
CSE333, Spring 2024L22: Concurrency and Threads

Concurrency: Threads
CSE 333

Guest Lecturer: Hal Perkins

Instructor: Alex Sanchez-Stern

Teaching Assistants:
Justin Tysdal
Sayuj Shahi
Nicholas Batchelder
Leanna Mi Nguyen

CSE333, Spring 2024L22: Concurrency and Threads

Administrivia

❖ Ex17 due Monday - last exercise! 🎉

❖ HW4 due Wednesday night

❖ Final exam in class on Friday (1 hour)
❖ Updated topic list and old exams on course web now

❖ Some old finals are 1-hour summer exams, some are 2-hour
regular quarters – don’t panic if you can’t finish those in 1 hour

❖ Review Q&A in sections next week

2

CSE333, Spring 2024L22: Concurrency and Threads

Administrivia

❖ hw4 due Thursday night next week
▪ <panic>If you haven’t started yet</panic>
▪ Usual late days (max 2) available if you have any left
▪ Mime types (in server query replies): hw4 server only needs to

have ones that match the files that it will actually send (including
pictures)

▪ Remember – don’t modify Makefiles or header files
▪ Please be careful about inappropriate copying of solution code

from others or found on the web. (Let’s not have problems this
late in the quarter.) Sample code from class is fine – use it!

3

CSE333, Spring 2024L22: Concurrency and Threads

Some Common hw4 Bugs

❖ Your server works, but is really, really slow
▪ Check the 2nd argument to the QueryProcessor constructor

❖ Funny things happen after the first request
▪ Make sure you’re not destroying the HTTPConnection object

too early (e.g. falling out of scope in a while loop)
▪ Be sure to check for data in the buffer – might be an http request

(or part of one) already there left over from a previous read

❖ Server crashes on a blank request
▪ Make sure that you handle the case that read() (or
WrappedRead()) returns 0

4

CSE333, Spring 2024L22: Concurrency and Threads

Previously…

❖ We implemented a search server but it was sequential
▪ Processes requests one at a time regardless of client delays
▪ Terrible performance, resource utilization

❖ Servers should be concurrent
▪ Different ways to process multiple queries simultaneously:

• Issue multiple I/O requests simultaneously
• Overlap the I/O of one request with computation of another
• Utilize multiple CPUs or cores
• Mix and match as desired

5

CSE333, Spring 2024L22: Concurrency and Threads

Outline (next two lectures)

❖ We’ll look at different searchserver implementations
▪ Sequential
▪ Concurrent via dispatching threads: pthread_create()
▪ Concurrent via forking processes: fork()
▪ Concurrent via non-blocking, event-driven I/O: select()

• We won’t get to this ☹

❖ Reference: Computer Systems: A Programmer’s
Perspective, Chapter 12 (CSE 351 book)

6

CSE333, Spring 2024L22: Concurrency and Threads

Sequential

❖ Pseudocode:

❖ See searchserver_sequential/

7

listen_fd = Listen(port);

while (1) {
 client_fd = accept(listen_fd);
 buf = read(client_fd);
 resp = ProcessQuery(buf);
 write(client_fd, resp);
 close(client_fd);
}

CSE333, Spring 2024L22: Concurrency and Threads

Wherefore Sequential?

❖ Advantages:
▪ Super(?) simple to build/write

❖ Disadvantages:
▪ Incredibly poor performance

• One slow client will cause all others to block
• Poor utilization of resources (CPU, network, disk)

8

CSE333, Spring 2024L22: Concurrency and Threads

Threads

❖ Threads are like lightweight processes
▪ They execute concurrently like processes

• Multiple threads can run simultaneously on multiple CPUs/cores

▪ Unlike processes, threads cohabitate the same address space
• Threads within a process see the same heap and globals and can

communicate with each other through variables and memory
– But, they can interfere with each other – need synchronization for shared

resources

• Each thread has its own stack

9

CSE333, Spring 2024L22: Concurrency and Threads

Threads and Address Spaces

❖ Before creating a thread
▪ One thread of execution running

in the address space
• One PC, stack, SP

▪ That main thread invokes a
function to create a new thread
• Typically pthread_create()

10

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

SPparent

PCparent

CSE333, Spring 2024L22: Concurrency and Threads

Threads and Address Spaces

❖ After creating a thread
▪ Two threads of execution running

in the address space
• Original thread (parent) and new

thread (child)
• New stack created for child thread
• Child thread has its own PC, SP

