W UNIVERSITY of WASHINGTON L22: Client-side Networking CSE333, Winter 2024

Client-side Networking
CSE 333 Winter 2024

Instructor: Hal Perkins

Teaching Assistants:

Ann Baturytski Noa Ferman Hannah Jiang
Humza Lala Leanna Nguyen Varun Pradeep
Justin Tysdal Deeksha Vatwani Yiging Wang

Wei Wu Jennifer Xu

CSE333, Winter 2024

W UNIVERSITY of WASHINGTON L22: Client-side Networking

Socket API: Client TCP Connection

+» There are five steps:
1) Figure out the IP address and port to connect to

2) Create a socket
3) Connect the socket to the remote server
4) read () andwrite () data using the socket

5) Close the socket

W UNIVERSITY of WASHINGTON L22: Client-side Networking CSE333, Winter 2024

Step 1: DNS Lookup

+» (from last time; details/examples in sections yesterday)

« See dnsresolve.cc

struct addrinfo {
int al flags; // additional flags
int ai_ family; // AF INET, AF INET6, AF UNSPEC
int al socktype; // SOCK STREAM, SOCK DGRAM, O
int al protocol; // IPPROTO TCP, IPPROTO UDP, O
size t ail addrlen; // length of socket addr in bytes
struct sockaddr* ai addr; // pointer to socket addr
char* al canonname; // canonical name
struct addrinfo* ai next; // can form a linked list

)7

W UNIVERSITY of WASHINGTON L22: Client-side Networking

Step 2: Creating a Socket

CSE333, Winter 2024

L)

*» | int socket (int domain, 1nt type,

int protocol);

= Creating a socket doesn’t bind it to a local address or port yet

= Returns file descriptor or -1 on error

socket.cc

7

#include <arpa/inet.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <iostream>

int main(int argc, char** argv) {

int socket fd = socket (AF INET,

1f (socket fd == -1) {
std::cerr << strerror (errno)
return EXIT FAILURE;

}

close (socket fd);

return EXIT SUCCESS;

SOCK_STREAM,

<< std::endl;

0)

D

CSE333, Winter 2024

W UNIVERSITY of WASHINGTON L22: Client-side Networking

Step 3: Connect to the Server

+» The connect () system call establishes a connection to
a remote host

m| int connect(int sockfd, const struct sockaddr* addr,
socklen t addrlen);

- sockfd: Socket file description from Step 2

- addr and addrlen: Usually from one of the address structures
returned by getaddrinfo in Step 1 (DNS lookup)

- Returns 0 on success and -1 on error

+» connect () may take some time to return

" |tis a blocking call by default

" The network stack within the OS will communicate with the
remote host to establish a TCP connection to it

- This involves ~2 round trips across the network

W UNIVERSITY of WASHINGTON L22: Client-side Networking

CSE333, Winter 2024

How long are two “round trips”

«+ Remember this table?

= Exact numbers change somewhat over time, but you should know

the order-of-magnitudes here

L1 cache reference

Branch mispredict

L2 cache reference

Mutex lock/unlock

Main memory reference

Compress 1K bytes with Zippy

Send 2K bytes over 1 Gbps network
Read 1 MB sequentially from memory
Round trip within same datacenter
Disk seek

Read 1 MB sequentially from disk
Send packet CA->Netherlands->CA

Numbers Everyone Should Know

0.5 ns
5 ns
7 ns
23 ns
100 ns
3,000 ns
20,000 ns
250,000 ns
500,000 ns
10,000,000 ns
20,000,000 ns
150,000,000 ns

W UNIVERSITY of WASHINGTON L22: Client-side Networking CSE333, Winter 2024

Connect Example

« See connect.cc

[// Get an appropriate sockaddr structure.
struct sockaddr storage addr;

size t addrlen;

LookupName (argv[1l], port, &addr, &addrlen);

// Create the socket.
int socket fd = socket (addr.ss family, SOCK STREAM, O0);
1f (socket fd == -1) {
cerr << "socket () failed: " << strerror(errno) << endl;
return EXIT FAILURE;

}

// Connect the socket to the remote host.

int res = connect (socket fd,
reinterpret cast<sockaddr*>(&addr),
addrlen) ; -
1f (res == -1) {
cerr << "connect () failed: " << strerror(errno) << endl;

CSE333, Winter 2024

W UNIVERSITY of WASHINGTON L22: Client-side Networking

Step 4: read ()

- If there is data that has already been received by the
network stack, then read will return immediately with it

= read () might return with /less data than you asked for

» If there is no data waiting for you, by default read ()
will block until something arrives
= This might cause deadlock!

" Can read () returnO?

CSE333, Winter 2024

W UNIVERSITY of WASHINGTON L22: Client-side Networking

Step 4: write ()

+» write () enqueues your datain a send buffer in the OS

and then returns
" The OS transmits the data over the network in the background

= Whenwrite () returns, the receiver probably has not yet
received the data!

- |f there is no more space left in the send buffer, by default
write () will block

11

CSE333, Winter 2024

W UNIVERSITY of WASHINGTON L22: Client-side Networking

Read/Write Example

[while (1) {
int wres = write(socket fd, readbuf, res);
1f (wres == 0) {
cerr << "socket closed prematurely" << endl;
close (socket fd);
return EXIT FAILURE;
}
1f (wres == -1) {
1f (errno == EINTR)
continue;
cerr << "socket write failure: " << strerror(errno) << endl;

close (socket fd);
return EXIT_FAILURE;

}

break;

}

.

+ See sendreceive.cc

"= Demo

12

W UNIVERSITY of WASHINGTON L22: Client-side Networking CSE333, Winter 2024

Step 5: close ()

¢ [int close (int fd);]

L)

= Nothing special here —it’s the same function as with file I/0

= Shuts down the socket and frees resources and file descriptors
associated with it on both ends of the connection

13

W UNIVERSITY of WASHINGTON L22: Client-side Networking CSE333, Winter 2024

Extra Exercise #1

+» Write a program that:
= Reads DNS names, one per line, from stdin
" Translates each name to one or more IP addresses

" Prints out each IP address to stdout, one per line

14

