
CSE 333
Section 6
Network programming,
Inheritance, vtables (recap)

1

Logistics

● HW3:

○ Due Today, 11:00 pm

● Exercise 15:
○ Due (08/5) Monday, 10 am

● Exercise 16:
○ Due (08/07) Wednesday, 10 am

2

Computer Networking
- At a High Level

3

Computer Networks: A 7-ish Layer Cake

4

Computer Networks: A 7-ish Layer Cake

format/meaning of messages

sending data end-to-end

routing of packets across networks

multiple computers on a local
network

bit encoding at signal level 5

Wires, radio signals, fiber optics

Computer Networks: A 7-ish Layer Cake

format/meaning of messages

sending data end-to-end

routing of packets across networks

multiple computers on a local
network

bit encoding at signal level

LAN

6

WiFi, ethernet.
Connecting multiple computers

Computer Networks: A 7-ish Layer Cake

7

routing of packets across networks

multiple computers on a local
network

bit encoding at signal level

Computer Networks: A 7-ish Layer Cake

8

Abstraction/Interface

routing of packets across networks

multiple computers on a local
network

bit encoding at signal level

Backbone of
the Internet!

Computer Networks: A 7-ish Layer Cake

sending data end-to-end

routing of packets across networks

multiple computers on a local
network

bit encoding at signal level 9

TCP, UDP,
etc.

Computer Networks: A 7-ish Layer Cake

sending data end-to-end

routing of packets across networks

multiple computers on a local
network

bit encoding at signal level

Stream
abstraction!

10

TCP, UDP,
etc.

Computer Networks: A 7-ish Layer Cake

sending data end-to-end

routing of packets across networks

multiple computers on a local
network

bit encoding at signal level 11

format/meaning of messages

HTTP, DNS, much more

Data Flow

Transmit
Data

Receive
Data

12

Exercise 1

13

Exercise 1

● DNS:

● IP:

● TCP:

● UDP:

● HTTP:

14

Reliable transport protocol on top of IP.

Translating between IP addresses and host names.

Sending websites and data over the Internet.

Unreliable transport protocol on top of IP.

Routing packets across the Internet.

(Transport Layer)

(Transport Layer)

`

(Application Layer)

(Network Layer)

(Application Layer)

TCP versus UDP

Transmission Control Protocol
(TCP):
● Connection-oriented service

● Reliable and Ordered

● Flow control

User Datagram Protocol (UDP):
● “Connectionless” service

● Unreliable packet delivery

● High speed, no feedback

15

TCP guarantees reliability for things like messaging or data transfers. UDP has less
overhead since it doesn’t make those guarantees, but is often fine for streaming
applications (e.g., YouTube or Netflix) or other applications that manage packets on
their own or do not want occasional pauses for packet retransmission or recovery.

Netcat demo

16

netcat
● Command-line utility to setup a TCP/UDP connection to read/write

data
○ Man page: https://www.commandlinux.com/man-page/man1/nc.1.html

● To start a server:
○ nc -l <hostname> <port>

● To connect to that server (as a client):
○ nc <hostname> <port>

● <hostname> can be:
○ localhost
○ attu#.cs.washington.edu

17

https://www.commandlinux.com/man-page/man1/nc.1.html

Inheritance (Recap)

Inheritance
● Motivation: Better modularize our code for similar classes!

● The public interface of a derived class inherits all non-private
member variables and functions (except for ctor, cctor, dtor, op=)
from its base class
○ Similar to: A subclass inherits from a superclass

● Aside: We will be only using public, single inheritance in CSE 333

Polymorphism: Dynamic Dispatch
● Polymorphism allows for you to access objects of related types (base

and derived classes) – Allows interface usage instead of class
implementation

● Dynamic dispatch: Implementation is determined at runtime via lookup
○ Allows you to call the most-derived version of the actual type of an object
○ Generally want to use this when you have a derived class

● virtual replaces the class’s default static dispatch with dynamic dispatch
○ Static dispatch determines implementation at compile time
○ Meaning it does not use dynamic dispatch (just calls its function)

Dynamic Dispatch: Style Considerations
● Defining Dynamic Dispatch in your code base

○ Use virtual only once when first defined in the base class
○ (although in older code bases you may see it repeated on functions in

subclasses)
○ All derived classes of a base class should use override to get the

compiler to check that a function overrides a virtual function from a base
class

● Use virtual for destructors of a base class – Guarantees all derived
classes will use dynamic dispatch to ensure use of appropriate
destructors

Dispatch Decision Tree
DeclaredT* ptr = new ActualT();
ptr->Fcn(); // which version is called?

