/doc/libs/1_60_0/doc/html/string_algo.html

Helpful Functions

void boost::trim(string& input);

● Removes all leading and trailing whitespace from the string

● input is an input and output parameter (non-const reference)

void boost::replace_all(string& input,

const string& search,

const string& format);

● Replaces all instances of search inside input with format

Helpful Functions

void boost::split(vector<string>& output,

const string& input,

boost::PredicateT match_on,

boost::token_compress_mode_type compress);

● Split the string by the characters in match_on

boost::PredicateT boost::is_any_of(const string& tokens);

● Returns predicate that matches on any of the characters in tokens

pthreads

Concurrency with pthreads

● EX17 and HW4 both use pthreads to create thread concurrency

Creation pthread_create Parent: “Go do this {function}”

Termination pthread_exit
start_routine returns

Child: “I’m done with my task!”

pthread_cancel Parent: “I changed my mind, you can stop now”

Resource Clean-
up

pthread_join Parent: “I’ll wait for you to finish and report back
your result”
(resource persists until joined)

pthread_detach Parent: “You’re free now, go forth and prosper”
(automatically cleans up on termination)

● pthread_create creates a new thread into *thread, with attributes *attr
(NULL means default attributes)

● Returns 0 on success and an error number on error (can check against error
constants)

● The new thread runs start_routine(arg)

● Compile and link with –pthread.

pthread_create
#include <pthread.h>
int pthread_create(pthread_t *thread,

const pthread_attr_t *attr,
void *(*start_routine) (void *),
void *arg);

Other Ways Threads Terminate

● Let the thread function exit by itself; work is done

● Thread calls pthread_exit (thread terminates its own execution)

● Main thread calls pthread_cancel to close a child thread.

● The process exits from main or calls exit

pthread_exit

● Equivalent of exit(retval); for a thread instead of a process

○ This means it is called in the thread function (child thread)

○ Will only terminate the thread instead of the entire process (other threads will still run)

● The thread will automatically exit once it returns from start_routine()

○ retval is an output parameter to indicate success or failure (usually pass the address

of a global variable to view).

void pthread_exit(void *retval);

Synchronizing Threads – Called by Parent Thread

void pthread_join(pthread_t thread, void **retval);

● Waits for the thread specified by thread to terminate

● The thread equivalent of waitpid()

● The exit status of the terminated thread is placed in **retval

int pthread_detach(pthread_t thread);

● Mark thread specified by thread as detached – it will clean up its

resources as soon as it terminates

Exercise 1

Exercise 1
int g = 0;

void *worker(void *ignore) {

for (int k = 1; k <= 3; k++) {

g = g + k;

}

printf("g = %d\n", g);

return NULL;

}

int main() {

pthread_t t1, t2;

int ignore;

ignore = pthread_create(&t1, NULL, &worker, NULL);

ignore = pthread_create(&t2, NULL, &worker, NULL);

pthread_join(t1, NULL);

pthread_join(t2, NULL);

return EXIT_SUCCESS;

}

What are the possible outputs of this
program?

What is the range of values that g can have
at the end of the program?

Exercise 1
int g = 0;

void *worker(void *ignore) {

for (int k = 1; k <= 3; k++) {

g = g + k;

}

printf("g = %d\n", g);

return NULL;

}

int main() {

pthread_t t1, t2;

int ignore;

ignore = pthread_create(&t1, NULL, &worker, NULL);

ignore = pthread_create(&t2, NULL, &worker, NULL);

pthread_join(t1, NULL);

pthread_join(t2, NULL);

return EXIT_SUCCESS;

}

What are the possible outputs of this
program?

