
CSE333, Winter 2024L07: Build Tools

Build Tools (make)
CSE 333

Instructor: Alex Sanchez-Stern

Teaching Assistants:

Justin Tysdal
Sayuj Shahi

Nicholas Batchelder

Leanna Mi Nguyen

CSE333, Winter 2024L07: Build Tools

Lecture Outline

❖ Make and Build Tools

2

CSE333, Winter 2024L07: Build Tools

make

❖ make is a classic program for controlling what gets
(re)compiled and how

▪ Many other such programs exist (e.g. ant, maven, IDE “projects”)

❖ make has tons of fancy features, but only two basic ideas:

1) Scripts for executing commands

2) Dependencies for avoiding unnecessary work

❖ To avoid “just teaching make features” (boring and
narrow), let’s focus more on the concepts…

3

CSE333, Winter 2024L07: Build Tools

Building Software

❖ Programmers spend a lot of time “building”

▪ Creating programs from source code

▪ Both programs that they write and other people write

❖ Programmers like to automate repetitive tasks

▪ Repetitive: gcc -Wall -g -std=c17 -o widget foo.c bar.c baz.c

• Retype this every time: 😭
• Use up-arrow or history: 😐 (still retype after logout)

• Have an alias or bash script: 🙂
• Have a Makefile: 😊 (you’re ahead of us)

4

CSE333, Winter 2024L07: Build Tools

“Real” Build Process

❖ On larger projects, you can’t or don’t want to have one big (set
of) command(s) that redoes everything every time you change
anything:

1) If gcc didn’t combine steps for you, you’d need to preprocess, compile,

and link on your own (along with anything you used to generate the C
files)

2) If source files have multiple outputs (e.g. javadoc), you’d have to type

out the source file name(s) multiple times

3) You don’t want to have to document the build logic when you

distribute source code

4) You don’t want to recompile everything every time you change

something (especially if you have 105-107 files of source code)

❖ A script can handle 1-3 (use a variable for filenames for 2), but
4 is trickier

5

CSE333, Winter 2024L07: Build Tools

An Example

❖ We have a small program that is split into multiple tiny
modules (code on the web linked to this lecture):

❖ Modules:

▪ speak.h/speak.c: write a string to stdout

▪ shout.h/shout.c: write a string to stdout LOUDLY

▪ main.c: client program

❖ Demo: build this program incrementally, and recompile
only necessary parts when something changes

❖ How do we automate this “minimal rebuild”?

6

speak.cspeak.h shout.cshout.hmain.c

CSE333, Winter 2024L07: Build Tools

Recompilation Management

❖

7

CSE333, Winter 2024L07: Build Tools

Theory Applied to Our Example

❖ What are the dependencies between built and source files?

❖ What needs to be rebuilt if something changes?

8

speak.cspeak.h shout.cshout.hmain.c

speak.o shout.omain.o

talk

CSE333, Winter 2024L07: Build Tools

make Basics

❖ A makefile contains a bunch of triples:

▪ Colon after target is required

▪ Command lines must start with a TAB, NOT SPACES

▪ Multiple commands for same target are executed in order

• Can split commands over multiple lines by ending lines with ‘\’

❖ Example:

❖ Demo: look at Makefile for our example program

9

foo.o: foo.c foo.h bar.h
gcc -Wall -o foo.o -c foo.c

target: sources
 command

CSE333, Winter 2024L07: Build Tools

Using make

❖ Defaults:

▪ If no -f specified, use a file named Makefile

▪ If no target specified, will use the first one in the file

▪ Will interpret commands in your default shell

• Set SHELL variable in makefile to ensure

❖ Target execution:

▪ Check each source in the source list:

• If the source is a target in the Makefile, then process it recursively

• If some source does not exist, then error

• If any source is newer than the target (or target does not exist), run
command (presumably to update the target)

10

bash% make -f <makefileName> target

CSE333, Winter 2024L07: Build Tools

make Variables

❖ You can define variables in a makefile:

▪ All values are strings of text, no “types”

▪ Variable names are case-sensitive and can’t contain ‘:’, ‘#’, ‘=’, or

whitespace

❖ Example:

❖ Advantages:

▪ Easy to change things (especially in multiple commands)

▪ Can also specify on the command line (CC=clang FLAGS=-g)
11

CC = gcc
CFLAGS = -Wall -std=c17
foo.o: foo.c foo.h bar.h

$(CC) $(CFLAGS) -o foo.o -c foo.c

CSE333, Winter 2024L07: Build Tools

More Variables; “phony” targets
(2 separate things)

❖ It’s common to use variables to hold list of filenames:

❖ clean is a convention

▪ Remove generated files to “start over” from just the source

▪ It’s “funny” because the target doesn’t exist and there are no

sources, but it works because:

• The target doesn’t exist, so it must be “remade” by running the
command

• These “phony” targets have several uses, such as “all”…
12

OBJFILES = foo.o bar.o baz.o
widget: $(OBJFILES)

gcc -o widget $(OBJFILES)
clean:

rm $(OBJFILES) widget *~

CSE333, Winter 2024L07: Build Tools

“all” Example

13

all: prog B.class someLib.a
notice no commands this time

prog: foo.o bar.o main.o
gcc –o prog foo.o bar.o main.o

B.class: B.java
javac B.java

someLib.a: foo.o baz.o
ar r foo.o baz.o

foo.o: foo.c foo.h header1.h header2.h
gcc -c -Wall foo.c

similar targets for bar.o, main.o, baz.o, etc...

CSE333, Winter 2024L07: Build Tools

Revenge of the Funny Characters

❖ Special variables:

▪ $@ for target name

▪ $^ for all sources

▪ $< for left-most source

▪ Lots more! – see the documentation

❖ Examples:

14

CC and CFLAGS defined above
widget: foo.o bar.o

$(CC) $(CFLAGS) -o $@ $^
foo.o: foo.c foo.h bar.h

$(CC) $(CFLAGS) -c $<

CSE333, Winter 2024L07: Build Tools

And more…
❖ There are a lot of “built-in” rules – see documentation

❖ There are “suffix” rules and “pattern” rules

▪ Example:

❖ Remember that you can put any shell command – even
whole scripts!

❖ You can repeat target names to add more dependencies

❖ Often this stuff is more useful for reading makefiles than
writing your own (until some day…)

15

%.class: %.java
javac $< # we need the $< here