Is Fcn()
defined in

DeclaredT?

Is DeclaredT::Fcn()
marked as Dynamic

Dispatch? (virtual)

Static dispatch of
DeclaredT::Fcn()

Dynamic dispatch
of most-derived
version of Fcn()
visible to ActualT

Yes

No No

Yes

Compiler
Error

Exercise 1

23

Exercise 1 (Drawing vtable diagram)

f1

24

Exercise 1 Solution (pointers)

f1

f1
f2
f3

f1
f2
f3

25

#include <iostream>
using namespace std;

class A {
 public:
 virtual void f1() { f2(); cout << "A::f1" << endl; }
 void f2() { cout << "A::f2" << endl; }
};

class B: public A {
 public:
 virtual void f3() { f1(); cout << "B::f3" << endl; }
 virtual void f2() { cout << "B::f2" << endl; }
};

class C: public B {
 public:
 void f1() { f2(); cout << "C::f1" << endl; }
};

Exercise 1 Solution (output)
#include <iostream>
using namespace std;

class A {
 public:
 virtual void f1() { f2(); cout << "A::f1" << endl; }
 void f2() { cout << "A::f2" << endl; }
};

class B: public A {
 public:
 virtual void f3() { f1(); cout << "B::f3" << endl; }
 virtual void f2() { cout << "B::f2" << endl; }
};

class C: public B {
 public:
 void f1() { f2(); cout << "C::f1" << endl; }
};

A* aa = new A();

aa->f1();

26

A B C D

B::f2
A::f1

A::f2
C::f1

A::f2
A::f1

B::f2
C::f1

Exercise 1 Solution (output)

B* bb = new B();

bb->f1();

27

A B C D

B::f2
A::f1

A::f2
C::f1

A::f2
A::f1

B::f2
C::f1

#include <iostream>
using namespace std;

class A {
 public:
 virtual void f1() { f2(); cout << "A::f1" << endl; }
 void f2() { cout << "A::f2" << endl; }
};

class B: public A {
 public:
 virtual void f3() { f1(); cout << "B::f3" << endl; }
 virtual void f2() { cout << "B::f2" << endl; }
};

class C: public B {
 public:
 void f1() { f2(); cout << "C::f1" << endl; }
};

Exercise 1 Solution (output)

B* bb = new B();
A* ab = bb;

bb->f2();
cout << "----" << endl;
ab->f2();

28

A B C D

B::f2

B::f2

A::f2

B::f2

B::f2

A::f2

A::f2

A::f2

#include <iostream>
using namespace std;

class A {
 public:
 virtual void f1() { f2(); cout << "A::f1" << endl; }
 void f2() { cout << "A::f2" << endl; }
};

class B: public A {
 public:
 virtual void f3() { f1(); cout << "B::f3" << endl; }
 virtual void f2() { cout << "B::f2" << endl; }
};

class C: public B {
 public:
 void f1() { f2(); cout << "C::f1" << endl; }
};

Exercise 1 Extension

Exercise 1 Solution (output)

B* bb = new B();

bb->f3();

30

A B C D

B::f2
A::f1
B::f3

A::f2
A::f1
B::f3

A::f2
C::f1
B::f3

B::f2
C::f1
B::f3

#include <iostream>
using namespace std;

class A {
 public:
 virtual void f1() { f2(); cout << "A::f1" << endl; }
 void f2() { cout << "A::f2" << endl; }
};

class B: public A {
 public:
 virtual void f3() { f1(); cout << "B::f3" << endl; }
 virtual void f2() { cout << "B::f2" << endl; }
};

class C: public B {
 public:
 void f1() { f2(); cout << "C::f1" << endl; }
};

Exercise 1 Solution (output)

A* ac = new C();

ac->f1();

31

A B C D

B::f2
A::f1

A::f2
C::f1

A::f2
A::f1

B::f2
C::f1

#include <iostream>
using namespace std;

class A {
 public:
 virtual void f1() { f2(); cout << "A::f1" << endl; }
 void f2() { cout << "A::f2" << endl; }
};

class B: public A {
 public:
 virtual void f3() { f1(); cout << "B::f3" << endl; }
 virtual void f2() { cout << "B::f2" << endl; }
};

class C: public B {
 public:
 void f1() { f2(); cout << "C::f1" << endl; }
};

