W UNIVERSITY of WASHINGTON L17: IP Addresses, DNS CSE333, Spring 2024

IP Addresses, DNS
CSE 333

Instructor: Alex Sanchez-Stern

Teaching Assistants:
Justin Tysdal

Sayuj Shahi
Nicholas Batchelder
Leanna Mi Nguyen

W UNIVERSITY of WASHINGTON L17: IP Addresses, DNS CSE333, Spring 2024

Administrivia

¢ HWS3 due tomorrow night, 11pm

= (plus late days if needed and you have them remaining — be sure
to check “late days remaining” number on canvas)

= (any last-minute questions? observations?)

« Exercise 15 due Monday

= Client-side TCP connection

W UNIVERSITY of WASHINGTON L17: IP Addresses, DNS CSE333, Spring 2024

Lecture Outline

¢ Sockets API

= Sockets Overview
= Network Addresses

= AP| Functions
< DNS

% Client-side Programming

W UNIVERSITY of WASHINGTON L17: IP Addresses, DNS CSE333, Spring 2024

Files and File Descriptors

+ Remember open (), read(),write (), and
close()?

= POSIX system calls for interacting with files

= open () returns a file descriptor

- An integer that represents an open file

- This file descriptor is then passed to read (), write (), and
close ()

= |nside the OS, the file descriptor is used to index into a table that
keeps track of any OS-level state associated with the file, such as
the file position

W UNIVERSITY of WASHINGTON L17: IP Addresses, DNS CSE333, Spring 2024

Networks and Sockets

« UNIX likes to make all 1/0 look like file 1/0

= You use read () andwrite () to communicate with remote
computers over the network!

= A file descriptor used for network communications is called a
socket

= Just like with files:
- Your program can have multiple network channels open at once

- You need to pass a file descriptor to read () and write () tolet the
OS know which network channel to use

YA/ UNIVERSITY of WASHINGTON L17: IP Addresses, DNS CSE333, Spring 2024

File Descriptor Table

OS’s File Descriptor Table for the Process

128.95.4.33 File
Descriptor

Type Connection

Web Server
0 pipe stdin (console)
1 pipe stdout (console)
2 pipe stderr (console)
3 TCP local: 128.95.4.33:80

IS socket | remote: 44.1.19.32:7113
% 5 file index.html
_E 8 file pic.png

9 TCP local: 128.95.4.33:80

socket | remote: 102.12.3.4:5544

client § client

CSE333, Spring 2024

W UNIVERSITY of WASHINGTON L17: IP Addresses, DNS

Types of Sockets

« Stream sockets
= For connection-oriented, point-to-point, reliable byte streams
« Using TCP, SCTP, or other stream transports

« Datagram sockets

= For connection-less, one-to-many, unreliable packets
- Using UDP or other packet transports

<« Raw sockets

= For layer-3 communication (raw IP packet manipulation)

YA/ UNIVERSITY of WASHINGTON L17: IP Addresses, DNS CSE333, Spring 2024

Stream Sockets

« Typically used for client-server communications
= Client: An application that establishes a connection to a server

= Server: An application that receives connections from clients

= Can also be used for other forms of communication like
peer-to-peer

@server

1) Establish connection: client

2) Communicate: client ® server

3) Close connection: client server

YA/ UNIVERSITY of WASHINGTON L17: IP Addresses, DNS CSE333, Spring 2024

Datagram Sockets

« Often used as a building block
= No flow control, ordering, or reliability, so used less frequently

= e.g. streaming media applications or DNS lookups

1) Create sockets:

)
-
&
9

2) Communicate:

W UNIVERSITY of WASHINGTON L17: IP Addresses, DNS CSE333, Spring 2024

The Sockets API

+» Berkeley sockets originated in 4.2BSD Unix (1983)

= |t is the standard API for network programming

- Available on most OSs

= Written in C

«» POSIX Socket API
= Aslight update of the Berkeley sockets API

- A few functions were deprecated or replaced

- Better support for multi-threading was added

10

W UNIVERSITY of WASHINGTON L17: IP Addresses, DNS CSE333, Spring 2024

Lecture Outline

¢ Sockets API

= Sockets Overview
= Network Addresses

= AP| Functions
< DNS

% Client-side Programming

11

W UNIVERSITY of WASHINGTON L17: IP Addresses, DNS CSE333, Spring 2024

Step 1: Figure Out IP Address and Port

« Several parts:
= Network addresses
= Data structures for address info

= DNS - Doman Name System — finding IP addresses

12

W UNIVERSITY of WASHINGTON L17: IP Addresses, DNS CSE333, Spring 2024

IPv4 Network Addresses

« An IPv4 address is a 4-byte tuple

= For humans, written in “dotted-decimal notation”

