
 CSE 333 22au Final Exam 12/14/22 Sample Solution

 Page 1 of 15

Question 1. (20 points) A little C++/STL programming. It’s the time of year when
many packages are being sent across the country and around the world. We’d like to help
our friends at the corner grocery-post-office-minimart-cafe keep track of the destinations
of the many packages they are collecting that need to be sent somewhere. Every time
somebody shows up with new packages to be shipped, our friends at the store add a line
to the file boxes.txt listing the destination and number of new packages for that
destination. A sample input file might look something like this:

 Seattle 3
 Redmond 1
 Seattle 1
 Omaha 4
 Boston 3

(You should assume that each destination is a single word like “Seattle” or
“Los_Angeles”, not words with embedded blanks like “San Francisco”.)

Write a small C++ program that accepts the name of a file formatted above as its
argument (argv[1]), opens the file, and reads its contents. Then, after reading the file,
the program should print a sorted list of the destinations and total number of packages
being sent to each destination. For the above sample input file, the output would be

 Boston 3
 Omaha 4
 Redmond 1
 Seattle 4

(Do not worry about the exact spacing of the output as long as each line contains the
proper information.)

You do need to check that the file can be opened successfully, but, to keep the code
simple for this exam problem, you can assume that when you read the destination strings
and integer numbers using the simple C++ >> stream input operator that it will work, and
you do not need to check for whether that succeeds or not.

You should assume that all necessary headers have already been #included (i.e., you
do not need to worry about header files), and you can also assume that a using
namespace std; directive has been written at the top of the file. It’s also fine to
write the whole program as a single main function if that makes sense, because it should
be pretty short.

Hint: STL containers, particularly maps, might be very useful here….

Hint: remember that ifstream f(filename, ifstream::in) can be used to open
the named file for reading, and you can test the stream variable f afterwards to see if the
open succeeded by writing things like if(f)... or if(!f)... .

Reminder: there is some possibly useful reference information at the end of the exam.

Write your answer on the next page…

 CSE 333 22au Final Exam 12/14/22 Sample Solution

 Page 2 of 15

Question 1. (cont.) Write your C++ code below.

Here is one possible solution. The error checking messages here are a bit more
elaborate than needed or expected for an exam problem, but the program does need
to check that it can successfully open the file.

int main(int argc, char **argv) {
 // check that an argument is supplied
 if (argc != 2) {
 cerr << "usage: " << argv[0] << " filename" << endl;
return EXIT_FAILURE;
 }

 // Create stream and open for reading. Exit if unable.
 std::ifstream f(argv[1], ifstream::in);
 if (!f) {
 cerr << "unable to open file: " << argv[1] << endl;
 return EXIT_FAILURE;
 }

 // read cities and numbers of packages from input file and
 // accumulate totals by city
 string city;
 int npackages;
 map<string, int> packages; // map of <city, #packages> pairs
 while (f >> city) {
 f >> npackages;
 packages[city] += npackages;
 }

 // if input failed for some reason other than eof, report error
 // (not required for exam question, but included as an example)
 if (!f.eof()) {
 cerr << "error reading file: " << argv[1] << endl;
 return EXIT_FAILURE;
 }

 // print cities and number of packages sorted by city
 for (const auto &info : packages) {
 cout << info.first << " " << info.second << endl;
 }

 return EXIT_SUCCESS;
}

 CSE 333 22au Final Exam 12/14/22 Sample Solution

 Page 3 of 15

Question 2. (20 points) Here we go again – dynamic dispatch and friends. As usual this
program compiles and executes with no errors. Headers and using namespace std
omitted to save space.

