
 CSE 333 22sp Final Exam 6/8/22 Sample Solution

 Page 1 of 11

Question 1. (15 points) C++ STL. In these days of product shortages, it’s hard to keep
track of what is currently available where. We have a C++ map that contains information
about stores and products currently available at those stores. The keys in the map are
strings giving store names. The associated values are lists of items available in those
stores. For example:

 map<string, vector<string>> inventory =
 { {"qfc", {"bread", "milk", "bananas", "soap"}},
 {"bartells", {"soap", "toothpaste"}},
 {"safeway", {"milk", "bread", "bananas", "hotdogs"}}
 };

We would like to write a function that uses this information to produce a map whose keys
are the items (values) from the above data and whose values are a set of stores where
those items are available. The first few entries in the result produced from the above data
might be the following:

 { {"bread", {"qfc", "safeway"}},
 {"soap", {"bartells", "qfc"}},
 {"hotdogs", {"safeway"}},
 ... }

The keys in the maps and the store names in the result sets can be in any order – your
code does not need to guarantee any particular ordering of these.

Complete the definition of function find_stores on the next page so it produces a
map of products and stores where they are available from an input map of stores and
products that are available in those stores. Although the code is fairly short, please write
it on the next page to ensure there is plenty of space for your answer, rather than trying to
fit it at the bottom of this page.

(Note: since the store names are keys in the original map, we are guaranteed that they are
unique, so we do not have to worry about duplicate values in the result sets.)

(Reminder: reference information about STL containers is included in the tear-off pages
at the end of the exam.)

 Write your

 Answer

 On the

 Next

 Page…

 CSE 333 22sp Final Exam 6/8/22 Sample Solution

 Page 2 of 11

Question 1. (cont.) Complete the definition of function find_stores below. You
should assume all necessary headers have already been #included, and that a using
namespace std; directive has been supplied so you do not need to write std:: in
front of all standard library names. You almost certainly will not need all of this space.

// return a map from product names to sets of stores where those
// products are available

map<string, set<string>> find_stores(
 map<string, vector<string>> inventory) {

// write your implementation below

 map<string, set<string>> product_locations;

 // iterate through each item in the inventory

 for (auto& store_list : inventory) {

 string store = store_list.first;

 vector<string> items = store_list.second;

 // add the stores for each item to product_locations

 for (auto& item : items) {

 // Note: product_locations[item] automatically instantiates
 // a set for new items

 product_locations[item].insert(store);
 }
 }
 return product_locations;

}

 CSE 333 22sp Final Exam 6/8/22 Sample Solution

 Page 3 of 11

Question 2. (18 points) Templates and things. The following header file defines a class
that holds a pair of integers and includes a constructor and functions for accessing the
values.

#ifndef PAIR_H_
#define PAIR_H _

template <typename T> // <class T> also works

class Pair {

 public:

 // Construct a Pair with given first and second values

 Pair(int T first, int T second)

 : first_(first), second_(second) { }

 // accessors: return first and second items from Pair

 int T first() const { return first_; }

 int T second() const { return second_; }

 private:

 // instance variables

 int T first_;

 int T second_;

};

#endif // PAIR_H _

(a) (5 points) We would like to generalize this class so it can be used to store any pairs of
values as long as both values have the same type (i.e., pairs of ints, pairs of strings, etc.)

Show the changes needed to make this a generic class where the element type is a type
parameter instead of int. You should write your changes and additions in the above
code.

(Changes shown above in bold green.)

(continued on the next page)

 CSE 333 22sp Final Exam 6/8/22 Sample Solution

 Page 4 of 11

Question 2. (cont.) We would now like to add an addition (+) operator to the generic
Pair class on the previous page. If (a,b) and (c,d) are Pair values, then (a,b)+(c,d)
should yield a new Pair containing (a+c, b+d). Neither of the original Pair objects
should be modified. You do not need to check whether addition (+) is defined on the
items stored in a Pair – that is handled for you by the compiler when the addition
operator is used. The compiler will check that the actual type used when the template is
instantiated supports addition and produce appropriate error messages if it does not.

(b) (5 points) Write the function declaration (not the implementation) to be added to the
header file Pair.h for the new operator+. If it is possible to add operator+ as
either a member or non-member function of the Pair class, you can use whichever one
you prefer.

Member template function version in <typename T> class Pair:
 Pair<T> operator+(const Pair<T> &other) const;
Non-member template function version:
 template <typename T>
 Pair<T> operator+ (const Pair<T> &a, const Pair<T> &b);
(either version was acceptable)

(c) (8 points) Give the code to implement this new addition operator as it would appear in
a separate file Pair.cc containing definitions of functions not implemented in the
header Pair.h.

(Note: if the code is part of a template, it probably would not be in a separate .cc
file, but would be included in the .h file containing the template declaration. The
main difference is that if the operator is defined as a member function in the class
template, it should not have a separate declaration of the type parameter T, and if
the body of the function is included as part of the declaration, the Pair<T>::
scope operation would not be needed either. If it is a non-member function it would
appear as shown here, even when it is included in the header file.)