▪ Both threads share the other
segments (code, heap, globals)
• They can cooperatively modify

shared data

11

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

SPparent

PCparent

StackchildSPchild

PCchild

CSE333, Spring 2024L22: Concurrency and Threads

Multithreaded Server: Architecture

❖ A parent thread creates a new thread to handle each
incoming connection
▪ The child thread handles the new connection and subsequent I/O,

then exits when the connection terminates

❖ See searchserver_threads/ for code if curious

12

CSE333, Spring 2024L22: Concurrency and Threads

Multithreaded Server

13

client

server

connect accept()

CSE333, Spring 2024L22: Concurrency and Threads

Multithreaded Server

14

client

server

pthread_create()

CSE333, Spring 2024L22: Concurrency and Threads

Multithreaded Server

15

client

server

accept()

CSE333, Spring 2024L22: Concurrency and Threads

Multithreaded Server

16

client

client

server

pthread_create()

CSE333, Spring 2024L22: Concurrency and Threads

Multithreaded Server

17

client

client

client

client

client

client
server

shared
data

structures

CSE333, Spring 2024L22: Concurrency and Threads

POSIX Threads (pthreads)

❖ The POSIX APIs for dealing with threads

❖ Declared in pthread.h
▪ Not part of the C/C++ language (cf. Java)

❖ To enable support for multithreading, must include -
pthread flag when compiling and linking with gcc
command

18

CSE333, Spring 2024L22: Concurrency and Threads

pthreads Threads: Creation

❖

▪ Creates a new thread into *thread, with attributes *attr
▪ Returns a status code (0 or an error number)
▪ The new thread runs start_routine(arg)

❖
▪ Equivalent of exit(retval) for a thread instead of a process
▪ thread automatically exits when it returns from
start_routine()

19

int pthread_create(
 pthread_t* thread,
 const pthread_attr_t* attr,
 void* (*start_routine)(void*),
 void* arg);

void pthread_exit(void* retval);

CSE333, Spring 2024L22: Concurrency and Threads

pthreads Threads: Afterwards

❖
▪ Waits for thread to terminate (equivalent to waitpid, but for

threads)
▪ Exit status of the terminated thread is placed in **retval

❖
▪ Mark thread as detached ; will clean up its resources as soon as it

terminates

❖ See thread_example.cc

20

int pthread_detach(pthread_t thread);

int pthread_join(pthread_t thread,
 void** retval);

CSE333, Spring 2024L22: Concurrency and Threads

Concurrent Server via Threads

❖ See searchserver_threads/

❖ Notes:
▪ When calling pthread_create(), start_routine points

to a function that takes only one argument (a void*)
• To pass complex arguments into the thread, create a struct to bundle

the necessary data

▪ How do you properly handle memory management?
• Who allocates and deallocates memory?
• How long do you want memory to stick around?

21

CSE333, Spring 2024L22: Concurrency and Threads

Wherefore Concurrent Threads?

❖ Advantages:
▪ Almost as simple to code as sequential

• In fact, most of the code is identical! (but a bit more complicated to
dispatch a thread)

▪ Concurrent execution with good CPU and network utilization
• Some overhead, but less than processes

▪ Shared-memory communication is possible

❖ Disadvantages:
▪ Synchronization is complicated
▪ Shared fate within a process

• One “rogue” thread can hurt you badly

22

CSE333, Spring 2024L22: Concurrency and Threads

Threads and Data Races

❖ What happens if two threads try to mutate the same data
structure?
▪ They might interfere in painful, non-obvious ways, depending on

the specifics of the data structure

❖ Example: two threads try to push an item onto the head
of a linked list at the same time
▪ Could get “correct” answer
▪ Could get different ordering of items
▪ Could break the data structure! ☠
▪ Likely will get different results each time you run the program – a

debugging nightmare

23

CSE333, Spring 2024L22: Concurrency and Threads

Data Race Example

❖ If your fridge has no milk,
then go out and buy some more

❖ What could go wrong?
❖ If you live alone:

❖ If you live with a roommate:

25

if (!milk) {

 buy milk

}

! !

