
CSE333, Spring 2024L17: IP Addresses, DNS

IP Addresses, DNS
CSE 333

Instructor: Alex Sanchez-Stern

Teaching Assistants:
Justin Tysdal
Sayuj Shahi
Nicholas Batchelder
Leanna Mi Nguyen

CSE333, Spring 2024L17: IP Addresses, DNS

Administrivia

❖ HW3 due tomorrow night, 11pm

▪ (plus late days if needed and you have them remaining – be sure

to check “late days remaining” number on canvas)

▪ (any last-minute questions? observations?)

2

❖ Exercise 15 due Monday

▪ Client-side TCP connection

CSE333, Spring 2024L17: IP Addresses, DNS

Lecture Outline

❖ Sockets API

▪ Sockets Overview

▪ Network Addresses

▪ API Functions

❖ DNS

❖ Client-side Programming

3

CSE333, Spring 2024L17: IP Addresses, DNS

Files and File Descriptors

❖ Remember open(), read(), write(), and
close()?

▪ POSIX system calls for interacting with files

4

▪ open() returns a file descriptor

• An integer that represents an open file

• This file descriptor is then passed to read(), write(), and
close()

▪ Inside the OS, the file descriptor is used to index into a table that

keeps track of any OS-level state associated with the file, such as
the file position

CSE333, Spring 2024L17: IP Addresses, DNS

Networks and Sockets

❖ UNIX likes to make all I/O look like file I/O

▪ You use read() and write() to communicate with remote

computers over the network!

5

▪ A file descriptor used for network communications is called a

socket

▪ Just like with files:

• Your program can have multiple network channels open at once

• You need to pass a file descriptor to read() and write() to let the
OS know which network channel to use

CSE333, Spring 2024L17: IP Addresses, DNS

File Descriptor Table

OS’s File Descriptor Table for the Process

File
Descriptor

Type Connection

0 pipe stdin (console)

1 pipe stdout (console)

2 pipe stderr (console)

3
TCP

socket
local: 128.95.4.33:80

remote: 44.1.19.32:7113

5 file index.html

8 file pic.png

9
TCP

socket
local: 128.95.4.33:80

remote: 102.12.3.4:5544

Web Server

in
d

ex
.h

tm
l

p
ic

.p
n

g

client client

128.95.4.33

fd 5 fd 8 fd 9 fd 3

6

CSE333, Spring 2024L17: IP Addresses, DNS

Types of Sockets

❖ Stream sockets

▪ For connection-oriented, point-to-point, reliable byte streams

• Using TCP, SCTP, or other stream transports

7

❖ Datagram sockets

▪ For connection-less, one-to-many, unreliable packets

• Using UDP or other packet transports

❖ Raw sockets

▪ For layer-3 communication (raw IP packet manipulation)

CSE333, Spring 2024L17: IP Addresses, DNS

Stream Sockets

❖ Typically used for client-server communications

▪ Client: An application that establishes a connection to a server

▪ Server: An application that receives connections from clients

client server

client server

8

client server

▪ Can also be used for other forms of communication like

peer-to-peer

1) Establish connection:

2) Communicate:

3) Close connection:

CSE333, Spring 2024L17: IP Addresses, DNS

Datagram Sockets

❖ Often used as a building block

▪ No flow control, ordering, or reliability, so used less frequently

▪ e.g. streaming media applications or DNS lookups

host

host host

host

host

host host

host

9

1) Create sockets:

2) Communicate:

CSE333, Spring 2024L17: IP Addresses, DNS

The Sockets API

❖ Berkeley sockets originated in 4.2BSD Unix (1983)

▪ It is the standard API for network programming

• Available on most OSs

▪ Written in C

10

❖ POSIX Socket API

▪ A slight update of the Berkeley sockets API

• A few functions were deprecated or replaced

• Better support for multi-threading was added

CSE333, Spring 2024L17: IP Addresses, DNS

Lecture Outline

❖ Sockets API

▪ Sockets Overview

▪ Network Addresses

▪ API Functions

❖ DNS

❖ Client-side Programming

11

CSE333, Spring 2024L17: IP Addresses, DNS

Step 1: Figure Out IP Address and Port

❖ Several parts:

