
CSE333, Winter 2024L01:  Intro, C

Intro, C refresher
CSE 333 Winter 2024

Instructor: Hal Perkins

Teaching Assistants:
Ann Baturytski Noa Ferman Hannah Jiang
Humza Lala Leanna Nguyen Varun Pradeep
Justin Tysdal Deeksha Vatwani Yiqing Wang
Wei Wu Jennifer Xu



CSE333, Winter 2024L01:  Intro, C

Lecture Outline

v Course Introduction
v Course Policies

§ https://courses.cs.washington.edu/courses/cse333/24wi/syllabus.html 

v C Intro

2

https://courses.cs.washington.edu/courses/cse333/24wi/syllabus.html


CSE333, Winter 2024L01:  Intro, C

Welcome Back…
v This has been a strange world for the last several years and it’s 

still not the same as it was (and probably never will be…)

v Please speak up if things aren’t (or are!) going well
§ We can often help if we know about things, so stay in touch with TAs, 

instructor, advising, friends and peers, others
§ Don’t try to “tough it out” or pretend it will get better if you just ignore 

it – speak up when there’s plenty of time to fix things!

v Please show understanding and compassion for each other and 
help when you can – both in and outside of class

v But also, we’ve been back in person for a couple of years now 
and things are mostly normal, so let’s have a great quarter!

3



CSE333, Winter 2024L01:  Intro, C

Introductions: Course Staff

v Hal Perkins (instructor)
§ Long-time CSE faculty member and CSE 333 veteran

v  TAs:
§ Ann Baturytski, Noa Ferman, Hannah Jiang, Humza Lala, 

Leanna Nguyen, Varun Pradeep, Justin Tysdal, Deeksha Vatwani, 
Yiqing Wang, Wei Wu, and Jennifer Xu

§ Available in section, office hours, and discussion group
§ An invaluable source of information and help

v Get to know us
§ We are here to help you succeed!

4



CSE333, Winter 2024L01:  Intro, C

Introductions: Students

v ~195 students this quarter

v Expected background
§ Prereq:  CSE 351 – C, pointers, memory model, linker, system calls
§ CSE 391 or Linux skills needed for CSE 351 assumed

5



CSE333, Winter 2024L01:  Intro, C

Course Map:  100,000 foot view

6

C application

C standard 
library (glibc)

C++ STL/boost/ 
standard library

C++ application Java application

JRE

CPU     memory     storage     network
GPU clock   audio   radio   peripherals

HW/SW interface
(x86 + devices)

OS / app interface
(system calls)

operating system

hardware



CSE333, Winter 2024L01:  Intro, C

Systems Programming

v The programming skills, engineering discipline, and 
knowledge you need to build a system

§ Programming:  C / C++

§ Discipline:  testing, debugging, performance analysis

§ Knowledge:  long list of interesting topics
• Concurrency, OS interfaces and semantics, techniques for consistent 

data management, distributed systems algorithms, …
• Most important:  a deep(er) understanding of the “layer below”

7



CSE333, Winter 2024L01:  Intro, C

Discipline?!?

v Cultivate good habits, encourage clean code
§ Coding style conventions
§ Unit testing, code coverage testing, regression testing
§ Documentation (code comments, design docs)
§ Code reviews

v Will take you a lifetime to learn
§ But oh-so-important, especially for systems code

• Avoid write-once, read-never code

8



CSE333, Winter 2024L01:  Intro, C

Lecture Outline

v Course Introduction
v Course Policies

§ https://courses.cs.washington.edu/courses/cse333/24wi/syllabus.html
§ Summary/highlights here, but you must read the full details online 

v C Intro

9



CSE333, Winter 2024L01:  Intro, C

Communication
v Website:  http://cs.uw.edu/333

§ Schedule, policies, materials, assignments, etc.
v Discussion: Ed group linked to course home page

§ Ask and answer questions – staff will monitor and contribute
§ Use private messages for questions about detailed code, etc.

v Messages to staff: for things not suitable for ed chat messages 
or gradescope regrade requests. Please send email to cse333-
staff@cs.uw.edu.  Reaches all staff so the right person can help 
out quickly, and helps follow up until resolved
§ (don’t email to instructor or individual TAs if possible – we can get quick 

answers for you and coordinate better if it goes to the staff)
v Announcements: will use broadcast Ed messages to send 

“things everyone must read and know”
v Office Hours:  spread throughout the week

§ Schedule posted shortly and will start as soon as we can

10

http://cs.uw.edu/333
mailto:cse333-staff@cs.uw.edu
mailto:cse333-staff@cs.uw.edu


CSE333, Winter 2024L01:  Intro, C

Course Components
v Lectures (~28)