Member function version in separate .cc file:
template <class T>
Pair<T> Pair<T>::operator+(const Pair<T> &other) const {
 return Pair<T>(first() + other.first(),
 second() + other.second());
}
Non-member function version:
template <typename T>
Pair<T> operator+ (const Pair<T> &a, const Pair<T> &b) {
 return Pair<T>(a.first() + b.first(),
 a.second() + b.second());
}

 CSE 333 22sp Final Exam 6/8/22 Sample Solution

 Page 5 of 11

Question 3. (20 points) Here we go again – dynamic dispatch and friends. As usual this
program compiles and executes with no errors. Headers and using namespace std
omitted to save space.

class A {
 public:
 void f() { h(); cout << "A::f" << endl; }
 void g() { cout << "A::g" << endl; }
 virtual void h() { cout << "A::h" << endl; }
};

class B: public A {
 public:
 void f() { cout << "B::f" << endl; }
 virtual void g() { h(); cout << "B::g" << endl; }
 void p() { g(); cout << "B::p" << endl; }
};

class C: public B {
 public:
 void g() { f(); cout << "C::g" << endl; }
 virtual void h() { p(); cout << "C::h" << endl; }
};

int main() {
 cout << "--part 1--" << endl;
 B* b1 = new B();
 b1->f();
 cout << "---" << endl;
 b1->g();
 cout << "---" << endl;
 b1->h();
 cout << "---" << endl;
 b1->p();
 cout << "--part 2--" << endl;
 B* b2 = new C();
 A* a = b2;
 a->f();
 cout << "---" << endl;
 a->g();
 cout << "--part 3--" << endl;
 b2->f();
 cout << "---" << endl;
 b2->g();
 return 0;
}

Continue with the problem on the next pages. Do not remove this page from the exam.

 CSE 333 22sp Final Exam 6/8/22 Sample Solution

 Page 6 of 11

Question 3. (cont.) (a) (6 points) Complete the diagram below to show all of the
variables, objects, virtual method tables (vtables) and functions in this program. Parts of
the diagram are supplied for you.

 (b) (14 points) What does this program print when it executes? (write your answer in
multiple columns if needed)

--part 1--
B::f

A::h
B::g

A::h

A::h
B::g
B::p

--part 2--
B::f
C::g
B::p
C::h
A::f

A::g
--part 3--
B::f

B::f
C::g

b2

A vtbl

A::f

A::g

A::h

B::f

B::g

B::p

C::g

C::h

vtables (might have way
more slots than needed)

B vtbl

C vtbl

main() variables
(add pointers as needed)

b1

a

functionsobjects (add objects
& pointers as needed)

Note: the appropriate “h” pointer
must be the first entry in all vtables,
the appropriate “g” pointer must
appear second in both B’s and C’s
vtables. There are no pointers to non-
virtual functions in any vtable.

 CSE 333 22sp Final Exam 6/8/22 Sample Solution

 Page 7 of 11

Question 4. (18 points) More C++ classes. Consider the following program, which
contains a simple integer wrapper class Int and a main function that uses it. Header
#includes and using namespace std; omitted to save space. In the box on the
right, write the output that is produced when this program is run. It compiles and
executes with no errors.

class Int {
 public:
 // Constructors & destructor
 Int() { cout<<"Int()" <<endl; val_=17; }
 Int(int n) { cout<<"Int(n)" <<endl; val_=n; }
 Int(const Int &other){cout<<"copy ctr"<<endl; val_=other.val_;}
 ~Int() { cout<<"dtr"<<endl; }

 // accessor function
 int get() { cout<<"Int.get"<<endl; return val_; }

 // assignment
 Int &operator=(const Int& rhs) {
 cout<<"Int.op="<<endl;
 if (this == &rhs) return *this;
 this->val_ = rhs.val_;
 return *this;
 }
 private:
 int val_; // instance variable
}; // end of class Int

int IntSum(Int v[], int sz) {
 int result = 0;
 for (int k = 0; k < sz; k++) {
 result += v[k].get();
 }
 return result;
}

int main() {
 Int x = 10;
 Int y = x;
 Int a[2];
 cout << "---" << endl;
 a[0] = 42;
 cout << "---" << endl;
 int sum = IntSum(a, 2);
 cout << "sum = " << sum << endl;
 cout << "---" << endl;
 Int* p;
 p = &x;
 int n = p->get();
 cout << "p->get() = " << n << endl;
 return EXIT_SUCCESS;
} 	

Program output:

Int(n)
copy ctr
Int()
Int()

Int(n)
Int.op=
dtr

Int.get
Int.get
sum = 59

Int.get
p->get() = 10
dtr
dtr
dtr
dtr

 CSE 333 22sp Final Exam 6/8/22 Sample Solution

 Page 8 of 11

Question 5. (14 points) Networking. Below is the pseudo-code for a very simple TCP
server that accepts connections from clients and exchanges data with them. However,
this code doesn’t work because it has structural errors. In particular, some functions are
called at the wrong time or in the wrong place, and there may be other problems. Write
in corrections below to show how the pseudo-code should be rearranged, changed, or
fixed to have the proper structure for a simple server. Feel free to draw arrows showing
how to move code around, but be sure it is clear to the grader what you mean.

