
 CSE 333 24wi Final Exam 3/12/24

 Page 1 of 18

Name ___ UW netid ____________

There are 7 questions worth a total of 110 points. Please budget your time so you get to
all of the questions. Keep your answers brief and to the point.

The exam is closed book, closed notes, closed electronics, closed telepathy, open mind.
However, you may have two 5x8 notecards or the equivalent with any hand-written notes
you wish written on both sides.

There is a blank page at the end with extra space for your answers if you need more
room. It is after all the questions but before the detachable sheet with reference
information.

After the extra blank pages for answers, there are two pages of assorted reference
information (much of which you probably won’t need). You should remove this sheet of
paper from the exam for convenience. These pages will not be scanned or graded.

Do not remove any pages from the middle of the exam.

If you do not remember the exact syntax for something, make the best attempt you can.
We will make allowances when grading.

Don’t be alarmed if there seems to be more space than is needed for some answers – we
tried to include more than enough blank space.

Relax, you are here to learn.

Please wait to turn the page until everyone is told to begin

Score _________________ / 110

1. ______ / 20

2. ______ / 20

3. ______ / 20

4. ______ / 12

5. ______ / 16

6. ______ / 20

7. ______ / 2

 CSE 333 24wi Final Exam 3/12/24

 Page 2 of 18

Question 1. (20 points) A little C++/STL programming. One of our friends is taking a
Music Appreciation course to fulfill some of their distribution requirements. To keep
track of famous composers and the kinds of works they produced, they’ve decided to
write a small C++ program. They’ve created a map data structure with composer names
as the keys and the kinds of works written by each composer stored in a vector of strings
as the values. A sample looks like this:

 map<string, vector<string>> composers =
 { {"bach", {"choral", "chamber", "keyboard"}},
 {"verdi", {"choral", "opera", "chamber"}},
 {"beethoven", {"choral", "symphony", "opera", "chamber",
 "keyboard"}},
 {"mahler", {"symphony", "choral", "chamber"}}
 };

For this problem, implement the function find_composers. There are two arguments
to this function: the map of composer information shown above, and a string that
represents a kind of work (symphony, opera, etc.). The result of the function should be a
vector of strings containing names of all of the composers who wrote that kind of work.
The order of the composers in the output list does not matter. For example, if
composers is the above data, then the function should produce these results:

find_composers(composers, "opera") => {"beethoven", "verdi"}
find_composers(composers, "symphony") => {"mahler", "beethoven"}

It could also produce lists that give the composer names in a different order.

If the specified kind of work does not appear anywhere in the composers data, then the
function should return an empty vector.

You should assume that all necessary headers have already been #included (i.e., you
do not need to worry about header files), and you can also assume that a using
namespace std; directive has been written at the top of the file.

Reminder: there is some possibly useful reference information at the end of the exam.

Hint: you might, or might not, find it useful to write an auxiliary (helper) function that
reports whether a particular string does or does not appear in a vector. Entirely up to you
if you think it might be useful.

Write your answer on the next page…

 CSE 333 24wi Final Exam 3/12/24

 Page 3 of 18

Question 1. (cont.) Write your C++ code below. The function header is provided for
you…

// return a vector containing names of composers whose
// compositions include works that match kind
vector<string> find_composers(
 map<string, vector<string>> composers, string kind) {

}

 CSE 333 24wi Final Exam 3/12/24

 Page 4 of 18

Question 2. (20 points) Yet another bonkers inheritance question. As usual this program
compiles and executes with no errors. Headers and using namespace std;
omitted to save space.

class Super {
public:
 virtual void one() { cout << "Super::one" << endl; }
 void two() { cout << "Super::two" << endl; }
 virtual void three() { two(); cout << "Super::three" << endl; }
};

class Middle: public Super {
public:
 virtual void three() { cout << "Middle::three" << endl; }
 void four() { two(); cout << "Middle::four" << endl; }
 void two() { three(); cout << "Middle::two" << endl; }
};

class Sub: public Middle {
public:
 void two() { cout << "Sub::two" << endl; }
 void four() { one(); cout << "Sub::four" << endl; }
 void three() { cout << "Sub::three" << endl; }
};

int main() {
 Super *a = new Middle();
 a->one();
 a->two();
 a->three();
 cout << "---(1)---" << endl;
 Super *b = new Sub();
 b->one();
 b->two();
 b->three();
 cout << "---(2)---" << endl;
 Middle *c = new Sub();
 c->one();
 c->two();
 c->three();
 c->four();
 return 0;
}

Continue with the problem on the next pages. Do not remove this page from the exam.