▪ Network addresses

▪ Data structures for address info

▪ DNS - Doman Name System – finding IP addresses

12

CSE333, Spring 2024L17: IP Addresses, DNS

IPv4 Network Addresses

❖ An IPv4 address is a 4-byte tuple

▪ For humans, written in “dotted-decimal notation”

▪ e.g. 128.95.4.1 (80:5f:04:01 in hex)

13

❖ IPv4 address exhaustion

▪ There are 232 ≈ 4.3 billion IPv4 addresses

▪ There are ≈ 8 billion people in the world (July 2024)

▪ Last unassigned IPv4 addresses allocated during 2011 to 2019 in

various parts of the world

CSE333, Spring 2024L17: IP Addresses, DNS

IPv6 Network Addresses

❖ An IPv6 address is a 16-byte tuple

▪ e.g. 2d01:0db8:f188:0000:0000:0000:0000:1f33

14

▪ Typically written in “hextets” (groups of 4 hex digits)

• Can omit leading zeros in hextets

• Double-colon replaces consecutive sections of zeros

• e.g. 2d01:db8:f188::1f33

▪ Transition is still ongoing

• IPv4-mapped IPv6 addresses

– 128.95.4.1 mapped to ::ffff:128.95.4.1 or ::ffff:805f:401

• This unfortunately makes network programming more of a headache
☹

CSE333, Spring 2024L17: IP Addresses, DNS

IPv4 Address Structures

15

// IPv4 4-byte address
struct in_addr {
 uint32_t s_addr; // Address in network byte order
}; // (big endian)

// An IPv4-specific address structure
struct sockaddr_in {
 sa_family_t sin_family; // Address family: AF_INET
 in_port_t sin_port; // Port in network byte order
 struct in_addr sin_addr; // IPv4 address
 unsigned char sin_zero[8]; // Pad out to 16 bytes
};

family port addr zero

struct sockaddr_in:

1
6

0 2 4 8

CSE333, Spring 2024L17: IP Addresses, DNS

Working with Socket Addresses

16

❖ How to handle both IPv4 and IPv6?

▪ Use C structs for each, but make them somewhat similar

▪ Use defined constants to differentiate when to use each: AF_INET

for IPv4 and AF_INET6 for IPv6

// IPv6 16-byte address
struct in6_addr {
 uint8_t s6_addr[16]
};

// An IPv6 address structure
struct sockaddr_in6 {
 sa_family_t sin6_family;
 in_port_t sin6_port;
 uint32_t sin6_flowinfo;
 struct in6_addr sin6_addr;
 uint32_t sin6_scope_id;
};

// IPv4 4-byte address
struct in_addr {
 uint32_t s_addr;
};

// An IPv4 address structure
struct sockaddr_in {
 sa_family_t sin_family;
 in_port_t sin_port;
 struct in_addr sin_addr;
 unsigned char sin_zero[8];
};

CSE333, Spring 2024L17: IP Addresses, DNS

IPv6 Address Structures

17

// IPv6 16-byte address
struct in6_addr {
 uint8_t s6_addr[16]; // Address in network byte order
};

// An IPv6-specific address structure
struct sockaddr_in6 {
 sa_family_t sin6_family; // Address family: AF_INET6
 in_port_t sin6_port; // Port number
 uint32_t sin6_flowinfo; // IPv6 flow information
 struct in6_addr sin6_addr; // IPv6 address
 uint32_t sin6_scope_id; // Scope ID
};

fam port flow scope

struct sockaddr_in6:
addr

240 2 4 8 28

CSE333, Spring 2024L17: IP Addresses, DNS

Address Structs: Generic?

❖ Let’s compare the memory layout of the IPv4 and IPv6
socket structs

18

fam port flow addr scope

struct sockaddr_in6:

240 2 4 8 28

fam port addr zero

struct sockaddr_in:

160 2 4 8

These fields are the same size
and offset; access both with

the same pointer offset.

