
CSE 333 Section 3 - Makefiles, Intro to C++, HW 2 Intro
Welcome back to section! We’re glad that you’re here :)

1. Refer to the following file definitions.

a. Draw out Point’s DAG
(The direction of the arrows is not important, but be consistent)

Write the corresponding Makefile for Point.

References
References create aliases that we can bind to existing variables. References are not separate
variables and cannot be reassigned after they are initialized. In C++, you define a reference
using: type& name = var. The ‘&’ is similar to the ‘*’ in a pointer definition in that it modifies
the type and the space can come before or after it.

Const
Const makes a variable unchangeable after initialization, and is enforced at compile time.

const int x = 5; // Can’t assign to x
const int* x_ptr = &x; // Can assign to x_ptr, but not *x_ptr
int* const y_ptr = &y; // Can assign to *y_ptr, but not y_ptr
const int* const z_ptr = &z; // Can’t assign to *z_ptr or z_ptr

Class objects can be declared const too - a const class object can only call member functions
that have been declared as const, which are not allowed to modify the object instance it is being
called on.

Exercises:
2) Consider the following functions and variable declarations.

a) Draw a memory diagram for the variables declared in main. It might be helpful to
distinguish variables that are constant in your memory diagram.

int main(int argc, char** argv) {
int x = 5;
int& x_ref = x;
int* x_ptr = &x;
const int& ro_x_ref = x;
const int* ro_ptr1 = &x;
int* const ro_ptr2 = &x;
// ...

}

b) When would you prefer void Func(int &arg); to void Func(int *arg);?
Expand on this distinction for other types besides int.

c) If we have functions void Foo(const int& arg); and void Bar(int& arg);,
what does the compiler think about the following lines of code:

Bar(x_ref);
Bar(ro_x_ref);
Foo(x_ref);

d) How about this code?

ro_ptr1 = (int*) 0xDEADBEEF;
x_ptr = &ro_x_ref;
ro_ptr2 = ro_ptr2 + 2;
*ro_ptr1 = *ro_ptr1 + 1;

