
CSE333, Spring 2024L23: Concurrency and Processes

Concurrency: Processes
CSE 333

Instructor: Alex Sanchez-Stern

Teaching Assistants:
Justin Tysdal
Sayuj Shahi
Nicholas Batchelder
Leanna Mi Nguyen

CSE333, Spring 2024L23: Concurrency and Processes

Administrivia

❖ hw4 due Wednesday night
▪ Usual late days (2 max) apply if you have any remaining

2

❖ Final exam Fri. August 16th, 1:10-2:10, SMI 211

▪ Topic list on the web; exam will be somewhat weighted towards

2nd half of the quarter

▪ Old exams also available on the website.

▪ Closed book but you may have two 5x8 cards with handwritten

notes

• Free blank cards available after class

❖ Last exercise due this morning woohoo! 🎉

CSE333, Spring 2024L23: Concurrency and Processes

Administrivia

3

❖ We’ll do course evaluations on Wednesday, bring a pencil

❖ Section this week is an exam review… show up!

CSE333, Spring 2024L23: Concurrency and Processes

Administrivia

4

❖ Extra final points for coming to office hours next week

▪ +5 points on the final (out of 100), but can’t go above
100 total

▪ Must go to an existing, in-person office hours and bring
a problem set to work on; either from the
extra-problems in the slides, or an old midterm
question

▪ Make sure the TA writes down your name

CSE333, Spring 2024L23: Concurrency and Processes

Search Server Versions

❖ Sequential

❖ Concurrent via forking threads – pthread_create()
❖ Concurrent via forking processes – fork()
❖ Concurrent via non-blocking, event-driven I/O –

select()
• We won’t get to this ☹

5

Reference: Computer Systems: A Programmer’s
Perspective, Chapter 12 (CSE 351 book)

CSE333, Spring 2024L23: Concurrency and Processes

Creating New Processes

❖ Creates a new process (the “child”) that is a clone of the
current process (the “parent”)

6

pid_t fork(void);

❖ Primarily used in two patterns:

▪ Adding concurrency to an existing program, for instance a web server

• Fork a child, then that child executes a subroutine

▪ Starting another program, for instance using a shell

• Fork a child, then that child uses exec to swap it’s executable for another.

CSE333, Spring 2024L23: Concurrency and Processes

fork() and Address Spaces

❖ A process executes within an
address space

7

0xFF…FF

0x00…00

OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

SP

PC

▪ Includes segments for different parts

of memory

▪ Process tracks its current state using

the stack pointer (SP) and program
counter (PC)

CSE333, Spring 2024L23: Concurrency and Processes

fork() and Address Spaces

❖ Fork cause the OS to
clone the
address space and
registers

8

OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

SP

PC

OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

SP

PC

fork()PARENT CHILD

▪ The copies of the

memory segments are
(nearly) identical

▪ The new process has

copies of the parent’s
data, stack-allocated
variables, open file
descriptors, etc.

CSE333, Spring 2024L23: Concurrency and Processes

fork() and Address Spaces

❖ Fork does *not* clone
threads

9

OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

SP

PC

OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

SP

PC

fork()PARENT CHILD

▪ Only the thread that

called fork is duplicated

▪ If the parent had

multiple stacks for
threads, the child only
has one.

▪ This can be a source of
bugs; try to only use
concurrent processes
or threads, not both.

Stack
SP

PC

CSE333, Spring 2024L23: Concurrency and Processes

fork()

❖ fork() has peculiar semantics

▪ The parent invokes fork()

10

parent

OS

fork()

CSE333, Spring 2024L23: Concurrency and Processes

fork()

❖ fork() has peculiar semantics

▪ The parent invokes fork()

▪ The OS clones the parent

11

parent child

OS

clone

CSE333, Spring 2024L23: Concurrency and Processes

fork()

❖ fork() has peculiar semantics

▪ The parent invokes fork()

▪ The OS clones the parent

▪ Both the parent and the child return

from fork

• Parent receives child’s pid

• Child receives a 0

❖ See fork_example.cc

12

parent child

OS

child pid 0

CSE333, Spring 2024L23: Concurrency and Processes

Concurrent Server with Processes

❖ The parent process blocks on accept(), waiting for a
new client to connect

13

❖ When a new connection arrives, the parent calls fork() to create a
child process

❖ The child process handles that new connection and exit()’s when
the connection terminates

CSE333, Spring 2024L23: Concurrency and Processes

Concurrent Server with Processes

14

❖ Remember that children become “zombies” after
termination

❖ The OS is waiting for someone to read their exit code
before getting rid of them

❖ Two ways to handle this:

▪ Option A: Parent calls wait() to “reap” children and receive

their exit codes.