class A {
public:
 virtual void foo() = 0;
 virtual void bar() { baz(); cout << "A::bar" << endl; }
 void baz() { cout << "A::baz" << endl; }
};

class B : public A {
public:
 void foo() { bar(); cout << "B::foo" << endl; }
 void baz() { cout << "B::baz" << endl; }
};

class C : public B {
public:
 void bar() { cout << "C::bar" << endl; }
};

int main() {
 A* a_ptr_c = new C();
 A* a_ptr_b = new B();
 B* b_ptr_b = new B();
 B* b_ptr_c = new C();
 C* c_ptr_c = new C();

 a_ptr_b->foo();
 b_ptr_b->baz();
 c_ptr_c->bar();

 cout << "---" << endl;

 a_ptr_c->bar();
 c_ptr_c->baz();
 b_ptr_c->bar();

 cout << "---" << endl;

 c_ptr_c->foo();
 b_ptr_b->foo();
 a_ptr_c->foo();
 return EXIT_SUCCESS;
}

Continue with the problem on the next pages. Do not remove this page from the exam.

 CSE 333 22au Final Exam 12/14/22 Sample Solution

 Page 4 of 15

Question 2. (cont.) (a) (6 points) Complete the diagram below to show all of the
variables, objects, virtual method tables (vtables) and functions in this program. Parts of
the diagram are supplied for you.

Notes: The original diagram was a bit misleading because A::foo is a pure virtual
function, which means it will not be present in the program. It is assigned an offset
in the vtable though so it can be properly called as a virtual function.

Functions foo and bar can be assigned in either order in the A vtable slots. They
must appear in the same order in the subclass vtables.

 (b) (14 points) What does this program print when it executes? (write your answer in
multiple columns if needed)

A::baz
A::bar
B::foo
B::baz
C::bar

C::bar
B::baz
C::bar

C::bar
B::foo
A::baz
A::bar
B::foo
C::bar
B::foo

A vtbl

A::foo

A::bar

A::baz

B::foo

B::baz

C::bar

vtables (might have way
more slots than needed)

B vtbl

C vtbl

main() variables
(add pointers as needed)

a_ptr_c

functionsobjects (add objects
& pointers as needed)

a_ptr_b

b_ptr_b

b_ptr_c

c_ptr_c

 CSE 333 22au Final Exam 12/14/22 Sample Solution

 Page 5 of 15

Question 3. (20 points) Memories…. of CSE 333 and other things. A colleague is trying
to build a small C++ class that holds an array of integers plus the length of the array.
Here is the code they’ve created so far.

//// Ray.h ////
#ifndef RAY_H_
#define RAY_H_

#include <iostream>

class Ray {
 public:
 // construct new Ray with n copies of val
 Ray(int n, int val): size_(n), a_(new int[n]) {
 for (int i = 0; i < size_; i++) {
 a_[i] = val;
 }
 }
 // copy constructor and destructor
 Ray(const Ray &other) : size_(other.size_), a_(other.a_) { }
 ~Ray() { delete [] a_; }

 // print contents to stdout
 void Pr() {
 std::cout << "(";
 for (int k = 0; k < size_; k++) {
 std::cout << ((k > 0) ? "," : "") << a_[k];
 }
 std::cout << ")" << std::endl;
 }
 private:
 int size_;
 int *a_; // elements stored in a_[0..size-1]
};
#endif // RAY_H_

//// main.cc ////
#include <cstdlib>
#include "Ray.h"

int main() {
 Ray r(2,17);
 Ray *p = new Ray(3,42);
 Ray s(r);
 // draw memory when execution reaches here //
 r.Pr();
 s.Pr();
 p->Pr();
 delete p;
 return EXIT_SUCCESS;
}

(continued on next page)

 CSE 333 22au Final Exam 12/14/22 Sample Solution

 Page 6 of 15

Question 3. (cont.) (a) (12 points) This program does compile and executes successfully,
at least for a while. Draw a diagram showing the contents of memory when execution
reaches the line in the main function with the comment that says “draw memory when
execution reaches here”. Your diagram should clearly separate data on the stack from
data allocated on the heap. Be sure to indicate clearly which data on the stack is part of
the stack frame for function main by drawing a box labeled “main” with appropriate
variables and data inside.

 stack heap

Note: In diagrams like this it is important to indicate how related data is grouped
into objects and into local variables belonging to some function on the stack. A
number of solutions only showed free-floating data fields without using boxes to
indicate how the data was grouped into objects, and that is not enough.