Lots of possible answers, here are four:

g = 6
g = 12

g = 12
g = 12

g = 7
g = 9

g = 6
g = 11

Exercise 1
int g = 0;

void *worker(void *ignore) {

for (int k = 1; k <= 3; k++) {

g = g + k;

}

printf("g = %d\n", g);

return NULL;

}

int main() {

pthread_t t1, t2;

int ignore;

ignore = pthread_create(&t1, NULL, &worker, NULL);

ignore = pthread_create(&t2, NULL, &worker, NULL);

pthread_join(t1, NULL);

pthread_join(t2, NULL);

return EXIT_SUCCESS;

}

What is the range of values that g can have
at the end of the program?

g = [4 - 12]

Assembly Instructions

Instructions for g = g + k:

mov 0x2ebf(%rip),%edx

mov -0x4(%rbp),%eax

add %edx,%eax

mov %eax,0x2eb4(%rip)

Loads global g into local register

Stores addition result back into global g

Loads k into %eax register

Adds copy of g in %edx to %eax register

The "trick" is that because threads execute concurrently, the processor might be switched to a different
thread after executing any instruction. When this sequence of code is executed, it could be interrupted
between any two instructions by another thread that reads or writes global variable g.

reg2 ⇐ g

g ⇐ reg2 + 1

reg2 ⇐ g

g ⇐ reg2 + 2

reg2 ⇐ g

g ⇐ reg2 + 3

Getting 4 from Exercise 1

reg1 ⇐ g

g ⇐ reg1 + 1

reg1 ⇐ g

g ⇐ reg1 + 2

reg1 ⇐ g

g ⇐ reg1 + 3

Thread 1

g = 4

Thread 2

Load 0 into reg

Write g=1

Load 1
into reg

Write g=4

Synchronization

Synchronization

● Remember, threads share an address space and

system resources

● This makes it easy to communicate, but how do you

avoid a total free-for-all?

● Protect your critical sections with locks!

○ Make sure nothing gets lost!

○ We’ll be using pthread_mutex

Locking with mutex

int pthread_mutex_init(pthread_mutex_t *mutex,

const pthread_mutexattr_t *attr);

● Initializes the mutex lock pointed to by mutexwith lock attributes specified by attr.

● attr can be NULL.

int pthread_mutex_destroy(pthread_mutex_t *mutex);

● Destroys the lock

● Cleans up resource

Locking with mutex

int pthread_mutex_lock(pthread_mutex_t *mutex);

● Grabs the lock

● If resource is locked, function will be blocked until resource is unlocked

int pthread_mutex_unlock(pthread_mutex_t *mutex);

● Releases the lock

Problems with Synchronization

● Sharing Resources
○ Must be allocated / deallocated exactly once

○ Don’t use deallocated resources from other threads

Problems with Synchronization

● Sharing Resources
○ Must be allocated / deallocated exactly once

○ Don’t use deallocated resources from other threads

● Locking is hard!

○ Too much, and performance is worse than sequential

○ Too little, and threads clash - often unexpected results (unwanted interleaving)

○ Not careful, and deadlock freezes your program forever!

Exercise 2

Exercise 2

// Assume all necessary libraries

and header files are included

const int NUM_TAS = 10;

static int bank_accounts[NUM_TAS];

static pthread_mutex_t sum_lock;

void *thread_main(void *arg) {

int *TA_index =

static_cast<int *>(arg);

pthread_mutex_lock(&sum_lock);

bank_accounts[*TA_index] += 1000;

pthread_mutex_unlock(&sum_lock);

delete TA_index;

return nullptr;

}

int main(int argc, char **argv) {

pthread_t thds[NUM_TAS];

pthread_mutex_init(&sum_lock, nullptr);

for (int i = 0; i < NUM_TAS; i++) {

int *num = new int(i);

if (pthread_create(&thds[i], nullptr, &thread_main, num)!= 0){

/*report error*/

}

}

for (int i = 0; i < NUM_TAS; i++) {

cout << bank_accounts[i] << endl;

}

pthread_mutex_destroy(&sum_lock);

return 0;

}

It’s pay day! A CSE333 student wrote this program to pay all CSE TAs, answer
the questions on the next slide (or on the worksheet) about this program.

Exercise 2

a. Does the program increase the TAs’ bank accounts correctly? Why or why not?

b. Could we implement this program using processes instead of threads? Why would

or why wouldn’t we want to do this?

c. Assume that all the problems, if any, are now fixed. The student discovers that the

program they wrote is kinda slow even though its a multithreaded program. Why

might it be the case? And how would you fix that?

