
1

CSE 333 Section 7 - C++ Casting and Inheritance

C++ Smart Pointers
std::shared_ptr – Uses reference counting to determine when to delete a managed raw
pointer

● Most commonly used type of smart pointer in practice
● std::weak_ptr – Used in conjunction with shared_ptr but does not contribute to

reference count
std::unique_ptr – Uniquely manages a raw pointer

● Used when you want to declare unique ownership of a pointer
● Disabled cctor and op=

Inheritance
A Derived class inherits from a base class (Similar to: A subclass inherits from a superclass)

● The public interface of a derived class Inherits all non-private member variables and
functions (except for ctor, cctor, dtor, op=)

● Aside: We will be only using public inheritance in CSE 333

Inheritance in HW3

Base Class: HashTableReader (Protected) Derived Classes

● list<IndexFileOffset_t>
LookupElementPositions(
HTKey_t hash_val) const;

● FILE* file_;

● IndexFileOffset_t offset_;

● BucketListHader header_;

● IndexTableReader – Reads index table

● DocIDTableReader – Reads DocID Table

● DocTableReader – Reads DocTable

● FileIndexReader – Reads File’s Index

Style Considerations

● Use virtual only once when first defined in the base class

● All derived classes of a base class should use override to get the compiler to check
that a function overrides a virtual function from a base class

● Use virtual for destructors of a base class of a base class – Guarantees all derived
classes will use dynamic dispatch to ensure use of appropriate destructors

2

Exercise 1:
Consider the program on the following page, which does compile and execute with no errors,
except that it leaks memory (which doesn’t matter for this question).

(a) Complete the diagram on the next page by adding the remaining objects and all of the
additional pointers needed to link variables, objects, virtual function tables, and function bodies.
Be sure that the order of pointers in the virtual function tables is clear (i.e., which one is first,
then next, etc.). One of the objects and a couple of the pointers are already included to help
you get started.

(b) Write the output produced when this program is executed. If the output doesn’t fit in one
column in the space provided, write multiple vertical columns showing the output going from top
to bottom, then successive columns to the right

#include <iostream>
using namespace std;

class A {
 public:
 virtual void f1() { f2(); cout << "A::f1" << endl; }

 void f2() { cout << "A::f2" << endl; }
};
class B : public A {
 public:
 virtual void f3() { f1(); cout << "B::f3" << endl; }
 virtual void f2() { cout << "B::f2" << endl; }
};
class C : public B {
 public:

 void f1() { f2(); cout << "C::f1" << endl; }
};

3

int main() {
 A* aa = new A();
 B* bb = new B();
 A* ab = bb;
 A* ac = new C();
 aa->f1();
 cout << "---" << endl;
 bb->f1();

 cout << "---" << endl;
 bb->f2();
 cout << "---" << endl;
 ab->f2();
 cout << "---" << endl;
 bb->f3();

 cout << "---" << endl;
 ac->f1();
 return EXIT_SUCCESS;
}

Output:

4

Bonus - “Smart” LinkedList
Consider the IntNode struct below. Convert the IntNode struct to be “smart” by using
shared_ptr.

#include <memory>
using std::shared_ptr;

struct IntNode {
 IntNode(int* val, IntNode* node): value(val), next(node) {}

 ~IntNode() { delete value; }

 int* value;
 IntNode* next;
};
After the conversion, draw a memory diagram with the reference count for blocks of memory.
#include <iostream>

using std::cout;
using std::endl;

int main() {
 shared_ptr<IntNode> head =

shared_ptr<IntNode>(new IntNode(new int(351), nullptr));
 head->next = shared_ptr<IntNode>(new IntNode(new int(333),

 nullptr));
 shared_ptr<IntNode> iter = head;
 while (iter != nullptr) {
 cout << *(iter->value) << endl;
 iter = iter->next;
 }

}
	

5

Bonus:
Virtual holidays! Consider the following C++ program, which does compile and execute
successfully.

#include <iostream>

using namespace std;

class One
{ public:

void m1() { cout << "H"; }
virtual void m2() { cout << "l"; }
virtual void m3() { cout << "p"; }
};

class Two: public One {
public:

virtual void m1() { cout << "a"; }
void m2() { cout << "d"; }

virtual void m3() { cout << "y"; }
void m4() { cout << "p";}

};

class Three: public Two
{
 public:

void m1() { cout << "o"; }
void m2() { cout << "i"; }

void m3() { cout << "s"; }

void m4() { cout << "!"; }

};

int main() {

Two t;

Three th;
One *op = &t;
Two *tp = &th;
Three *thp = &th;

op->m1();

tp->m1();

op->m3();

op->m3();

tp->m3();

op->m1();

thp->m1();

op->m2();

thp->m2();

tp->m2();

tp->m1();

tp->m3();

thp->m3();

tp->m4(); cout <<
endl;

};

(a) (8 points) On the next page, complete the diagram showing all of the
variables, objects, virtual method tables (vtables) and functions in this program.
Parts of the diagram are supplied for you. Do not remove this page from the
exam.

(b) (6 points) What does this program print when it executes?

6

(c) (6 points) Modify the above program by removing and/or adding the virtual keyword
in appropriate place(s) so that the modified program prints HappyHolidays! (including
the ! at the end). Draw a line through the virtual keyword where it should be deleted and
write in virtual where it needs to be added. Do not make any other changes to the
program. Any correct solution will receive full credit.

7

(cont.) Draw your answer to part (a) here. Complete the vtable diagram below. Draw
arrows to show pointers from variables to objects, from objects to vtables, and from
vtable slots to functions. Note that there may be more slots provided in the blank
vtables than you actually need. Leave any unused slots blank.

main() variables
(draw pointers as
needed)

t

th

op

tp

thp

vtables (might have
more slots than

needed)
One vtbl

Two vtbl

Three vtbl

functions

One::m1

One::m2

One::m3

Two::m1

Two::m2

Two::m3

Two::m4

Three::m1

Three::m3

Three::m4

Three::m2

