
 CSE 333 24wi Midterm Exam 2/9/24 Sample Solution

 Page 1 of 9

Question 1. (18 points) Making things. We’re working on a new app that recommends
recipes based on information about things stored in the fridge. So far, we’ve got the
following files with these #includes to reference declarations in various header files:

main.c recipe.h recipe.c
#include "recipe.h"
...

... #include "recipe.h"
#include "fridge.h”
...

fridge.c fridge.h
#include "fridge.h"
...

...

We’ve been retyping the following gcc commands to build the program:

gcc -Wall -g --std=c17 -c fridge.c
gcc -Wall -g --std=c17 -c recipe.c
gcc -Wall -g --std=c17 -c main.c
gcc -Wall -g --std=c17 -o recipe main.o recipe.o fridge.o

Hint: recall that if we compile foo.c with the -c option and do not specify the output
file name (no -o option), the output file created will be named foo.o, as in the gcc
commands above.

(a) (6 points) Draw the dependency diagram that these commands and files represent (i.e.,
which files depend on which other files to build the final target program recipe?)

(continued on next page)

main.c recipe.crecipe.h

main.o recipe.o

recipe

fridge.h fridge.c

fridge.o

 CSE 333 24wi Midterm Exam 2/9/24 Sample Solution

 Page 2 of 9

Question 1. (cont.) (b) (12 points) Write the contents of a Makefile for this program
that has the following properties:

• The command make should build the program recipe from the source files
using the gcc options -Wall -g --std=c17.

• The command make should only recompile and link files that need to be rebuilt
after any changes to source files. Existing .o files and other files should not be
re-compiled or relinked if that is not needed to bring the program up to date.

• You do not need to include anything else – no clean target or anything not
mentioned above.

For reference, here are the tables of file information from the previous page:

main.c recipe.h recipe.c
#include "recipe.h"
...

... #include "recipe.h"
#include "fridge.h”
...

fridge.c fridge.h
#include "fridge.h"
...

...

Write the Makefile code below.

recipe: main.o recipe.o fridge.o

 gcc -Wall -g --std=c17 -o recipe main.o recipe.o fridge.o

fridge.o: fridge.c fridge.h

 gcc -Wall -g --std=c17 -c fridge.c

recipe.o: recipe.c recipe.h fridge.h

 gcc -Wall -g --std=c17 -c recipe.c

main.o : main.c recipe.h

 gcc -Wall -g --std=c17 -c main.c

Note: the recipe target needs to be first to be the default target when one is not
specified on the make command. The other targets can be listed in any order

 CSE 333 24wi Midterm Exam 2/9/24 Sample Solution

 Page 3 of 9

Question 2. (16 points) Preprocessor. Suppose we have the following two C source
files:

hdr.h prepro.c

#ifndef HDR_H_
#define HDR_H_

#define dbl double
typedef long int longint;
#define IT 42
#define THAT 12 + IT
#define OTHER IT + THING

#endif

#include "hdr.h"

#define THING 333

int fun(dbl x, longint n) {
 int k = x + THING;
 double y = THAT + IT;
 n += 12;
 return n + OTHER;
}

Show the result produced by the C preprocessor when it processes file prepro.c (i.e.,
if we were compiling this file, what output would the preprocessor send to the C compiler
that actually translates the program to machine code?)

typedef long int longint;

int fun(double x, longint n) {

 int k = x + 333;

 double y = 12 + 42 + 42;

 n += 12;

 return n + 42 + 333;

}

 CSE 333 24wi Midterm Exam 2/9/24 Sample Solution

 Page 4 of 9

Question 3. (18 points) HW1 linked lists and hash tables. We would like to add a new
public function to the HashTables we created in hw1 to report the total number of
buckets in a hash table, and the number of those buckets that contain no entries. The
specification of this function is:

// Return the total number of buckets in HashTable ht in
// *nbuckets, and return the number of buckets that have no
// elements (are empty) in *nempty.
void HashTable_Bucket_Info(HashTable* ht,
 int *nbuckets, int *nempty);

Give an implementation of this function as it would appear in HashTable.c.
Your code should only use the public interface to the LinkedList module since the
HashTable implementation is a client of that module. Copies of the header files
LinkedList.h, HashTable.h, and HashTable_priv.h are included at the end
of the exam, and you should remove them from the exam to use for this question. They
will not be scanned for grading. If needed, your code may allocate new data structures
while it is executing, but should not allocate more data than needed and should not cause
any memory leaks. You may assume that any linked list or hash table functions that you
call will succeed, and you do not need to check for errors when you do that.

Write your solution below. (Hints: you probably won’t need all of this space. The
sample solution is about 8-10 lines long, but you don’t need to match that.)

void HashTable_Bucket_Info(HashTable* ht,
 int *nbuckets, int *nempty) {
 *nempty = 0;

 *nbuckets = ht->num_buckets;

 for (int i = 0 ; i < ht->num_buckets; i++) {

 LinkedList *ll = ht->buckets[i];

 if (LinkedList_NumElements(ll) == 0) {

 *nempty += 1;

 }

 }

}

 CSE 333 24wi Midterm Exam 2/9/24 Sample Solution

 Page 5 of 9

Question 4. (20 points) Pointer trickery. Here is a small C program that compiles and
executes without errors, except that it leaks memory, which is not relevant for this
question. Answer questions about it on the next page.

