
CSE 333
Section 3
Makefiles, C++ Intro, HW2 Overview

Checking In & Logistics

Quick check-in:

Do you have any
questions, comments,
or concerns?

Exercises going ok?

Lectures making
sense?

2

REMINDERS:

Exercise 9: Due Monday (7/15) @ 10:00 am

Exercise 10: Due Wednesday (7/17) @ 10:00 am

Homework 2: Due Thursday (7/18) @ 11:00 pm

Makefile Demo

Exercise 1

4

Pointers, References, & Const

Example

Consider the following code:
int x = 5;
int& x_ref = x;
int* x_ptr = &x;

5x, x_ref 5

0x7fff...x_ptr

What are some tradeoffs to using pointers vs references?

Note syntactic similarity to
pointer declaration

Still the address-of operator!

Pointers vs. References

Pointers References

● Can move to different data via
reassignment/pointer arithmetic

● References the same data for its
entire lifetime - can’t reassign

● Can be initialized to NULL ● No sensible “default reference,”
must be an alias

● Useful for output parameters:
MyClass* output

● Useful for input parameters:
const MyClass &input

● void func(int& arg) vs. void func(int* arg)

● Use references when you don’t want to deal with pointer semantics

○ Allows real pass-by-reference

○ Can make intentions clearer in some cases

● STYLE TIP: use references for input parameters and pointers for output
parameters, with the output parameters declared last

○ Note: A reference can’t be NULL

Pointers, References, Parameters

Const

● Mark a variable with const to make
a compile time check that a variable
is never reassigned

● Does not change the underlying
write-permissions for this variable

int x = 42;

// Read only
const int* ro_x_ptr = &x;

// Can still modify x with
rw_x_ptr!
int* rw_x_ptr = &x;

// Only ever points to x
int* const x_ptr = &x;

420x7fff... 0x7fff...

xro_x_ptr rw_x_ptr

0x7fff...

x_ptr

Legend
Red = can’t change box it’s next to
Black = read and write

Exercise 2

Exercise 6

int x = 5;
int& x_ref = x;
int* x_ptr = &x;
const int& ro_x_ref = x;
const int* ro_ptr1 = &x;
int* const ro_ptr2 = &x;

5x, x_ref

0x7fff... x_ptrro_ptr1 0x7fff...

0x7fff... ro_ptr2

“Const pointer to an
int”

“Pointer to a const int”

ro_x_ref

Tip: Read the declaration “right-to-left”

Legend
Red = can’t change box it’s
next to
Black = read and write

Which lines result in a compiler error?
✔ OK ❌ ERROR

bar(x_ref);
bar(ro_x_ref);
foo(x_ref);
ro_ptr1 = (int*) 0xDEADBEEF;
x_ptr = &ro_x_ref;
ro_ptr2 = ro_ptr2 + 2;
*ro_ptr1 = *ro_ptr1 + 1;

Exercise 6
void foo(const int& arg);
void bar(int& arg);

int x = 5;
int& x_ref = x;
int* x_ptr = &x;
const int& ro_x_ref = x;
const int* ro_ptr1 = &x;
int* const ro_ptr2 = &x;

5x, x_ref

0x7fff...

x_ptr
ro_ptr1 0x7fff...

0x7fff...ro_ptr2

ro_x_ref

✔
❌ ro_x_ref is const
✔
✔
❌ ro_x_ref is const
❌ ro_ptr2 is const
❌ (*ro_ptr1) is const

Legend
Red = can’t change box it’s next
to
Black = “read and write”

Exercise 6

When would you prefer void Func(int &arg); to void Func(int *arg);? Expand on this
distinction for other types besides int.

