
CSE333, Winter 2024L23: Server-side Programming

Server-side Programming
CSE 333 Winter 2024

Instructor: Hal Perkins

Teaching Assistants:
Ann Baturytski Noa Ferman Hannah Jiang
Humza Lala Leanna Nguyen Varun Pradeep
Justin Tysdal Deeksha Vatwani Yiqing Wang
Wei Wu Jennifer Xu

CSE333, Winter 2024L23: Server-side Programming

Administrivia

v New exercise 15 out yesterday
§ Client-side network programming
§ Due Monday, 10 am

v hw4 posted now – due Thur. March 7 (last week of qtr)
§ Web server for our search engine code. Demo on Monday.
§ Starter code pushed late today or sometime tomorrow

v Next exercise, ex16, out this afternoon since we will have
covered everything relevant by today
§ Server-side network programming
§ Due Wednesday, 10 am

2

CSE333, Winter 2024L23: Server-side Programming

Socket API: Server TCP Connection

v Pretty similar to clients, but with additional steps:
1) Figure out the IP address and port on which to listen
2) Create a socket
3) bind() the socket to the address(es) and port
4) Tell the socket to listen() for incoming clients
5) accept() a client connection
6) .read() and write() to that connection
7) close() the client socket

3

CSE333, Winter 2024L23: Server-side Programming

Servers

v Servers can have multiple IP addresses (“multihoming”)
§ Usually have at least one externally-visible IP address, as well as a

local-only address (127.0.0.1)

v The goals of a server socket are different than a client
socket
§ Want to bind the socket to a particular port of one or more IP

addresses of the server
§ Want to allow multiple clients to connect to the same port

• OS uses client IP address and port numbers to direct I/O to the
correct server file descriptor

4

CSE333, Winter 2024L23: Server-side Programming

Step 1: Figure out IP address(es) & Port

v Step 1: getaddrinfo() invocation may or may not be
needed (but we’ll use it)
§ Do you know your IP address(es) already?

• Static vs. dynamic IP address allocation
• Even if the machine has a static IP address, don’t wire it into the code

– better to look it up dynamically or use a configuration file

§ Can request listen on all local IP addresses by passing NULL as
hostname and setting AI_PASSIVE in hints.ai_flags
• Effect is to use address 0.0.0.0 (IPv4) or :: (IPv6)

5

CSE333, Winter 2024L23: Server-side Programming

Step 2: Create a Socket

v Step 2: socket() call is same as before
§ Can directly use constants or fields from result of
getaddrinfo()

§ Recall that this just returns a file descriptor – IP address and port
are not associated with socket yet

6

CSE333, Winter 2024L23: Server-side Programming

Step 3: Bind the socket

v

§ Looks nearly identical to connect()!
§ Returns 0 on success, -1 on error

v Some specifics for addr:
§ Address family: AF_INET or AF_INET6

• What type of IP connections can we accept?
• POSIX systems can handle IPv4 clients via IPv6 so use AF_INET6 J
• AF_UNSPEC doesn’t work as expected: it can bind to v4-only socket

§ Port: port in network byte order (htons() is handy)
§ Address: specify particular IP address or any IP address

• “Wildcard address” – INADDR_ANY (IPv4), in6addr_any (IPv6)
7

int bind(int sockfd, const struct sockaddr* addr,
 socklen_t addrlen);

CSE333, Winter 2024L23: Server-side Programming

Step 4: Listen for Incoming Clients

v

§ Tells the OS that the socket is a listening socket that clients can
connect to

§ backlog: maximum length of connection queue
• Gets truncated, if necessary, to defined constant SOMAXCONN
• The OS will refuse new connections once queue is full until server
accept()s them (removing them from the queue)

§ Returns 0 on success, -1 on error

§ Clients can start connecting to the socket as soon as listen()
returns
• Server can’t use a connection until you accept() it

8

int listen(int sockfd, int backlog);

CSE333, Winter 2024L23: Server-side Programming

Example #1

v See server_bind_listen.cc
§ Takes in a port number from the command line
§ Opens a server socket, prints info, then listens for connections for

20 seconds
• Can connect to it using netcat (nc)

10

CSE333, Winter 2024L23: Server-side Programming

Step 5: Accept a Client Connection

v

§ Returns a new (different from sockfd), active, ready-to-use
socket file descriptor connected to a client (or -1 on error)
• sockfd must have been created, bound, and listening
• Pulls a queued connection or waits for an incoming one

§ addr and addrlen are output parameters
• *addrlen should initially be set to sizeof(*addr), gets

overwritten with the size of the client address
• Address information of client is written into *addr

– Use inet_ntop() to get the client’s printable IP address
– Use getnameinfo() to do a reverse DNS lookup on the client

11

int accept(int sockfd, struct sockaddr* addr,
 socklen_t* addrlen);

CSE333, Winter 2024L23: Server-side Programming

Example #2

v See server_accept_rw_close.cc
§ Gets a port number from the command line
§ Opens a server socket, prints info, then listens for connections

• Can connect to it using netcat (nc)

§ Accepts connections as they come
§ Echoes any data the client sends to it on stdout and also sends

it back to the client

12

CSE333, Winter 2024L23: Server-side Programming

Something to Note

v Our server code is not concurrent
§ Single thread of execution
§ The thread blocks while waiting for the next connection
§ The thread blocks waiting for the next message from the

connection

v A crowd of clients is, by nature, concurrent
§ While our server is handling the next client, all other clients are

stuck waiting for it L

13

CSE333, Winter 2024L23: Server-side Programming

Extra Exercise #1

v Write a program that:
§ Creates a listening socket that accepts connections from clients
§ Reads a line of text from the client
§ Parses the line of text as a DNS name
§ Does a DNS lookup on the name
§ Writes back to the client the list of IP addresses associated with

the DNS name
§ Closes the connection to the client

15