(continued on next page)

size_ _2_

a_

size_ _2_

a_

r

s

p

size_ _3_

a_

17 17

42 42 42

main

 CSE 333 22au Final Exam 12/14/22 Sample Solution

 Page 7 of 15

Question 3. (cont.) (b) (4 points) There is some sort of error in this program and it does
not finish execution successfully. What, precisely, is the error and what goes wrong?

When the program reaches the end of main, we get a double free error because the
destructors for both r and s attempt to delete the same array allocated on the heap.

The cause is that the copy constructor for Ray does a shallow copy of the instance
variables of the original object. When we use the copy constructor to create a new
Ray object, both objects will point to the same array rather than correctly having
their own private heap-allocated array containing the data.

(Note: the question had a typo in the destructor. delete a_; should have been
delete [] a_ . Solutions that noticed this but missed the double-free problem
did receive some credit, but the major bug is the double free.)

(c) (4 points) How can we fix the error that you described above in part (b) that causes
the program to crash? You should describe what to change in the code and give the
specific replacement C++ code needed to fix the problem.

Fix the copy constructor for Ray so it allocates a separate array for the new object
and initializes it with a copy of the data stored in the other object. One way to do
this is to replace the original copy constructor with the following:

 Ray(const Ray &other) : size_(other.size_),
 a_(new int[other.size_]) {
 for (int i=0; i < size_; i++) {
 a_[i] = other.a_[i];
 }
 }

 CSE 333 22au Final Exam 12/14/22 Sample Solution

 Page 8 of 15

Question 4. (12 points) Templates. The code from the previous question holds an array
of ints and keeps track of the length of the array. Obviously, something like this could
be useful for arrays of any type, not just ints.

Write your changes in the code below to modify the class and the main program that uses
it so the class has a generic type parameter E for the type of the array elements, and the
main program uses that template to create instances of the class whose elements are type
int. The resulting program should work exactly the same as the original program, and
will contain exactly the same bugs – don’t fix those – but it should have a generic type
for the array elements.

Necessary changes shown in bold green text.

// Ray.h //

#ifndef RAY_H_

#define RAY_H_

#include <iostream>

template <typename E>

class Ray {

 public:

 // construct new Ray with n copies of val

 Ray(int n, int E val): size_(n), a_(new int E[n]) {

 for (int i = 0; i < size_; i++) {

 a_[i] = val;

 }

 }

 // copy constructor and destructor

 Ray(const Ray &other) : size_(other.size_), a_(other.a_) { }

 ~Ray() { delete [] a_; }

 // print contents to stdout

 void Pr() {

 std::cout << "(";

 for (int k = 0; k < size_; k++) {

 std::cout << ((k > 0) ? "," : "") << a_[k];

 }

 std::cout << ")" << std::endl;

 }

(remainder of Ray.h and other code continued on next page)

 CSE 333 22au Final Exam 12/14/22 Sample Solution

 Page 9 of 15

Question 4. (cont.) Write the template changes needed on the rest of the code below.

//// remainder of Ray.h ////

 private:

 int size_;

 int E *a_; // elements stored in a[0..size-1]

};

#endif // RAY_H_

//// main.cc ////

#include <cstdlib>

#include "Ray.h"

int main() {

 Ray r(2,17);

 Ray<int> *p = new Ray(3,42);

 Ray s(r);

 r.Pr();

 s.Pr();

 p->Pr();

 delete p;

 return EXIT_SUCCESS;

}

The <int> type is actually needed in the declaration of the pointer variable p in
main. Without it, there is not enough type information available for C++ to figure
out an appropriate type to substitute the E type parameter to create an correct type
for the pointer variable p. This is a pretty subtle quirk of the C++ template type
system, so we did not make a major deduction if it was missed.

It is possible, also, to include specific type parameters for variables r and s
(Ray<int> r(2,17)), but the template type inference algorithm can determine
this type from the constructor parameters used to create these variables, so the type
does not need to be given explicitly.