You should assume that all functions always succeed – ignore error handling for this
question. Further, assume that the first address returned by getaddrinfo works and
we don’t need to search that linked list to find one that does work. Also, ignore the
details of parameter lists – assume that all the “…” parameters are valid and appropriate.

Reminder: there is some potentially useful reference information at the end of the exam.

int main(int argc, char **argv) {

 struct addrinfo hints, *rp;

 memset(&hints, 0, sizeof(hints));

 hints.ai_... = ...; // specify values for options

 getaddrinfo(NULL, argv[1], &hints, &rp);

 //	ok	to	assume	*rp	is	a	valid	address	and	will	work	here	
 int fd = socket(rp->ai_family,
 rp->ai_socktype, rp->ai_protocol);

 setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, ...);

 freeaddrinfo(rp);

 while (1) {

 bind(fd, rp->ai_addr, rp->ai_addrlen);

 fd = accept(fd, ...);

 listen(fd, SOMAXCONN);

 // talk to client as needed

 read(fd, ...);

 write(fd, ...);

 close(fd);
 }
 return EXIT_SUCCESS;
}

(See solution on next page)

 CSE 333 22sp Final Exam 6/8/22 Sample Solution

 Page 9 of 11

Question 5 solution. Here is a corrected version of the pseudo-code, written out in
full for clarity. Test answers were only expected to show these changes written on
the same page as the original code, with appropriate indications of where to insert,
delete, or move things. The major changes needed are:

• Use separate int file descriptors for the listening and client sockets.
• Move the code to bind and open the listening socket outside the loop so it is

done once as part of the server initialization.
• Only close the client file descriptor inside the loop; leave the listening fd open

so it can be used to accept the next client.
The original code did not have any way to shut down the server by exiting the main
loop, so there would be no reason to close the listening file descriptor. However, if a
close(listen_fd) were included in the corrected code, it would have to be at
the end outside the loop.
Note that there are some variations on this code that are also correct. For instance,
the freeaddrinfo(rp); function call can appear after the listen operation.

// pseudo-code for a network server

int main(int argc, char **argv) {

 struct addrinfo hints, *rp;

 memset(&hints, 0, sizeof(hints));

 hints.ai_... = ...; // specify values for desired options

 getaddrinfo(NULL, argv[1], &hints, &rp); // assume *rp works

 int listen_fd = socket(rp->ai_family,

 rp->ai_socktype, rp->ai_protocol);

 setsockopt(listen_fd, SOL_SOCKET, SO_REUSEADDR, ...);

 bind(listen_fd, rp->ai_addr, rp->ai_addrlen);

 freeaddrinfo(rp);

 listen(listen_fd, SOMAXCONN);

 while (1) {

 int client_fd = accept(listen_fd, ...);

 // talk to client as needed

 read(client_fd, ...);

 write(client_fd, ...);

 close(client_fd);

 }

 close(listen_fd);

 return EXIT_SUCCESS;

}

 CSE 333 22sp Final Exam 6/8/22 Sample Solution

 Page 10 of 11

Question 6. (14 points, 2 each) Too many things at once… Consider the following C
program using pthreads, which does compile and execute without errors (headers omitted
to save space):

int x = 0;

void * thread_worker(void * ignore) {
 x = x + 1;
 printf("x=%d\n", x);
 return NULL;
}

int main() {
 pthread_t t1, t2;
 int ignore;
 ignore = pthread_create(&t1, NULL, &thread_worker, NULL);
 ignore = pthread_create(&t2, NULL, &thread_worker, NULL);
 pthread_join(t1, NULL);
 pthread_join(t2, NULL);
 printf("final x=%d\n", x);
 return EXIT_SUCCESS;
}

For each of the following output sequences, circle “yes” if it could be produced by some
possible execution of the above program and circle “no” if it could never happen under
any circumstances. (Hint: at least one of these sequences is possible.)

YES NO x=0 x=1 final x=1

YES NO x=1 x=1 final x=1

YES NO x=1 x=2 final x=1

YES NO x=1 x=1 final x=2

YES NO x=1 x=2 final x=2

YES NO x=2 x=1 final x=2

YES NO x=2 x=2 final x=2

(Note: in these answers we assumed that each printf operation successfully prints
its complete output without interruption from another thread.)

 CSE 333 22sp Final Exam 6/8/22 Sample Solution

 Page 11 of 11

Question 7. (1 free point – all answers get the free point) Draw a picture of something
you plan to do this summer!

Congratulations on lots of great work this quarter!!
Have a great summer!

The CSE 333 staff