= e.9.128.95.4.1 (80:5£:04:01 in hex)

« |IPv4 address exhaustion
= There are 23? = 4.3 billion IPv4 addresses

= There are = 8 billion people in the world (July 2024)

= Last unassigned IPv4 addresses allocated during 2011 to 2019 in
various parts of the world

13

W UNIVERSITY of WASHINGTON L17: IP Addresses, DNS CSE333, Spring 2024

IPv6 Network Addresses

« An IPv6 address is a 16-byte tuple
" e.9.2d01:0db8:£188:0000:0000:0000:0000:1£33

= Typically written in “hextets” (groups of 4 hex digits)

- Can omit leading zeros in hextets
- Double-colon replaces consecutive sections of zeros
«eg 2d01:db8:£188::1£33

= Transition is still ongoing

- |IPv4-mapped IPv6 addresses
— 128.95.4.1 mappedto : : ££££:128.954.10or : : ££££:805£:401

- This unfortunately makes network programming more of a headache

00
-

14

W UNIVERSITY of WASHINGTON L17: IP Addresses, DNS CSE333, Spring 2024

IPv4 Address Structures

// IPv4 4-byte address
struct in addr {

uint32 t s addr; // Address in network byte order
}; // (big endian)

// An IPv4-specific address structure
struct sockaddr in {

sa family t sin family; // Address family: AF INET

in port t sin port; // Port in network byte order
struct in addr sin addr; // IPv4 address

unsigned char sin zero[8]; // Pad out to 16 bytes

b g

struct sockaddr in:

family| port addr Zero
0 2 4 8 1

15

W UNIVERSITY of WASHINGTON L17: IP Addresses, DNS CSE333, Spring 2024

Working with Socket Addresses

+ How to handle both IPv4 and IPv6?

= Use C structs for each, but make them somewhat similar

= Use defined constants to differentiate when to use each: AF INET
for IPvd and AF INET6 for IPv6

// IPv4d 4-byte address // IPv6é 16-byte address
struct 1n addr { struct in6_ addr {
uint32 t s addr; uint8 t s6 addr[l6]
}; } i
// An IPv4 address structure // An IPv6 address structure
struct sockaddr in { struct sockaddr in6 {
sa family t sin family; sa family t sin6 family;
in port t sin port; in port t sin6 port;
struct in addr sin_ addr; uint32 t sin6 flowinfo;
unsigned char sin zerol[8]; struct in6 addr sin6_ addr;
I uint32 t sin6 scope 1id;
y i
16

YA/ UNIVERSITY of WASHINGTON

L17: IP Addresses, DNS

IPv6 Address Structures

b

uint32 t

// IPv6é 16-byte address
struct in6_ addr ({
uint8 t s6 addr[l6];

sin6 family;
sin6_port;

sin6 flowinfo;
struct in6 addr sin6 addr;
sin6 scope 1id;

// Address 1in network byte order

// An IPvé6-specific address structure

struct sockaddr in6 {
sa family t
in port t
uint32 t

// Address family: AF INET6
// Port number

// IPv6é flow information

// IPv6 address

// Scope ID

struct sockaddr iné:

addr

fam

port

flow

scope

0

2

24

28

CSE333, Spring 2024

17

W UNIVERSITY of WASHINGTON L17: IP Addresses, DNS CSE333, Spring 2024

Address Structs: Generic?

« Let’s compare the memory layout of the IPv4 and IPv6
socket structs

These fields are the same size
and offset; access either with

struct sockaddr in: the same pointer operation

scope

28

18

W UNIVERSITY of WASHINGTON L17: IP Addresses, DNS CSE333, Spring 2024

Generic Address Structures

// A mostly-protocol-independent address structure.
// Pointer to this 1s parameter type for socket system calls.
struct sockaddr {
sa family t sa family; // Address family (AF * constants)
char sa datal[l4]; // Socket address (size varies
// according to socket domain)

¥

// A structure big enough to hold either IPv4 or IPvé6 structs
struct sockaddr storage {
sa family t ss family; // Address family

// padding and alignment,; don’t worry about the details
char ss padl[SS PAD1ISIZE];
int64 t ss align;
char ss pad2[SS PAD2SIZE];
i