 CSE 333 22au Final Exam 12/14/22 Sample Solution

 Page 10 of 15

Question 5. (15 points) Networking. One of our friends is teaching themselves network
programming and is using CSE 333 examples to learn how to build a network server.
Unfortunately, they are having some problems and their code doesn’t quite work right.
The core parts of the code are shown below.

Write in corrections below to show how the code should be rearranged, changed, or fixed
to create a properly working server. Feel free to draw arrows showing how to move code
around if needed, but be sure it is clear to the reader what you mean.

You should assume that all functions always succeed – ignore error handling for this
question. Further, assume that the hints data structure is set up correctly for the call to
getaddrinfo and the first address returned by getaddrinfo works and we don’t
need to search that linked list to find one that does work. Also, ignore the details of
parameter lists – assume that all the “…” or missing parameters are valid and appropriate.

Reminder: there is some potentially useful reference information at the end of the exam.

Corrections shown in bold green text.

int main(int argc, char** argv) {
 struct addrinfo hints, *rp;
 memset(&hints, 0, sizeof(hints));
 // Set up the hints...
 hints.ai_... = ...; // specify values for options

 // Get local socket and create it
 getaddrinfo(NULL, argv[1], &hints, &rp); // assume *rp works
 // Bug 1: need to retain fd returned by socket
 int fd_1 = 0;
 int fd_1 = socket(rp->ai_family, rp->ai_socktype,
 rp->ai_protocol);

 // Bind socket and set to listen
 int optval = 1;
 int sock_fam = rp->ai_family;
 // Bug 2: undeclared (wrong) fd used in setsockopt
 setsockopt(listen_fd fd_1, SOL_SOCKET, SO_REUSEADDR,
 &optval, sizeof(optval));

 // Bug 3: need to bind before listen – swap those statements
 bind(fd_1, rp->ai_addr, rp->ai_addrlen);
 listen(fd_1, SOMAXCONN);

 // Bug 4: memory leak. Need to free getaddrinfo result
 freeaddrinfo(rp);

(code continued on next page)

 CSE 333 22au Final Exam 12/14/22 Sample Solution

 Page 11 of 15

Question 5. (cont.) Continue writing in your corrections below.

 // Accept clients and interact with them

 while (1) {

 int fd_2 = accept(fd_1, ...);

 // talk to client as needed

 // Bug 5: need to use fd from accept to talk to client

 read(fd_1 fd_2);

 write(fd_1 fd_2);

 // Bug 6: closing listener fd after handling only one client
 // (should be done on server shutdown only). This probably
 // should be close(fd_2) to close the client fd before
 // accepting the next client connection reusing the same fd
 // variable.

 close(fd_1 fd_2);

 }

 return EXIT_SUCCESS;

}

 CSE 333 22au Final Exam 12/14/22 Sample Solution

 Page 12 of 15

Question 6. (18 points) Too many things at once. Consider the following small program
that uses pthreads. (This does compile and execute successfully.)

#include <stdio.h>
#include <pthread.h>

int x = 0;
int y = 0;

void * worker(void * ignore) {
 x = x + y;
 y = y + 1;
 printf("x = %d, y = %d\n", x, y);
 return NULL;
}

int main() {
 pthread_t t1, t2;
 int ignore;
 ignore = pthread_create(&t1, NULL, &worker, NULL);
 ignore = pthread_create(&t2, NULL, &worker, NULL);
 pthread_join(t1, NULL);
 pthread_join(t2, NULL);
 printf("final x = %d, y = %d\n", x, y);
 return 0;
}

When we run this program, it starts two threads that each assign values to x and y and
prints the values of those variables, then waits for both threads to finish, and then prints
the final values of the variables x and y.