Exercise 2

a) Does the program increase the TAs’ bank accounts correctly? Why or why not?

No, it’s not correct. It requires main to call pthread_join to wait for each thread to

finish before exiting the main program.

pthread_exit() will let a child thread finish leave to its parent, but it needs to be

used in conjunction with pthread_join in order to check the results of the child

thread.

Exercise 2

b) Could we implement this program using processes instead of threads? Why would or

why wouldn’t we want to do this?

We could, but doing so would require some way for the processes to communicate with

each other so that the data structure can be “shared” (remember that inter-process

communication can be difficult and time consuming).

It is much easier to just use threads since each thread could directly access the data

structure.

Exercise 2
c) Assume that all the problems, if any, are now fixed. The student discovers that the program they

wrote is kinda slow even though its a multithreaded program. Why might it be the case? And how

would you fix that?

thread_mutex_lock(&sum_lock);
bank_accounts[*TA_index] += 1000;

pthread_mutex_unlock(&sum_lock);

Only one thread can increase the value of one account at a time and there is no difference from

incrementing each account sequentially because we only have a single lock on this line for every

single thread to share.

To fix this, we can have one lock per account so that multiple threads can increment the account

at the same time. (An alternative solution is to just not use locks as well since the threads made

will not conflict with each other, but we should aim for safe options for the bank accounts)

thread_mutex_lock(&acct_lcks[*TA_index]);
bank_accounts[*TA_index] += 1000;

pthread_mutex_unlock(&acct_lks[*TA_index]);

Bonus!

ExtractRequestLine (Boost)

Write a function called ExtractRequestLine that takes in a well-formatted HTTP request as a
string and returns a map with the keys as method, uri, version and the values from the
corresponding request.

Example Input:

“GET /index.html HTTP/1\r\nHost: www.mywebsite.com\r\nConnection:
keep-alive\r\nUpgrade-Insecure-Requests: 1\r\n\r\n”

Map Returned:

{
“method” : “GET”
“uri” : “/index.html”
“version” : “HTTP/1.1”

}

ExtractRequestLine (Boost)
map<string,string> ExtractRequestLine(const string& request) {

vector<string> lines;

boost::split(lines, request, boost::is_any_of("\r\n"),

boost::token_compress_on);

vector<string> components;

string firstLine = lines[0];

boost::split(components, firstLine, boost::is_any_of(" "),

boost::token_compress_on);

map<string, string> res;

res["method"] = components[0];

res["uri"] = components[1];

res["version"] = components[2];

return res;

}

	Slide 1: CSE 333 Section 9
	Slide 2: Logistics
	Slide 3: HW4 and nc
	Slide 4: Web Server
	Slide 5: Using telnet with HW4
	Slide 6: Writing an HTTP Request
	Slide 7: Boost Library
	Slide 8: Boost
	Slide 9: Helpful Functions
	Slide 10: Helpful Functions
	Slide 11: pthreads
	Slide 12: Concurrency with pthreads
	Slide 13: pthread_create
	Slide 14: Other Ways Threads Terminate
	Slide 15: pthread_exit
	Slide 16: Synchronizing Threads – Called by Parent Thread
	Slide 17: Exercise 1
	Slide 18: Exercise 1
	Slide 19: Exercise 1
	Slide 20: Exercise 1
	Slide 21: Assembly Instructions
	Slide 22: Getting 4 from Exercise 1
	Slide 23: Synchronization
	Slide 24: Synchronization
	Slide 25: Locking with mutex
	Slide 26: Locking with mutex
	Slide 27: Problems with Synchronization
	Slide 28: Problems with Synchronization
	Slide 29: Exercise 2
	Slide 30: Exercise 2
	Slide 31: Exercise 2
	Slide 32: Exercise 2
	Slide 33: Exercise 2
	Slide 34: Exercise 2
	Slide 35: Bonus!
	Slide 36: ExtractRequestLine (Boost)
	Slide 37: ExtractRequestLine (Boost)