\ S

= Commonly create struct sockaddr storage,then pass
pointer castas struct sockaddr* to connect ()

19

W UNIVERSITY of WASHINGTON L17: IP Addresses, DNS CSE333, Spring 2024

Lecture Outline

¢ Sockets API

= Sockets Overview
= Network Addresses

= API Functions
e® DNS

% Client-side Programming

20

W UNIVERSITY of WASHINGTON L17: IP Addresses, DNS CSE333, Spring 2024

Working with Socket Addresses

+ Structures, constants, and helper functions available in
#include <arpa/inet.h>

«» Addresses stored in network byte order (big endian)

+» Converting between host and network byte orders:
" uint32 t htonl (uint32 t hostlong);
" uint32 t ntohl(uint32 t netlong);

- ‘h’ for host byte order and ‘n’ for network byte order

- Also versions with ‘s’ for short (uint16 ¢t instead)

21

W UNIVERSITY of WASHINGTON L17: IP Addresses, DNS CSE333, Spring 2024

Address Conversion

@ [int inet pton(int af, const char* src, void* dst);)
= Converts human-readable string representation (“presentation”)
to network byte ordered address

= Returns 1 (success), 0 (bad src), or -1 (error) senaddr.cc

r#include <stdlib.h>
#include <arpa/inet.h>

int main(int argc, char **argv) {
struct sockaddr in sa; // IPv4
struct sockaddr in6 sa6; // IPvé

// IPv4 string to sockaddr in (192.0.2.1 = C0:00:02:01).
inet pton (AF INET, "192.0.2.1", &(sa.sin_addr));

// IPv6 string to sockaddr iné6.
inet pton (AF INET6, "2001:db8:63b3:1::3490", &(sab.sin6_ addr));

return EXIT SUCCESS;

22

W UNIVERSITY of WASHINGTON L17: IP Addresses, DNS CSE333, Spring 2024

Address Conversion

+ | const char* inet ntop(int af, const void* src,
char* dst, socklen t size);

= Converts network addr in src into buffer dst of size size
genstring.cc

[#include <stdlib.h>
#include <arpa/inet.h>

int main(int argc, char **argv) {
struct sockaddr in6 sa6; // IPv6
char astring[INET6 ADDRSTRLEN]; // IPvé

// IPvé string to sockaddr iné.
inet pton (AF INET6, "2001:0db8:63b3:1::3490", &(sa6.sin6 addr));

// sockaddr in6é to IPv6 string.
inet ntop (AF INET6, &(sa6.sin6 addr), astring, INET6 ADDRSTRLEN) ;
std::cout << astring << std::endl;

return EXIT SUCCESS;

23

W UNIVERSITY of WASHINGTON L17: IP Addresses, DNS CSE333, Spring 2024

Lecture Outline

+ Sockets API

= Sockets Overview
= Network Addresses

= API| functions
& DNS

% Client-side Programming

24

YA/ UNIVERSITY of WASHINGTON

L17: IP Addresses, DNS

Domain Name System

«» People tend to use domain names, not IP addresses

= The Sockets API lets you convert between the two

= |t's a complicated process, though:
- A given domain name can have many IP addresses

- Many different IP addresses can map to the same domain name

— An IP address will reverse map into at most one domain name

- A DNS lookup may require interacting with many DNS servers

O

% You can use the Linux program “dig” to explore DNS

" dig @server name type (+short)

- server: specific name server to query (optional)
- type: A (IPv4), AAAA (IPv6), ANY (includes all types)

CSE333, Spring 2024

25

W UNIVERSITY of WASHINGTON L17: IP Addresses, DNS CSE333, Spring 2024

A few other sections

Dig example not important to this

class

> dig

;; ANSWER SECTION:
www.google.com. 146IN A 142.250.217.68

;; Query time: 19 msec
;; SERVER: 8.8.8.8#53(8.8.8.8) (UDP)

> dig AAAA

;; ANSWER SECTION:
www.google.com. 34 IN AAAA 2607:f8b0:400a:804::2004

;; Query time: 23 msec
;; SERVER: 8.8.8.8#53(8.8.8.8) (UDP)

http://www.google.com
http://www.google.com

W UNIVERSITY of WASHINGTON L17: IP Addresses, DNS CSE333, Spring 2024

DNS Hierarchy

% The dots in a web address actually have a meaning!
= Each web address component is a different “level” of DNS
= Read from right to left