§ Introduce the concepts; take notes!!!

v Sections (10)
§ Applied concepts, important tools and skills for assignments, 

clarification of lectures, exam review and preparation

v Programming Exercises (~18)
§ Roughly one per lecture, due the morning before the next lecture
§ Coarse-grained grading (check plus/check/check minus = 0, 1, 2, or 3)

v Programming Projects (0+4)
§ Warmup, then 4 “homeworks” that build on each other, individual work

v Midterm and final exam
§ Goal is to revisit and internalize concepts
§ Will be scheduled outside class so everyone can take at same time

11



CSE333, Winter 2024L01:  Intro, C

Grading (tentative)

v Exercises: ~30%
§ Submitted via GradeScope (account info mailed after class)
§ Evaluated on correctness and code quality

v Projects: ~45% total
§ Submitted via GitLab; must tag commit that you want graded
§ “does it work” and code quality both matter, roughly similarly
§ Binaries provided if you didn’t get previous part working or prefer 

to start with a known good solution to previous parts

v Exams: Midterm: ~10%, Final: ~15%

v More details on course website
§ You must read the syllabus there – you are responsible for it

12



CSE333, Winter 2024L01:  Intro, C

Deadlines and Student Conduct

v Late policies
§ Exercises:  no late submissions accepted, due 10 am before class
§ Projects:  4 late days for entire quarter, max 2 per project
§ Need to get things done on time – difficult to catch up!

• But we will work with you if unusual circumstances / problems

v Academic Integrity (read the full policy on the web)
§ We trust you implicitly and will follow up if that trust is violated
§ In short:  don’t attempt to gain credit for something you didn’t do 

and don’t help others do so either
§ This does not mean suffer in silence – learn from the course staff 

and peers, talk, share ideas; but don’t share or copy work that is 
supposed to be yours

13



CSE333, Winter 2024L01:  Intro, C

And off we go…

v Goal is to figure out setup and computing infrastructure 
right away so we don’t put that off and then have a 
crunch later in the quarter

v So:
§ First exercise out today, due Friday morning 10 am before class
§ Warmup/logistics for larger projects in sections Thursday

• HW0 (the warmup project) published this afternoon and gitlab repos 
created then.  OK to ignore details until sections tomorrow and we’ll 
walk through the whole thing, but read up ahead of time and maybe 
try some of the initial setup before section.

• Bring a laptop to sections tomorrow!  We may have time to go 
through some of the initial configuration parts for hw0.

14



CSE333, Winter 2024L01:  Intro, C

Gadgets (1)

v Gadgets reduce focus and learning
§ Bursts of info (e.g. emails, IMs, notifications, etc.) are addictive
§ Heavy multitaskers have more trouble focusing and shutting out 

irrelevant information
• http://www.npr.org/2016/04/17/474525392/attention-students-put-

your-laptops-away 
§ Seriously, you will learn more if you use paper instead!!!

• (even compared to note-taking on a tablet, although that is better than 
a keyboard, and that is way better than just “watching the show”)

15

http://www.npr.org/2016/04/17/474525392/attention-students-put-your-laptops-away
http://www.npr.org/2016/04/17/474525392/attention-students-put-your-laptops-away


CSE333, Winter 2024L01:  Intro, C

Gadgets (2)

v So how should we deal with laptops/phones/etc.?
§ Just say no!
§ No open gadgets during class (really!)

• Unless you’re actually using a tablet or something to take notes

§ Urge to search? – ask a question!  Everyone benefits!!
§ You may close/turn off non-notetaking electronic devices now
§ Pull out a piece of paper and pen/pencil instead J

16



CSE333, Winter 2024L01:  Intro, C

Deep Breath….

v Any questions, comments, observations, before we go on 
to, uh, some technical stuff?

17



CSE333, Winter 2024L01:  Intro, C

Lecture Outline

v Course Introduction
v Course Policies

§ https://courses.cs.washington.edu/courses/cse333/24wi/syllabus.html

v C Intro
§ Workflow, Variables, Functions

18



CSE333, Winter 2024L01:  Intro, C

C

v Created in 1972 by Dennis Ritchie
§ Designed for creating system software
§ Portable across machine architectures
§ More recently updated in 1999 (C99) and 2011 (C11)

and 2017 (C17)

v Characteristics
§ “Low-level” language that allows us to exploit underlying features 

of the architecture – but easy to fail spectacularly (!)
§ Procedural (not object-oriented)
§ Typed but unsafe (possible to bypass the type system)
§ Small, basic library compared to Java, C++, most others….