 CSE 333 24wi Final Exam 3/12/24

 Page 5 of 18

Question 2. (cont.) (a) (6 points) Complete the diagram below to show all of the
variables, objects, virtual method tables (vtables) and functions in this program. Parts of
the diagram are supplied for you.

 (b) (14 points) What does this program print when it executes? (write your answer in
multiple columns if needed)

Super vtbl

Super::one

Super::two

Super::three

Middle::two

Middle::three

Middle::four

vtables (might have way
more slots than needed)

Middle vtbl

Sub vtbl

main() variables
(add pointers as needed)

a

functionsobjects (add objects
& pointers as needed)

b

c

Sub::two

Sub::three

Sub::four

 CSE 333 24wi Final Exam 3/12/24

 Page 6 of 18

Question 3. (20 points) A trip down memory lane. A colleague who is new to C++ is
learning how classes work by building a small class that has an integer instance variable
(somewhat like the Integer wrapper class in Java). Here is the code:

#include <iostream>
using namespace std;

// wrapped integer on the heap
class Int {
public:
 Int() {
 nptr_ = new int(0);
 }

 Int(int val) {
 nptr_ = new int(val);
 }

 virtual ~Int() {
 delete nptr_;
 }

 Int& operator=(const Int& rhs) {
 if (this != &rhs) {
 *nptr_ = *rhs.nptr_;
 }
 return *this;
 }

 int get() { return *nptr_; }

 void set(int newval) { *nptr_ = newval; }

private:
 int *nptr_;
};

int main() {
 Int x(17);
 Int y;
 Int z(y);
 y = x;
 z.set(42);
 // Draw memory diagram when execution reaches here //
 cout << x.get() << " " << y.get() << " " << z.get() << endl;
 return 0;
}

(continued on next page)

 CSE 333 24wi Final Exam 3/12/24

 Page 7 of 18

Question 3. (cont.) (a) (10 points) This program does compile and executes successfully,
at least for a while. Draw a diagram showing the contents of memory when execution
reaches the line in the main function with the comment that says “draw memory when
execution reaches here”. Your diagram should clearly separate data on the stack from
data allocated on the heap. Be sure to indicate clearly which data on the stack is part of
the stack frame for function main by drawing a box labeled “main” with appropriate
variables and data inside.

 stack heap

(b) (2 points) What output is produced when the next line is executed to print the values
of integers x, y, and z?

(continued on next page)

 CSE 333 24wi Final Exam 3/12/24

 Page 8 of 18

Question 3. (cont.) (c) (3 points) There is some sort of error in this program and it does
not finish execution successfully. What, precisely, is the error and what goes wrong?

(d) (3 points) How should we fix the error that you described above in part (c) that
causes the program to crash? You should describe what to change in the code and give
any specific replacement C++ code needed to fix the problem.

(e) (2 points) After fixing the error, what output does the program print when it is
executed?

 CSE 333 24wi Final Exam 3/12/24

 Page 9 of 18

Question 4. (12 points) Templates. The code from the previous question is a wrapper for
a single int(eger) value. There might be other cases where a simple wrapper like this
would be useful for objects of other types, not just int.