(a) (4 points) What output would this program print if the threads are executed
sequentially, not concurrently? In other words, what output is produced if thread 1
executes first and then thread 2 executes after thread 1 terminates?

 x = 0, y = 1
 x = 1, y = 2
 final x = 1, y = 2

(continued on next page)

 CSE 333 22au Final Exam 12/14/22 Sample Solution

 Page 13 of 15

Question 6. (cont.) (b) (8 points) When the threads run concurrently, is it possible to
get different output when the program is executed repeatedly? If it is, give three possible
outputs that could be produced by the program. If there are only one or two possible
outputs, write those and indicate that they are the only possible results. If one of the
outputs is the same as in your answer to part (a) when the program runs sequentially, you
can include that answer again here.

(You should assume that the statements in each individual thread are executed in the
order written, and not rearranged by the compiler or memory system to be executed out-
of-order. You should also assume that the printf calls don’t interfere with each other
and that each line of output is printed correctly on a single line and separately from other
output lines, and the variables being printed are read simultaneously with no other thread
interrupting to change them while printf is running. If different executions lead to
different outputs it is only because of the interaction between statements in the threads
the threads as they run concurrently.)

Yes, there are many possible outputs. The simplest case is when the thread printf
statements execute in a different order by switching between threads after updating
the variables but before printing the formatted output strings:

 x = 0, y = 1 x = 1, y = 2
 x = 1, y = 2 x = 0, y = 1
 final x = 1, y = 2 final x = 1, y = 2

More interesting cases happen when the system switches between threads when they
are in the middle of updating variables. Here are a couple of possibilities:

 x = 0, y = 1 x = 0, y = 1
 x = 0, y = 2 x = 0, y = 1
 final x = 0, y = 2 final x = 0, y = 1

(c) (6 points) Assuming that the threads are executed concurrently, as in part (b), what
are the possible final values of variables x and y? Circle all that could possibly happen
on some possible execution:

Possible final values for x:

0 1 2 3 4 5 6 7 8 9 10 or more

Possible final values for y:

0 1 2 3 4 5 6 7 8 9 10 or more

 CSE 333 22au Final Exam 12/14/22 Sample Solution

 Page 14 of 15

A couple of short-answer questions to finish up. Keep your answers brief and to the
point. It should be possible to answer these questions with a few sentences each.

Question 7. (4 points) The C++ standard libraries include smart pointers which
automatically delete owned (“pointed-to”) objects when the smart pointer is deleted. If
used extensively these can help avoid all kinds of memory management problems,
particularly memory leaks and dangling pointers. Could we use C++ smart pointers to
automate all of our memory management, the same as is done by the automatic garbage
collector in Java? Give short technical explanation of why or why not.

No. We want to be able to build complex data structures and for that we will need
shared_ptrs. These use reference counting to determine when to delete the
“pointed-to” objects that they own.

But if there are cycles in the data structures, we can wind up with heap items all of
which have non-zero reference counts, so they cannot be reclaimed, but which are
not reachable or usable from the active parts of the program. These represent
memory leaks.

Question 8. (4 points) When we were exploring strategies for implementing concurrent
servers, we looked at the relative costs of concurrent threads compared to processes. On
most systems, processes seem to be at least an order of magnitude more expensive to
create than threads. Why is this so? What is it about creating a process that is
significantly more expensive than creating a new thread? (Be brief!)

When we create a new thread, all we are doing is adding a new stack and execution
context (mostly another set of registers) to an existing process. The new thread uses
the existing process resources, including open files, memory, and operating system
data structures describing the process, among other things.

To create a new process, we need to clone the existing process, create a new address
space, and duplicate the process resources (code, open file descriptors, other process
description information inside the operating system, contents of virtual memory,
and so forth). Although good engineering can reduce the overhead needed to do
this, forking a new process requires significantly more work than just adding a new
thread to an existing one.

 CSE 333 22au Final Exam 12/14/22 Sample Solution

 Page 15 of 15

Question 9. (2 free points – all answers get the free points) Draw a picture of something
you’re planning to do over winter break!

J

Congratulations on lots of great work this quarter!!
Have a great holiday break and best wishes for the new year!

The CSE 333 staff