▪ Option B: Use the double-fork trick

CSE333, Spring 2024L23: Concurrency and Processes

Double-fork Trick

15

server

CSE333, Spring 2024L23: Concurrency and Processes

Double-fork Trick

16

client

server

connect

accept()

CSE333, Spring 2024L23: Concurrency and Processes

Double-fork Trick

17

client

server

server
fork() child

CSE333, Spring 2024L23: Concurrency and Processes

Double-fork Trick

18

client server

server

server

fork() grandchild

CSE333, Spring 2024L23: Concurrency and Processes

Double-fork Trick

19

client server

server

child exit()’s / parent wait()’s

CSE333, Spring 2024L23: Concurrency and Processes

Double-fork Trick

20

client server

server
parent closes its
client connection

CSE333, Spring 2024L23: Concurrency and Processes

Double-fork Trick

21

client server

server

CSE333, Spring 2024L23: Concurrency and Processes

Double-fork Trick

22

client server

server

server

server

client

fork() grandchild
exit()

fork() child

CSE333, Spring 2024L23: Concurrency and Processes

Double-fork Trick

23

client server

client server

server

CSE333, Spring 2024L23: Concurrency and Processes

Double-fork Trick

24

client server

client server

client server

client server

client server

client server

client server

client server

client server

server

CSE333, Spring 2024L23: Concurrency and Processes

Double-fork Trick

❖ With the double fork trick:

▪ There’s no parent to read the exit code

▪ Therefore the OS knows to clean it up right away.

25

CSE333, Spring 2024L23: Concurrency and Processes

Concurrent with Processes

❖ See searchserver_processes/

26

CSE333, Spring 2024L23: Concurrency and Processes

Whither Concurrent Processes?

❖ Advantages:

▪ Almost as simple to code as sequential

• In fact, most of the code is identical!

27

❖ Disadvantages:

▪ Processes are heavyweight

• Relatively slow to fork

• Context switching latency is high

▪ Communication between processes is complicated (and slow)

▪ No need for memory synchronization

CSE333, Spring 2024L23: Concurrency and Processes

How Fast is fork()?

28

❖ See forklatency.cc
❖ ~0.25ms per fork*

▪ Maximum of (1000/0.25) = 4,000 connections/sec/core

▪ ~350 million connections/day/core
• This is fine for most servers
• Two slow for super-high-traffic front-line web services

– Facebook served ~750 billion page views per day in 2013!
– Would need 3-6k cores just to handle fork(), i.e. without doing any work

for each connection

* Exact past measurements are not indicative of future performance, just their rough ratios -
actual measurement depends on hardware and software versions.

CSE333, Spring 2024L23: Concurrency and Processes

How Fast is pthread_create()?

29

❖ See threadlatency.cc
❖ ~0.036ms per fork*

▪ Maximum of (1000/0.036) = 28,000 connections/sec/core

▪ ~2.4 million connections/day/core

❖ Much faster, but writing safe multithreaded code is really
hard

* Exact past measurements are not indicative of future performance, just their rough ratios -
actual measurement depends on hardware and software versions.

CSE333, Spring 2024L23: Concurrency and Processes

Aside: Thread Pools

❖ In real servers, we’d like to avoid overhead needed to
create a new thread or process for every request

30

❖ Idea: Thread Pools

▪ Create a fixed set of worker threads or processes on server startup

and put them in a queue

▪ When a request arrives, remove the first worker thread from the

queue and assign it to handle the request

▪ When a worker is done, it places itself back on the queue and

then sleeps until dequeued and handed a new request

❖ Provides faster client connection acceptances and
more control over total resource usage.

CSE333, Spring 2024L23: Concurrency and Processes

Don’t Forget

❖ hw4 due Wednesday night
▪ Usual late days (2 max) apply if you have any remaining

31

❖ Final exam Fri. August 16th, 1:10-2:10, SMI 211

❖ Please nominate great TAs for the Bandes award when
nominations are available

❖ We’ll do course evaluations on Wednesday, bring a pencil

❖ Section this week is an exam review… show up!

❖ Office hours this week get you extra points on the final