Write your changes in the code below to modify the class and the main program that uses
it so the class has a generic type parameter T for the type of the wrapped variable, and
then modify the main program to use that template to create instances of the class with
the actual type parameter int. Also, you should rename the class to be Wrapper
instead of Int. The resulting program should work exactly the same as the original
program, and will contain exactly the same bugs – don’t fix those – but it should have a
generic type for the wrapped value.

class Int {
public:
 Int() {
 nptr_ = new int(0);
 }

 Int(int val) {
 nptr_ = new int(val);
 }

 virtual ~Int() {
 delete nptr_;
 }

 Int& operator=(const Int& rhs) {
 if (this != &rhs) {
 *nptr_ = *rhs.nptr_;
 }
 return *this;
 }

 int get() { return *nptr_; }

 void set(int newval) { *nptr_ = newval; }

private:
 int *nptr_;
};

int main() {
 Int x(17);
 Int y;
 Int z(y);
 y = x;
 z.set(42);
 cout << x.get() << " " << y.get() << " " << z.get() << endl;
 return 0;
}

 CSE 333 24wi Final Exam 3/12/24

 Page 10 of 18

Question 5. (16 points) Yet another broken web server. Here is another attempt at
creating a small web server, but, alas, it is buggy, like many of the ones we’ve been
debugging over the last couple of weeks. But, like the ones we’ve been working on, with
some fixes, this one can be repaired.

Write in corrections below to show how the code should be rearranged, changed, added
to, or otherwise fixed to create a properly working server that accepts a connection from a
client and then reads data from the client and writes it back until the socket is closed.
Feel free to draw arrows showing how to move code around if needed, but be sure it is
clear to the reader what you mean.

You should assume that all functions always succeed – ignore error handling for this
question. Further, assume that the hints data structure is set up correctly for the call to
getaddrinfo and the first address returned by getaddrinfo works and we don’t
need to search that linked list to find one that does work. Also, ignore the details of
parameter lists – assume that all the “…” or missing parameters are valid and appropriate.

Also assume that WrappedRead and WrappedWrite are like the read() and
write() POSIX functions, except that they automatically handle error conditions,
including looping to retry the read or write if EINTR or EAGAIN errors occur.

Reminder: there is some potentially useful reference information at the end of the exam.

int main(int argc, char** argv) {

 struct addrinfo hints, *rp;

 memset(&hints, 0, sizeof(hints));

 hints.ai_... = ...; // specify values for desired options

 getaddrinfo(NULL, argv[1], &hints, &rp); // assume *rp is ok

 int fd = socket(rp->ai_family, rp->ai_socktype,

 rp->ai_protocol);

 setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, ...);

 freeaddrinfo(rp);

 accept(fd, SOMAXCONN);

(Continued on next page)	

 CSE 333 24wi Final Exam 3/12/24

 Page 11 of 18

Question 5. (cont.) Continue writing in your corrections below as needed.

 char buf[BUFSIZE] // BUFSIZE is a predefined constant

 // read data from the client and write it back until the

 // socket is closed

 while (1) {

 int r_res = WrappedRead(fd, buf, BUFSIZE);

 if (r_res == 0) {

 break;

 } else if (r_res < 0) {

 close(fd)

 return EXIT_FAILURE;

 }

 int w_res = WrappedWrite(fd, buf, r_res);

 if (w_res != r_res) {

 close(fd)

 return EXIT_FAILURE;

 }

 }

 close(fd);

 return EXIT_SUCCESS;

}

	

 CSE 333 24wi Final Exam 3/12/24

 Page 12 of 18

Question 6. (20 points) Too many things at once. Consider the following small program
that uses pthreads. (This does compile and execute successfully.)

int x = 0;
int y = 0;

void *worker(void *ignore) {
 for (int k = 1; k <= 3; k++) {
 x = x + k;
 y = y + 1;
 }
 printf("x = %d, y = %d\n", x, y);
 return NULL;
}

int main() {
 pthread_t t1, t2, t3;
 int ignore;
 ignore = pthread_create(&t1, NULL, &worker, NULL);
 ignore = pthread_create(&t2, NULL, &worker, NULL);
 ignore = pthread_create(&t3, NULL, &worker, NULL);
 pthread_join(t1, NULL);
 pthread_join(t2, NULL);
 pthread_join(t3, NULL);
 printf("final x = %d\n", x);
 printf("final y = %d\n", y);
 return EXIT_SUCCESS;
}

When we run this program, it starts three threads that each assign values to x and y and
then print the values of those variables. Then the program waits for all threads to finish,
and prints the final values of the variables x and y.