19



CSE333, Winter 2024L01:  Intro, C

Generic C Program Layout

20

#include <system_files>
#include "local_files"

#define macro_name macro_expr

/* declare functions */
/* declare external variables & structs */

int main(int argc, char* argv[]) {
  /* the innards */
}

/* define other functions */



CSE333, Winter 2024L01:  Intro, C

C Syntax: main

v To get command-line arguments in main, use:
§ int main(int argc, char* argv[])

v What does this mean?
§ argc contains the number of strings on the command line (the 

executable name counts as one, plus one for each argument). 

§ argv is an array containing pointers to the arguments as strings 
(more on pointers later)

v Example:  $ ./foo hello 87
§ argc = 3
§ argv[0]="./foo",  argv[1]="hello",  argv[2]="87"

21

int main(int argc, char* argv[])



CSE333, Winter 2024L01:  Intro, C

C Workflow
Editor (emacs, vi) or IDE (eclipse)

22

Source files 
(.c, .h)

Object files (.o)

“COMPILE” (compile + assemble)

LINK

LOAD

EXECUTE, DEBUG, …

EDIT

foo.c bar.cfoo.h

foo.o bar.o
libZ.a

bar

Statically-linked
libraries

bar

LINK

libc.soShared libraries
LINK



CSE333, Winter 2024L01:  Intro, C

C to Machine Code

23

C source file
(sumstore.c)

Assembly file 
(sumstore.s)

C compiler (gcc –S)

Assembler (gcc -c or as)

EDIT

void sumstore(int x, int y,
              int* dest) {
  *dest = x + y;
}

sumstore:
       addl    %edi, %esi
       movl    %esi, (%rdx)
       ret

Machine code
(sumstore.o)

400575: 01 fe
        89 32
        c3

C compiler 
(gcc –c)



CSE333, Winter 2024L01:  Intro, C

When Things Go South…

v Errors and Exceptions
§ C does not have exception handling (no try/catch)
§ Errors are returned as integer error codes from functions
§ Because of this, error handling is ugly and inelegant

v Processes return an “exit code” when they terminate
§ Can be read and used by parent process (shell or other)

• In main: return EXIT_SUCCESS; or return EXIT_FAILURE;  (e.g., 0 or 1)

v Crashes
§ If you do something bad, you hope to get a “segmentation fault” 

(believe it or not, this is the “good” option)

24



CSE333, Winter 2024L01:  Intro, C

Java vs. C  (351 refresher)

v Are Java and C mostly similar (S) or significantly different 
(D) in the following categories?

26

Language Feature S/D Differences in C

Control structures S

Primitive datatypes S/D Similar but sizes can differ (char, esp.), unsigned, 
no boolean, uninitialized data, …

Operators S Java has >>>, C has ->

Casting D Java enforces type safety, C does not

Arrays D Not objects, don’t know their own length, no 
bounds checking

Memory management D Manual (malloc/free), no garbage collection



CSE333, Winter 2024L01:  Intro, C

Primitive Types in C

v Integer types
§ char, int

v Floating point
§ float, double

v Modifiers
§ short [int]
§ long [int, double]
§ signed [char, int]
§ unsigned [char, int]

27

C Data Type 32-bit 64-bit printf

char 1 1 %c
short int 2 2 %hd

unsigned short int 2 2 %hu
int 4 4 %d / %i

unsigned int 4 4 %u
long int 4 8 %ld

long long int 8 8 %lld
float 4 4 %f

double 8 8 %lf
long double 12 16 %Lf

pointer 4 8 %p

Typical sizes – see sizeofs.c



CSE333, Winter 2024L01:  Intro, C

C99 Extended Integer Types

v Solves the conundrum of “how big is an long int?”

28

void sumstore(int x, int y, int* dest) {

void sumstore(int32_t x, int32_t y, int32_t* dest) {

#include <stdint.h>

void foo(void) {
  int8_t a;  // exactly 8 bits, signed
  int16_t b;  // exactly 16 bits, signed
  int32_t c;  // exactly 32 bits, signed
  int64_t d;  // exactly 64 bits, signed
  uint8_t w;  // exactly 8 bits, unsigned
  ...
}

Use extended types in most cse333 code

But int is usually fine for simple ints



CSE333, Winter 2024L01:  Intro, C

Basic Data Structures
v C does not support objects!!!

v Arrays are contiguous chunks of memory
§ Arrays have no methods and do not know their own length
§ Can easily run off ends of arrays in C – security bugs!!!

v Strings are null-terminated char arrays
§ Strings have no methods, but string.h has helpful utilities

v Structs are the most object-like feature, but are just collections 
of fields – no “methods” or functions

• (but can contain pointers to functions!)