• When you don’t want to deal with pointer semantics, use references
• When you don’t want to copy stuff over (doesn’t create a copy, especially for parameters

and/or return values), use references
• Style wise, we want to use references for input parameters and pointers for output

parameters, with the output parameters declared last

Homework 2 Overview

Homework 2

● Main Idea: Build a search engine for a file system
○ It can take in queries and output a list of files in a directory that has that query
○ The query will be ordered based on the number of times the query is in that file
○ Should handle multiple word queries (Note: all words in a query have to be in the

file)

● What does this mean?
○ Part A: Parsing a file and reading all of its contents into heap allocated memory
○ Part B: Crawling a directory (reading all regular files recursively in a directory)

and building an index to query from
○ Part C: Build a searchshell (search engine) to query your index for results

Note: It will use the LinkedList and
HashTable implementations from HW1!

Part A: File Parsing

Read a file and generate a
HashTable of WordPositions!

Word positions will include the word
and LinkedList of its positions in a
file.

My goodness! I love the course CSE333.\n
I'll recommend this course to my friends.\n

somefile.txt

ParseIntoWordPositionsTable(contents)

typedef struct WordPositions {

 char *word; // normalized word. Owned.

 LinkedList *positions; // list of DocPositionOffset_t.

} WordPositions;

Note that the key is the hashed C-string of
WordPositions

Part B: Directory Crawling – DocTable
Read through a directory in CrawlFileTree.c

For each file visited, build your DocTable and
MemIndex!

DocTable maps document names to IDs.
FNV64 is a hash function.
struct doctable_st {

 HashTable *id_to_name; // mapping doc id to doc name

 HashTable *name_to_id; // mapping docname to doc id

 DocID_t max_id; // max docID allocated so far

};

DocID_t DocTable_Add(DocTable *table, char *doc_name);

Part B: Directory Crawling – MemIndex

MemIndex is an index to view files.
It’s a HashTable of WordPostings.

typedef struct {
 char *word;
 HashTable *postings;
} WordPostings;

Let’s try to find what contains
“course”:
● WordPostings’ postings has an

element with key == 3 (Only
DocID 3 has “course in its file”)

● The value is the LinkedList of
offsets the words are in DocID 3

HashTable

LinkedList

HashTableWordPostings

DocID_t

DocPositionOffset_t

Part C: Searchshell

● Use queries to ask for a result!
○ Formatting should match example output
○ Exact implementation is up to you!

course friends my

Query MemIndex_Search(MemIndex,

QueryArray, QueryLen);

typedef struct SearchResult {

 uint64_t docid; // a document that matches a search query

 uint32_t rank; // an indicator of the quality of the match

} SearchResult, *SearchResultPtr;

Results from Query!

MemIndex.h

Hints

● Read the .h files for documentation about functions!
● Understand the high level idea and data structures before getting started
● Follow the suggested implementation steps given in the CSE 333 HW2 spec

Extern and Static

Extern and Static

22

● extern makes a declaration visible in any module, but tells the linker to
look for the definition in a different module

● static makes a definition private to the current module, and disallows
access from other modules regardless of any further extern declaration

● #include's make it difficult to reason about which files have the declarations
and definitions :(

fib.c cc1 fib.o

ld fib

main.c cc1 main.o

Extern and Static: A Few Examples …

23

● Scenario 1:
○ We have an extern'ed declaration in fib.h, which is #include 'd into the fib and main

modules

○ There is nothing in fib.c

fib.c cc1 fib.o

ld fib

main.c cc1 main.o

Extern and Static: A Few Examples …

24

● Scenario 2:
○ We have an extern'ed declaration in fib.h, which is #include 'd into the fib and main

modules

○ There is a definition in fib.c

fib.c cc1 fib.o

ld fib

main.c cc1 main.o

Extern and Static: A Few Examples …

25

● Scenario 3:
○ We have a static'ed definition in fib.h, which is #include 'd into the fib and main

modules

○ We remove the definition from fib.c

fib.c cc1 fib.o

ld fib

main.c cc1 main.o

Extern and Static: A Few Examples …

26

● Scenario 4:
○ We have no declarations nor definitions in fib.h, which continues to be #include 'd into the

fib and main modules

○ We put the definition back into fib.c

fib.c cc1 fib.o

ld fib

main.c cc1 main.o