(a) (4 points) What output would this program print if the threads are executed
sequentially, not concurrently? In other words, what output is produced if thread 1
executes first and then thread 2 executes after thread 1 terminates and then thread 3
executes last?

(continued on next page)

 CSE 333 24wi Final Exam 3/12/24

 Page 13 of 18

Question 6. (cont.) (b) (6 points) When the threads run concurrently, is it possible to
get different values for the numbers in the output if the program is executed multiple
times? If it is, give two possible outputs that could be produced by the program that are
different from the sequential output in part (a). If there is only one other possible set of
output numbers besides the sequential one from part (a), write that one and indicate that it
is the only possible different output.

(You should assume that the statements in each individual thread are executed in the order
written, and not rearranged by the compiler or memory system to be executed out-of-order. You
should also assume that the printf calls don’t interfere with each other and that each line of
output is printed correctly on a single line and separately from other output lines, and the
variables being printed are read simultaneously with no other thread interrupting to change them
while printf is running. If different executions lead to different output numbers, it is only
because of the interaction between statements in the threads as they run concurrently.)

(c) (4 points) Assuming that the threads are executed concurrently, as in part (b), what
are the possible final values of variables x and y? Circle all that could possibly happen
on some possible execution (you can draw a big circle around several values rather than
individual small circles for each value if it helps save time J):

Possible final values for x:

0 1 2 3 4 5 6 7 8 9 10

 11 12 13 14 15 16 17 18 19 20 or more

Possible final values for y:

0 1 2 3 4 5 6 7 8 9 10

 11 12 13 14 15 16 17 18 19 20 or more

(continued next page)

 CSE 333 24wi Final Exam 3/12/24

 Page 14 of 18

Question 6 (cont.) (d) (6 points) Now we would like to add synchronization to the
initial code so that the program still has three concurrent threads, but properly
synchronized this time. In the copy of the original code below, insert appropriate locking
using a single pthread_mutex_t lock so the threads do not interfere with each other
as they update shared variables x and y but also so there is as much concurrency as
possible. i.e., each thread should acquire the lock just long enough to avoid
synchronization problems, but should not, for example, acquire the lock and hold on to it
until it has completely finished, which would effectively cause the threads to execute one
at a time rather than concurrently.

Hints: pthread_mutex_t and related mutex init, lock, and unlock functions are
useful. (See the section at the end of the exam for additional reference information.)

int x = 0;

int y = 0;

void *worker(void *ignore) {

 for (int k = 1; k <= 3; k++) {

 x = x + k;

 y = y + 1;

 }

 printf("x = %d, y = %d\n", x, y);

 return NULL;

}

int main() {

 pthread_t t1, t2, t3;

 int ignore;

 ignore = pthread_create(&t1, NULL, &worker, NULL);

 ignore = pthread_create(&t2, NULL, &worker, NULL);

 ignore = pthread_create(&t3, NULL, &worker, NULL);

 pthread_join(t1, NULL);

 pthread_join(t2, NULL);

 pthread_join(t3, NULL);

 printf("final x = %d\n", x);

 printf("final y = %d\n", y);

 return EXIT_SUCCESS;

 CSE 333 24wi Final Exam 3/12/24

 Page 15 of 18

Question 7. (2 free points – all answers get the free points) Draw a picture of something
you’re planning to do over spring break!

Congratulations on lots of great work this quarter!!
Have a great spring break and best wishes for the future!

The CSE 333 staff

 CSE 333 24wi Final Exam 3/12/24

 Page 16 of 18

Extra space for answers, if needed. Please be sure to label which question(s) are
answered here, and be sure to put a note on the question page so the grader will know to
look here.