29

x h e l l o \n \0char* x = "hello\n";



CSE333, Winter 2024L01:  Intro, C

Function Definitions

v Generic format:

30

// sum of integers from 1 to max
int sumTo(int max) {
  int i, sum = 0;

  for (i = 1; i <= max; i++) {
    sum += i;
  }

  return sum;
}

returnType fname(type param1, …, type paramN) {
   // statements
}



CSE333, Winter 2024L01:  Intro, C

Function Ordering

v You shouldn’t call a function that hasn’t been declared yet

31

#include <stdio.h>

int main(int argc, char** argv) {
  printf("sumTo(5) is: %d\n", sumTo(5));
  return 0;
}

// sum of integers from 1 to max
int sumTo(int max) {
  int i, sum = 0;

  for (i = 1; i <= max; i++) {
    sum += i;
  }
  return sum;
}

sum_badorder.c



CSE333, Winter 2024L01:  Intro, C

Solution 1: Reverse Ordering

v Simple solution; however, imposes ordering restriction on 
writing functions (who-calls-what?)

32

#include <stdio.h>

// sum of integers from 1 to max
int sumTo(int max) {
  int i, sum = 0;

  for (i = 1; i <= max; i++) {
    sum += i;
  }
  return sum;
}

int main(int argc, char** argv) {
  printf("sumTo(5) is: %d\n", sumTo(5));
  return 0;
}

sum_betterorder.c



CSE333, Winter 2024L01:  Intro, C

Solution 2: Function Declaration

v Teaches the compiler arguments and return types; 
function definitions can then be in a logical order

33

sum_declared.c #include <stdio.h>

int sumTo(int);  // func prototype

int main(int argc, char** argv) {
  printf("sumTo(5) is: %d\n", sumTo(5));
  return 0;
}

// sum of integers from 1 to max
int sumTo(int max) {
  int i, sum = 0;
  for (i = 1; i <= max; i++) {
    sum += i;
  }
  return sum;
}

Hint: code examples 
from slides are on the 
course web for you to 
experiment with



CSE333, Winter 2024L01:  Intro, C

Function Declaration vs. Definition

v C/C++ make a careful distinction between these two

v Definition:  the thing itself
§ e.g. code for function, variable definition that creates storage
§ Must be exactly one definition of each thing (no duplicates)

v Declaration:  description of a thing defined elsewhere
§ e.g. function prototype, external variable declaration

• Often in header files and incorporated via #include
• Should also #include declaration in the file with the actual 

definition to check for consistency

§ Needs to appear in all files that use the thing
• Should appear before first use

34



CSE333, Winter 2024L01:  Intro, C

Multi-file C Programs

35

void sumstore(int x, int y, int* dest) {
  *dest = x + y;
}

#include <stdio.h>

void sumstore(int x, int y, int* dest);

int main(int argc, char** argv) {
  int z, x = 351, y = 333;
  sumstore(x,y,&z);
  printf("%d + %d = %d\n",x,y,z);
  return 0;
}

C source file 1
(sumstore.c)

C source file 2
(sumnum.c)

Compile together:  
$ gcc -o sumnum sumnum.c sumstore.c

definition

declaration



CSE333, Winter 2024L01:  Intro, C

Compiling Multi-file Programs

v The linker combines multiple object files plus statically-
linked libraries to produce an executable
§ Includes many standard libraries (e.g. libc, crt1)

• A library is just a pre-assembled collection of .o files

36

sumstore.c

sumnum.c

sumstore.o

sumnum.o

libraries
(e.g. libc)

sumnum

gcc -c

gcc -c

ld or 
gcc



CSE333, Winter 2024L01:  Intro, C

To-do List

v Explore the website thoroughly:  http://cs.uw.edu/333
v Computer setup:  CSE labs, attu, or CSE Linux VM
v Exercise 0 is due 10 am sharp Friday before class

§ Find exercise spec on website, submit via Gradescope
§ Sample solution will be posted Friday after class
§ Give it your best shot and be sure to get it done on time

v Gradescope accounts created after class today
§ Userid is your uw.edu email address
§ Exercise submission: find CSE 333 24wi in gradescope, click on the 

exercise, drag-n-drop file(s)!  That’s it!!

v Project repos created and hw0 out later today
§ All will become clear in sections tomorrow! Bring your laptop!! J

38

http://cs.uw.edu/333