These fields are the same size
and offset; access either with
the same pointer operation

CSE333, Spring 2024L17: IP Addresses, DNS

Generic Address Structures

▪ Commonly create struct sockaddr_storage, then pass

pointer cast as struct sockaddr* to connect()

19

// A mostly-protocol-independent address structure.
// Pointer to this is parameter type for socket system calls.
struct sockaddr {
 sa_family_t sa_family; // Address family (AF_* constants)
 char sa_data[14]; // Socket address (size varies
 // according to socket domain)
};

// A structure big enough to hold either IPv4 or IPv6 structs
struct sockaddr_storage {
 sa_family_t ss_family; // Address family

 // padding and alignment; don’t worry about the details
 char __ss_pad1[_SS_PAD1SIZE];
 int64_t __ss_align;
 char __ss_pad2[_SS_PAD2SIZE];
};

CSE333, Spring 2024L17: IP Addresses, DNS

Lecture Outline

❖ Sockets API

▪ Sockets Overview

▪ Network Addresses

▪ API Functions

❖ DNS

❖ Client-side Programming

20

CSE333, Spring 2024L17: IP Addresses, DNS

Working with Socket Addresses
❖ Structures, constants, and helper functions available in

#include <arpa/inet.h>

21

❖ Addresses stored in network byte order (big endian)

❖ Converting between host and network byte orders:

▪ uint32_t htonl(uint32_t hostlong);
▪ uint32_t ntohl(uint32_t netlong);

• ‘h’ for host byte order and ‘n’ for network byte order

• Also versions with ‘s’ for short (uint16_t instead)

CSE333, Spring 2024L17: IP Addresses, DNS

Address Conversion

❖ int inet_pton(int af, const char* src, void* dst);

▪ Converts human-readable string representation (“presentation”)

to network byte ordered address

▪ Returns 1 (success), 0 (bad src), or -1 (error)

22

#include <stdlib.h>
#include <arpa/inet.h>

int main(int argc, char **argv) {
 struct sockaddr_in sa; // IPv4
 struct sockaddr_in6 sa6; // IPv6

 // IPv4 string to sockaddr_in (192.0.2.1 = C0:00:02:01).
 inet_pton(AF_INET, "192.0.2.1", &(sa.sin_addr));

 // IPv6 string to sockaddr_in6.
 inet_pton(AF_INET6, "2001:db8:63b3:1::3490", &(sa6.sin6_addr));

 return EXIT_SUCCESS;
}

genaddr.cc

int inet_pton(int af, const char* src, void* dst);

CSE333, Spring 2024L17: IP Addresses, DNS

Address Conversion

❖ int inet_pton(int af, const char* src, void* dst);

▪ Converts network addr in src into buffer dst of size size

23

#include <stdlib.h>
#include <arpa/inet.h>

int main(int argc, char **argv) {
 struct sockaddr_in6 sa6; // IPv6
 char astring[INET6_ADDRSTRLEN]; // IPv6

 // IPv6 string to sockaddr_in6.
 inet_pton(AF_INET6, "2001:0db8:63b3:1::3490", &(sa6.sin6_addr));

 // sockaddr_in6 to IPv6 string.
 inet_ntop(AF_INET6, &(sa6.sin6_addr), astring, INET6_ADDRSTRLEN);
 std::cout << astring << std::endl;

 return EXIT_SUCCESS;
}

genstring.cc

const char* inet_ntop(int af, const void* src,
 char* dst, socklen_t size);

CSE333, Spring 2024L17: IP Addresses, DNS

Lecture Outline

❖ Sockets API

▪ Sockets Overview

▪ Network Addresses

▪ API functions

❖ DNS

❖ Client-side Programming

24

CSE333, Spring 2024L17: IP Addresses, DNS

Domain Name System

❖ People tend to use domain names, not IP addresses

▪ The Sockets API lets you convert between the two

25

▪ It’s a complicated process, though:

• A given domain name can have many IP addresses

• Many different IP addresses can map to the same domain name

– An IP address will reverse map into at most one domain name

• A DNS lookup may require interacting with many DNS servers

❖ You can use the Linux program “dig” to explore DNS

▪ dig @server name type (+short)
• server: specific name server to query (optional)

• type: A (IPv4), AAAA (IPv6), ANY (includes all types)

CSE333, Spring 2024L17: IP Addresses, DNS

Dig example

26

> dig www.google.com A
…
;; ANSWER SECTION:
www.google.com. 146 IN A 142.250.217.68

;; Query time: 19 msec
;; SERVER: 8.8.8.8#53(8.8.8.8) (UDP)
…

> dig www.google.com AAAA
…
;; ANSWER SECTION:
www.google.com. 34 IN AAAA 2607:f8b0:400a:804::2004

;; Query time: 23 msec
;; SERVER: 8.8.8.8#53(8.8.8.8) (UDP)
…

A few other sections
not important to this

class

http://www.google.com
http://www.google.com

CSE333, Spring 2024L17: IP Addresses, DNS

DNS Hierarchy

❖ The dots in a web address actually have a meaning!
▪ Each web address component is a different “level” of DNS

▪ Read from right to left

27

www.google.com

CSE333, Spring 2024L17: IP Addresses, DNS

DNS Hierarchy

28

.

mail newsdocs www

cncom orgedu • • •

google netflixfacebook • • • wikipedia fsfapache • • •

Root
Name Servers

Top-level
Domain Servers

• • • news www• • •

CSE333, Spring 2024L17: IP Addresses, DNS

Resolving DNS Names

❖ The POSIX way is to use getaddrinfo()
▪ A complicated system call found in #include <netdb.h>

▪ Basic idea:

29

int getaddrinfo(const char* hostname,
 const char* service,
 const struct addrinfo* hints,
 struct addrinfo** res);

• Tell getaddrinfo() which host and port you want resolved

– String representation for host: DNS name or IP address

• Set up a “hints” structure with constraints you want respected

• getaddrinfo() gives you a list of results packed into an
“addrinfo” structure/linked list

– Returns 0 on success; returns negative number on failure

• Free the struct addrinfo list later using freeaddrinfo()

CSE333, Spring 2024L17: IP Addresses, DNS

getaddrinfo

See dnsresolve.cc

30

CSE333, Spring 2024L17: IP Addresses, DNS

Lecture Outline

❖ Sockets API

▪ Sockets Overview

▪ Network Addresses

▪ API Functions

❖ DNS

❖ Client-side Programming

31

CSE333, Spring 2024L17: IP Addresses, DNS

getaddrinfo

❖ getaddrinfo() arguments:

▪ hostname – domain name or IP address string

▪ service – port # (e.g. "80") or service name (e.g. "www")

or NULL/nullptr

▪

▪ See dnsresolve.cc

32

struct addrinfo {
 int ai_flags; // additional flags
 int ai_family; // AF_INET, AF_INET6, AF_UNSPEC
 int ai_socktype; // SOCK_STREAM, SOCK_DGRAM, 0
 int ai_protocol; // IPPROTO_TCP, IPPROTO_UDP, 0
 size_t ai_addrlen; // length of socket addr in bytes
 struct sockaddr* ai_addr; // pointer to socket addr
 char* ai_canonname; // canonical name
 struct addrinfo* ai_next; // can form a linked list
};

CSE333, Spring 2024L17: IP Addresses, DNS

Socket API: Client TCP Connection

❖ There are five steps:

1) Figure out the IP address and port to connect to

2) Create a socket

3) .connect() the socket to the remote server

4) .read() and write() data using the socket

5) Close the socket

33

CSE333, Spring 2024L17: IP Addresses, DNS

Step 2: Creating a Socket

❖ Use the socket() system call

▪ Creating a socket doesn’t bind it to a local address or port yet

▪ Returns file descriptor or -1 on error

int socket(int domain, int type, int protocol);