#include <stdio.h>
#include <stdlib.h>

typedef struct pr {
 int x, y;
} Pair;

int sum(Pair p, Pair *q) {
 int val = p.x + p.y;
 q->y = 2;
 ///// draw memory diagram when control reaches here /////
 return val;
}

int alloc(Pair *p, Pair** q) {
 *q = (Pair *) malloc(sizeof(Pair));
 **q = *p;
 p->x = 1;
 int n = sum(*p, *q);
 return n;
}

int main(int argc, char **argv) {
 Pair p = {17, 42};
 Pair *ptr;
 int val;
 val = alloc(&p, &ptr);
 printf("%d %d\n", p.x, p.y);
 printf("%d %d\n", ptr->x, ptr->y);
 printf("%d\n", val);
 return EXIT_SUCCESS;
}

(continued on next page)

 CSE 333 24wi Midterm Exam 2/9/24 Sample Solution

 Page 6 of 9

Question 4. (cont.) (a) (14 points) In the space below, draw a careful diagram showing
the state of memory when execution reaches the point in function sum labeled “draw
memory diagram when control reaches here”. Be sure to carefully distinguish between
local variables on the stack to the left and values allocated on the heap. Also be sure you
clearly show the difference between pointers to structs and struct values that have x and y
components. Local variables for each function should be drawn in a separate box for
each function labeled with the function name. When you’re done, be sure to answer the
“what does it print” part of the question at the bottom.

 Stack (local variables) Heap (dynamic storage – malloc)

(b) (6 points) What output does this program print when it is executed?

1 42
17 2
43

x ___1 __
y __42___

x _17_1__
y __42___

p

q

n __?__

p

q

val __43__

p

ptr

alloc

sum

main

x ___17___
y _ 42 2__

val __?__

 CSE 333 24wi Midterm Exam 2/9/24 Sample Solution

 Page 7 of 9

Question 5. (20 points) C++ constructors and things. Here’s a small C++ program that
compiles and executes without errors (#includes omitted to save space).

class Toy {
 public:
 Toy() : kind_("ball") { cout << "ball" << endl;}
 Toy(string t) : kind_(t) { cout << kind_ << endl;}
 Toy(const Toy &other) : kind_(other.kind_)
 { cout << "another " << kind_ << endl;}
 Toy &operator=(const Toy &other) {
 if (this != &other) {
 kind_ = other.kind_;
 }
 cout << "change to " << kind_ << endl;;
 return *this;
 }
 void dbl() { kind_ = kind_ + " " + kind_;
 cout << "double " << kind_ << endl; }
 ~Toy() { cout << "gone " << kind_ << endl; }
 private:
 string kind_;
};

int main() {
 Toy mine;
 Toy yours("car");
 Toy* scooter = new Toy("scooter");
 mine = *scooter;
 delete scooter;
 Toy thing(yours);
 yours.dbl();
 return EXIT_SUCCESS;
}

What output does this program produce when it is executed? (It does compile and
run without errors.)

ball
car
scooter
change to scooter
gone scooter
another car
double car car
gone car
gone car car
gone scooter

 CSE 333 24wi Midterm Exam 2/9/24 Sample Solution

 Page 8 of 9

Question 6. (6 points) Recall the small C++ string class from lecture. Str.h defines
the class as follows:

class Str {
 public:
 Str(); // default constructor
 Str(const char *s); // c-string constructor
 Str(const Str &s); // copy constructor
 ~Str(); // destructor

 // operations
 int length() const; // = length of this string
 char * c_str() const; // = new char* copy of this string
 Str &operator=(const Str &s); // assignment

 // stream output
 friend std::ostream &operator<<(std::ostream &out, const Str &s);

 private:
 char *st_; // c-string on heap with data bytes terminated by '\0'
};

The assignment operator for this class is a bit complicated, reallocating the heap array
that belongs to the Str each time we need to update a Str object:

Str & Str::operator=(const Str &s) {
 if (this == &s) {
 return *this;
 }
 delete [] st_;
 st_ = new char[strlen(s.st_)+1];
 strcpy(st_, s.st_);
 return *this;
}

One of our colleagues has suggested that the code would be much more efficient if we
simply updated the st_ instance variable to point to the data array belonging to the other
string, which contains the characters we want to assign. In other words, replace the entire
body of the operator= function with the following two lines:

 st_ = s.st_
 return *this;

The question is, would this be a good idea and work properly? Answer yes or no and
give a precise technical reason for your answer. (Hint: think about the other operations,
constructors, and destructor in the class and how they need to use the st_ variable.)

No.

The destructor for Str has to execute delete [] st_ to avoid a memory leak.
Once we’ve used the modified assignment operator, the st_ variables in more than
one Str object can point to the same heap array and the destructors in the Str
objects will all delete the array, resulting in a double-delete error. There’s no real
way to avoid the problem since there’s no way to tell if the array referenced by a st_
variable is also referenced by another pointer in another object or elsewhere.

 CSE 333 24wi Midterm Exam 2/9/24 Sample Solution

 Page 9 of 9

Question 7. (2 free points) (All reasonable answers receive the points. All answers are
reasonable as long as there is an answer. J)

(a) (1 point) What question were you expecting to appear on this exam that wasn’t
included?

Implement a C compiler. Be sure to include all of the libraries that are part of the
standard C language.

(b) (1 point) Should we include that question on the final exam? (circle or fill in)

 Yes

 No

 Heck No!!

 $!@$^*% No !!!!!

 Yes, yes, it must be included!!!

 No opinion / don’t care

 None of the above. My answer is _________________________________.