CSE333, Spring 2024L22: Concurrency and Threads

Synchronization

❖ Synchronization is the act of preventing two (or more)
concurrently running threads from interfering with each
other when operating on shared data
▪ Need some mechanism to coordinate the threads

• “Let me go first, then you can go”

▪ Many different coordination mechanisms have been invented
(see CSE 451)

❖ Goals of synchronization:
▪ Liveness – ability to execute in a timely manner (informally,

“something good happens!”)
▪ Safety – avoid unintended interactions with shared data

structures (informally, “nothing bad happens”)
28

CSE333, Spring 2024L22: Concurrency and Threads

Lock Synchronization

❖ Use a “Lock” to grant access to a critical section so that
only one thread can operate there at a time
▪ Executed in an uninterruptible (i.e. atomic) manner

❖ Lock Acquire
▪ Wait until the lock is free,

then take it

❖ Lock Release
▪ Release the lock
▪ If other threads are waiting, wake exactly one up to pass lock to

29

// non-critical code

lock.acquire();
// critical section
lock.release();

// non-critical code

loop/idle
if locked

❖ Pseudocode:

CSE333, Spring 2024L22: Concurrency and Threads

Milk Example – What is the Critical Section?

❖ What if we use a lock on the
refrigerator?
▪ Probably overkill – what if

roommate wanted to get eggs?

❖ For performance reasons, only
put what is necessary in the
critical section
▪ Only lock the milk
▪ But lock all steps that must run

uninterrupted (i.e., must run
as an atomic unit)

30

fridge.lock()
if (!milk) {
 buy milk
}
fridge.unlock()

milk_lock.lock()
if (!milk) {
 buy milk
}
milk_lock.unlock()

CSE333, Spring 2024L22: Concurrency and Threads

pthreads and Locks

❖ Another term for a lock is a mutex (“mutual exclusion”)
▪ pthreads (#include <pthread.h>) defines datatype
pthread_mutex_t

❖ pthread_mutex_init()

▪ Initializes a mutex with specified attributes

❖ pthread_mutex_lock()
▪ Acquire the lock – blocks if already locked

❖ pthread_mutex_unlock()
▪ Releases the lock

31

int pthread_mutex_unlock(pthread_mutex_t* mutex);

int pthread_mutex_lock(pthread_mutex_t* mutex);

int pthread_mutex_init(pthread_mutex_t* mutex,
 const pthread_mutexattr_t* attr);

CSE333, Spring 2024L22: Concurrency and Threads

But I only want to read the data!

❖ Is a lock needed when reading shared data?
▪ No if all threads only read the shared data
▪ Yes if any thread could potentially write to the shared data!

❖ Why?
▪ The C and C++ standards do not guarantee that writes of multi-

byte data are indivisible when observed from other
asynchronous threads
• i.e., writing multiple bytes to memory might involve multiple

updates to caches or backing stores
• Which means a reading thread might be able to see the results of

a partial, not-yet-finished update if it does not use locks

32

CSE333, Spring 2024L22: Concurrency and Threads

But I only am reading the data!
❖ Example. Suppose shared 32-bit int x is initially 0x0000FFFF
❖ Thread 1 properly updates x using locks:

acquire x_lock;
x = x + 1;
release x_lock;

❖ Thread 2 only reads x and outputs it without locking: print x
▪ Might print 0x0000FFFF (old value)
▪ Might print 0x00010000 (new value)
▪ Might print 0x0001FFFF (partially updated value) !!!!!

❖ How to fix: Thread 2 must acquire x_lock before printing and
release it afterwards

❖ Practicalities: On modern x86/arm/etc. processors this won’t happen for things
like aligned small ints that don’t span cache boundaries, so you probably won’t see
the bug – but the C/C++ language does not guarantee this behavior! Use locks or
atomics (see C/C++ refs for details) if there are any writers to a shared variable!!

33

CSE333, Spring 2024L22: Concurrency and Threads

C++11 Threads

❖ C++11 added threads and concurrency to its libraries
▪ <thread> – thread objects
▪ <mutex> – locks to handle critical sections
▪ <condition_variable> – used to block objects until

notified to resume
▪ <atomic> – indivisible, atomic operations
▪ <future> – asynchronous access to data
▪ These might be built on top of <pthread.h>, but also might

not be

❖ Definitely use in C++11 code if local conventions allow,
but pthreads will be around for a long, long time
▪ Use pthreads in our exercise

34