 CSE 333 24wi Final Exam 3/12/24

 Page 17 of 18

Reference information. Here is a collection of information that might, or might not, be
useful while taking the test. You can remove this page from the exam if you wish.

C++ strings: If s is a string, s.length() and s.size()return the number of characters in it.
s.find(search_string, start_pos = 0) returns the location of the first occurrence of
search_string starting no earlier than start_pos or returns string::npos if not found.
Subscripts (s[i]) can be used to access individual characters.

C++ STL:

• If lst is a STL vector, then lst.begin() and lst.end() return iterator values
of type vector<...>::iterator. STL lists and sets are similar.

• A STL map is a collection of pair objects. If p is a pair, then p.first and
p.second denote its two components. If the pair is stored in a map, then p.first
is the key and p.second is the associated value.

• If m is a map, m.begin() and m.end() return iterator values. For a map, these
iterators refer to the Pair objects in the map.

• If it is an iterator, then *it can be used to reference the item it currently points to, and
++it will advance it to the next item, if any.

• Some useful operations on STL containers (lists, maps, sets, etc.):
o c.clear() – remove all elements from c
o c.size() – return number of elements in c
o c.empty() – true if number of elements in c is 0, otherwise false

• Additional operations on vectors:
o c.push_back(x) – copy x to end of c

• Some additional operations on maps:
o m.insert(x) – add copy of x to m (a key-value pair for a map)
o m.count(x) – number of elements with key x in m (0 or 1)
o m.find(item) – iterator pointing to element with key that matches item if found,

or m.end() if not found.
o m[k] can be used to access the value associated with key k. If m[k] is read and

has never been accessed before, then a <key,value> Pair is added to the map
with k as the key and with a value created by the default constructor for the value
type (0 or nullptr for primitive types).

• Some additional operations on sets
o s.insert(x) – add x to s if not already present
o s.count(x) – number of copies of x in s (0 or 1)

• You may use the C++11 auto keyword, C++11-style for-loops for iterating through
containers, and any other features of standard C++11, but you are not required to do so.

 CSE 333 24wi Final Exam 3/12/24

 Page 18 of 18

More reference information. You can also remove this page if you wish.

Some POSIX I/O and TCP/IP functions:

• int accept(int sockfd, struct socckaddr *addr, socklen_t *addrlen);
• int bind(int sockfd, const struct sockaddr *addr, socklen_t addrlen)
• int close(int fd)
• int connect(int sockfd, const struct sockaddr *addr, socklen_t addrlen);
• int freeaddrinfo(struct addrinfo *res)
• int getaddrinfo(const char *hostname, const char *service,

 const struct addrinfo *hints, struct addrinfo **res)
o Use NULL or listening port number for second argument

• int listen(int sockfd, int backlog)
o Use SOMAXCONN for backlog

• off_t lseek(int fd, off_t offset, int whence)
o whence is one of SEEK_SET, SEEK_CUR, SEEK_END

• ssize_t read(int fd, void *buf, size_t count)
o if result is -1, errno could contain EINTR, EAGAIN, or other codes

• int socket(int domain, int type, int protocol)
o Use SOCK_STREAM for type (TCP), 0 for protocol, get domain from address

info struct (address info struct didn’t fit on this page – we’ll include it later if
needed)

• ssize_t write(int fd, const void *buf, size_t count)

Some pthread functions:

• pthread_create(pthread_t *thread, attr, start_routine, arg)
• pthread_exit(void *status_ptr)
• pthread_join(pthread_t thread, void **value_ptr)
• pthread_cancel (pthread_t thread)
• pthread_detach(pthread_t thread)
• pthread_mutex_init(pthread_mutex_t * mutex, attr) // attr=NULL usually
• pthread_mutex_lock(pthread_mutex_t * mutex)
• pthread_mutex_unlock(pthread_mutex_t * mutex)
• pthread_mutex_destroy(pthread_mutex_t * mutex)

Basic C memory management functions:

• void * malloc(size_t size)
• void free(void *ptr)
• void * calloc(size_t number, size_t size)
• void * realloc(void *ptr, size_t size)

