

1

CSE 333 Section 1 - C, Pointers, and Gitlab
Sample Solutions

Exercise 1:
Consider the following snippet of code

void division(int numerator,
 int denominator,
 int* quotient,
 int* remainder) {
 *quotient = numerator / denominator;
 *remainder = numerator % denominator;
}

int main(int argc, char* argv[]) {
 int quot, rem;
 division(22, 5, _____, _____);
 printf("%d rem %d\n", _____, _____);
 return EXIT_SUCCESS;
}

Which parameters of division() are output parameters?

 quotient and remainder

What variables should go in the blank spaces in our call to division()?

 " and &rem

What should go in the blank spaces in our call to printf()?

quot and rem

Draw out a memory diagram of the beginning of this call to division().

? quot ? rem

 quotient remainder

numerator 22 denominator 5

2

Exercise 2:
The following code has a bug. What’s the problem, and how would you fix it?
Changes shown in red:

void bar(char* ch) {
 *ch = '3';
}

int main(int argc, char* argv[]) {
 char fav_class[] = "CSE331";
 bar(&fav_class[5]);
 printf("%s\n", fav_class); // should print "CSE333"
 return EXIT_SUCCESS;
}

The problem is that modifying the argument ch in bar will not affect fav_class in main
because arguments in C are always passed by value. To modify fav_class in main, we need
to pass a pointer to a character (char*) into bar and then dereference it:

Exercise 3 (bonus):
strcpy is a function from the standard library that copies a string src into an output parameter
called dest and returns a pointer to dest. Write the function below. You may assume that
dest has sufficient space to store src.

char *strcpy(char *dest, char *src) {
 char *ret_value = dest;
 while (*src != '\0') {
 *dest = *src;
 src++;
 dest++;
 }
 *dest = '\0'; // don’t forget the null terminator!
 return ret_value;
}

How is the caller able to see the changes in dest if C is pass-by-value?

The caller can see the copied over string in dest since we are dereferencing dest. Note that
modifications to dest that do not dereference will not be seen by the caller(such as dest++).
Also note that if you used array syntax, then dest[i] is equivalent to *(dest+i).

Why do we need an output parameter? Why can’t we just return an array we create in strcpy?

If we allocate an array inside strcpy, it will be allocated on the stack. Thus, we have no control
over this memory after strcpy returns, which means we can’t safely use the array whose
address we’ve returned.

3

Exercise 4 (bonus):
More practice with output parameters and arrays.

Write a function to compute the sum of values and product of all values in an array. The function
is given a pointer to the first element in an array, the length of the array, and two output
parameters to return the product and sum.

void product_and_sum(int *input, int length, int *product,
 int *sum) {
 int temp_sum = 0;
 int temp_product = 1;
 for (int i = 0; i < length; i++) {
 temp_sum += input[i];
 temp_product *= input[i];
 }
 *sum = temp_sum;
 *product = temp_product;

}

4

Exercise 5 (Bonus):
Given the following command: “mkdir -v cats dogs” and argv = 0x1000, draw a box-
and-arrow memory diagram of argv and its contents for when mkdir executes.

argv is the second parameter, so its value is stored in %rsi and does not take up space in
memory. The character arrays have unknown/unspecified addresses that are stored in the
entries of argv. Each character of the command-line arguments takes up 1 byte of memory
and the elements of each character array have consecutive addresses, though the arrays are
likely not contiguous to each other.

Using the same information from above, what can you say about the values returned by the
following expressions? You may not be able to tell the exact value returned, but you should be
able to describe what that value is/represents.

1) argv[0] -> address of the first character in "mkdir"

2) argv + 1 -> 0x1008

3) *(argv[1] + 1) -> 'v'

4) argv[0] + 1 -> address of the second character in "mkdir"

5) argv[0][3] -> 'i'

5

Exercise 6:
A prefix sum over an array is the running total of all numbers in the array up to and including the
current number. For example, given the array {1, 2, 3, 4}, the prefix sum would be {1, 3, 6, 10}.

Write a function to compute the prefix sum of an array given a pointer to its first element, the
pointer to the first element of the output array, and the length both arrays (assumed to be the
same).

void prefix_sum(int *input, int *output, int length) {
 if (length == 0) {
 return;
 }
 output[0] = input[0];

for (int i = 1; i < length; i++) {
 output[i] = output[i - 1] + input[i];
 }
}

