
CSE333, Spring 2024L23: Server-side Programming

Server-side Programming
CSE 333

Guest Lecturer: Hal Perkins

Instructor: Alex Sanchez-Stern

Teaching Assistants:
Justin Tysdal
Sayuj Shahi
Nicholas Batchelder
Leanna Mi Nguyen

CSE333, Spring 2024L23: Server-side Programming

Administrivia

❖ New exercise 15 out yesterday
▪ Client-side network programming
▪ Due Monday, 10 am

❖ Exercise 16 also out today
▪ Server-side network programming
▪ Due Wednesday, 10am

❖ hw4 posted now – due Wednesday August 14th
▪ Web server for our search engine code. Demo on today.
▪ Starter code pushed sometime tomorrow

• Pull on your repo before trying to submit hw3 with late days

2

CSE333, Spring 2024L23: Server-side Programming

Socket API: Client TCP Connection

❖ There are five steps:
1) Figure out the IP address and port to connect to
2) Create a socket
3) .connect() the socket to the remote server
4) .read() and write() data using the socket
5) Close the socket

3

CSE333, Spring 2024L23: Server-side Programming

Socket API: Server TCP Connection

❖ Pretty similar to clients, but with additional steps:
1) Figure out the IP address and port on which to listen
2) Create a socket
3) bind() the socket to the address(es) and port
4) Tell the socket to listen() for incoming clients
5) accept() a client connection
6) .read() and write() to that connection
7) close() the client socket

4

CSE333, Spring 2024L23: Server-side Programming

Servers

❖ Servers can have multiple IP addresses (“multihoming”)
▪ Usually have at least one externally-visible IP address, as well as a

local-only address (127.0.0.1)

❖ The goals of a server socket are different than a client
socket
▪ Want to bind the socket to a particular port of one or more IP

addresses of the server
▪ Want to allow multiple clients to connect to the same port

• OS uses client IP address and port numbers to direct I/O to the
correct server file descriptor

5

CSE333, Spring 2024L23: Server-side Programming

Step 1: Figure out IP address(es) & Port

❖ Step 1: getaddrinfo() invocation may or may not be
needed (but we’ll use it)
▪ Do you know your IP address(es) already?

• Static vs. dynamic IP address allocation
• Even if the machine has a static IP address, don’t wire it into the code

– better to look it up dynamically or use a configuration file

▪ Can request listen on all local IP addresses by passing NULL as
hostname and setting AI_PASSIVE in hints.ai_flags
• Effect is to use address 0.0.0.0 (IPv4) or :: (IPv6)

6

CSE333, Spring 2024L23: Server-side Programming

Step 2: Create a Socket

❖ Step 2: socket() call is same as before
▪ Can directly use constants or fields from result of
getaddrinfo()

▪ Recall that this just returns a file descriptor – IP address and port
are not associated with socket yet

7

CSE333, Spring 2024L23: Server-side Programming

Step 3: Bind the socket

❖

▪ Looks nearly identical to connect()!
▪ Returns 0 on success, -1 on error

❖ Some specifics for addr:
▪ Address family: AF_INET or AF_INET6

• What type of IP connections can we accept?
• POSIX systems can handle IPv4 clients via IPv6 so use AF_INET6 ☺
• AF_UNSPEC doesn’t work as expected: it can bind to v4-only socket

▪ Port: port in network byte order (htons() is handy)
▪ Address: specify particular IP address or any IP address

• “Wildcard address” – INADDR_ANY (IPv4), in6addr_any (IPv6)

8

int bind(int sockfd, const struct sockaddr* addr,
 socklen_t addrlen);

CSE333, Spring 2024L23: Server-side Programming

Step 4: Listen for Incoming Clients

❖

▪ Tells the OS that the socket is a listening socket that clients can
connect to

▪ backlog: maximum length of connection queue
• Gets truncated, if necessary, to defined constant SOMAXCONN
• The OS will refuse new connections once queue is full until server
accept()s them (removing them from the queue)

▪ Returns 0 on success, -1 on error

▪ Clients can start connecting to the socket as soon as listen()
returns
• Server can’t use a connection until you accept() it

9

int listen(int sockfd, int backlog);

CSE333, Spring 2024L23: Server-side Programming

Example #1

❖ See server_bind_listen.cc
▪ Takes in a port number from the command line
▪ Opens a server socket, prints info, then listens for connections for

20 seconds
• Can connect to it using netcat (nc)

11

CSE333, Spring 2024L23: Server-side Programming

Step 5: Accept a Client Connection

❖

▪ Returns a new (different from sockfd), active, ready-to-use
socket file descriptor connected to a client (or -1 on error)
• sockfd must have been created, bound, and listening
• Pulls a queued connection or waits for an incoming one

▪ addr and addrlen are output parameters
• *addrlen should initially be set to sizeof(*addr), gets

overwritten with the size of the client address
• Address information of client is written into *addr

– Use inet_ntop() to get the client’s printable IP address
– Use getnameinfo() to do a reverse DNS lookup on the client

12

int accept(int sockfd, struct sockaddr* addr,
 socklen_t* addrlen);

CSE333, Spring 2024L23: Server-side Programming

Example #2

❖ See server_accept_rw_close.cc
▪ Gets a port number from the command line
▪ Opens a server socket, prints info, then listens for connections

• Can connect to it using netcat (nc)

▪ Accepts connections as they come
▪ Echoes any data the client sends to it on stdout and also sends

it back to the client

13

CSE333, Spring 2024L23: Server-side Programming

Something to Note

❖ Our server code is not concurrent
▪ Single thread of execution
▪ The thread blocks while waiting for the next connection
▪ The thread blocks waiting for the next message from the

connection

❖ A crowd of clients is, by nature, concurrent
▪ While our server is handling the next client, all other clients are

stuck waiting for it ☹

14

CSE333, Spring 2024L23: Server-side Programming

hw4 demo

❖ Multithreaded Web Server (333gle)
▪ Don’t worry – multithreading has mostly been written for you
▪ ./http333d <port> <static files> <indices+>

▪ Some security bugs to fix, too

15

CSE333, Spring 2024L23: Server-side Programming

Extra Exercise #1

❖ Write a program that:
▪ Creates a listening socket that accepts connections from clients
▪ Reads a line of text from the client
▪ Parses the line of text as a DNS name
▪ Does a DNS lookup on the name
▪ Writes back to the client the list of IP addresses associated with

the DNS name
▪ Closes the connection to the client

16