#include <arpa/inet.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <iostream>

int main(int argc, char** argv) {
 int socket_fd = socket(AF_INET, SOCK_STREAM, 0);
 if (socket_fd == -1) {
 std::cerr << strerror(errno) << std::endl;
 return EXIT_FAILURE;
 }
 close(socket_fd);
 return EXIT_SUCCESS;
}

34

socket.cc

CSE333, Spring 2024L17: IP Addresses, DNS

Step 3: Connect to the Server

❖ The connect() system call establishes a connection to a
remote host

▪ int connect(int sockfd, const struct sockaddr* addr,
 socklen_t addrlen);

35

• sockfd: Socket file description from Step 2

• addr and addrlen: Usually from one of the address structures
returned by getaddrinfo in Step 1 (DNS lookup)

• Returns 0 on success and -1 on error

❖ connect() may take some time to return

▪ It is a blocking call by default

▪ The network stack within the OS will communicate with the

remote host to establish a TCP connection to it

• This involves ~2 round trips across the network

CSE333, Spring 2024L17: IP Addresses, DNS

How long are two “round trips”?

❖ Remember this table?

▪ Exact numbers change somewhat over time, but you should know

the order-of-magnitudes here

36

CSE333, Spring 2024L17: IP Addresses, DNS

Connect Example

❖ See connect.cc

// Get an appropriate sockaddr structure.
struct sockaddr_storage addr;
size_t addrlen;
LookupName(argv[1], port, &addr, &addrlen);

// Create the socket.
int socket_fd = socket(addr.ss_family, SOCK_STREAM, 0);
if (socket_fd == -1) {
 cerr << "socket() failed: " << strerror(errno) << endl;
 return EXIT_FAILURE;
}

// Connect the socket to the remote host.
int res = connect(socket_fd,
 reinterpret_cast<sockaddr*>(&addr),
 addrlen);
if (res == -1) {
 cerr << "connect() failed: " << strerror(errno) << endl;
}

37

CSE333, Spring 2024L17: IP Addresses, DNS

Step 4: read()

❖ If there is data that has already been received by the
network stack, then read will return immediately with it

▪ read() might return with less data than you asked for

❖ If there is no data waiting for you, by default read()
will block until something arrives

▪ This might cause deadlock!

▪ Can read() return 0?

38

CSE333, Spring 2024L17: IP Addresses, DNS

Step 4: read()

❖ Assume we have:

▪ int socket_fd; // fd of connected socket
▪ char readbuf[BUF]; // read buffer
▪ int res; // to store read result

❖ Write C++ code to read in BUF characters from
socket_fd
▪ If error occurs, send error message to user and exit()

39

CSE333, Spring 2024L17: IP Addresses, DNS

Step 4: write()

❖ write() enqueues your data in a send buffer in the OS
and then returns

▪ The OS transmits the data over the network in the background

▪ When write() returns, the receiver probably has not yet

received the data!

❖ If there is no more space left in the send buffer, by default
write() will block

40

CSE333, Spring 2024L17: IP Addresses, DNS

Read/Write Example

❖ See sendreceive.cc
▪ Demo

41

while (1) {
 int wres = write(socket_fd, readbuf, res);
 if (wres == 0) {
 cerr << "socket closed prematurely" << endl;
 close(socket_fd);
 return EXIT_FAILURE;
 }
 if (wres == -1) {
 if (errno == EINTR)
 continue;
 cerr << "socket write failure: " << strerror(errno) << endl;
 close(socket_fd);
 return EXIT_FAILURE;
 }
 break;
}

CSE333, Spring 2024L17: IP Addresses, DNS

Step 5: close()

❖

▪ Nothing special here – it’s the same function as with file I/O

▪ Shuts down the socket and frees resources and file descriptors

associated with it on both ends of the connection

int close(int fd);

42

CSE333, Spring 2024L17: IP Addresses, DNS

Extra Exercise #1

❖ Write a program that:

▪ Reads DNS names, one per line, from stdin

▪ Translates each name to one or more IP addresses

▪ Prints out each IP address to stdout, one per line

43