.google.com

—

27

W UNIVERSITY of WASHINGTON L17: IP Addresses, DNS CSE333, Spring 2024

DNS Hierarchy

Root
Name Servers

com ch coeo or)
g Domain Servers

/N SO 7 1 N 7 1 N /v SO
/ \ \\" v ¥ vy / \ S o
/ \ Se / \ N
/ \ S / \ SS
¥ N Sa ¥ N Sa
7 1 N 7 1 \ S 7 1 N\ 7 1 N / \ 7 1 N\
" Y *// / \ \\ " Y * " Y * / \ " Y *
P / \ T / \

/ / \ S / \
Vs y N N\ y ~
docs mail news oo news coe

28

W UNIVERSITY of WASHINGTON L17: IP Addresses, DNS CSE333, Spring 2024

Resolving DNS Names

+» The POSIX way is to use getaddrinfo ()

= A complicated system call found in #include <netdb.h>

[int getaddrinfo (const char* hostname,

const char* service,
const struct addrinfo* hints,
struct addrinfo** res);

Tellgetaddrinfo () which host and port you want resolved
— String representation for host: DNS name or IP address
Set up a “hints” structure with constraints you want respected

getaddrinfo () gives you a list of results packed into an
“addrinfo” structure/linked list

— Returns 0 on success; returns negative number on failure

Freethe struct addrinfo list later using freeaddrinfo ()

29

W UNIVERSITY of WASHINGTON L17: IP Addresses, DNS CSE333, Spring 2024

getaddrinfo

See dnsresolve.cc

30

W UNIVERSITY of WASHINGTON L17: IP Addresses, DNS CSE333, Spring 2024

Lecture Outline

+ Sockets API

= Sockets Overview
= Network Addresses

= AP| Functions
< DNS

¢ Client-side Programming

31

W UNIVERSITY of WASHINGTON L17: IP Addresses, DNS CSE333, Spring 2024

getaddrinfo

¢ getaddrinfo () arguments:
* hostname —domain name or IP address string

= service—port#(e.g. "80") or service name (e.g. "www")

or NULL/nullptr

s | struct addrinfo {
int ai flags; // additional flags
int ai family; // AF INET, AF INET6, AF UNSPEC
int al socktype; // SOCK STREAM, SOCK DGRAM, 0
int al protocol; // IPPROTO TCP, IPPROTO UDP, O
size t ai addrlen; // length of socket addr in bytes
struct sockaddr* ai addr; // pointer to socket addr
char* ai canonname; // canonical name
struct addrinfo* ai next; // can form a linked list

%

= See dnsresolve.cc

32

W UNIVERSITY of WASHINGTON L17: IP Addresses, DNS CSE333, Spring 2024

Socket API: Client TCP Connection

« There are five steps:
1) Figure out the IP address and port to connect to
2) Create a socket
3) connect () the socket to the remote server
4) read () andwrite () data using the socket

5) Close the socket

33

W UNIVERSITY of WASHINGTON L17: IP Addresses, DNS

Step 2: Creating a Socket

CSE333, Spring 2024

* | int socket(int domain, int type,

int protocol);

= Creating a socket doesn’t bind it to a local address or port yet

= Returns file descriptor or -1 on error

socket.cc

7

#include <arpa/inet.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <iostream>

int main(int argc, char** argv) {

int socket fd = socket (AF INET,

1f (socket fd == -1) {
std::cerr << strerror (errno)
return EXIT FAILURE;

}

close (socket fd);

return EXIT SUCCESS;

SOCK STREAM,

<< std::endl;

0);

\

34

W UNIVERSITY of WASHINGTON L17: IP Addresses, DNS CSE333, Spring 2024

Step 3: Connect to the Server

«» The connect () system call establishes a connection to a

remote host

int connect(int sockfd, const struct sockaddr* addr,
socklen t addrlen);

- sockfd: Socket file description from Step 2

- addr and addrlen: Usually from one of the address structures

returned by getaddrinfo in Step 1 (DNS lookup)
- Returns O on success and -1 on error

¢ connect () may take some time to return

= |tis a blocking call by default
= The network stack within the OS will communicate with the
remote host to establish a TCP connection to it

- This involves ~2 round trips across the network

35

YA/ UNIVERSITY of WASHINGTON L17: IP Addresses, DNS

CSE333, Spring 2024

How long are two “round trips”?

*
Qe

Remember this table?

= Exact numbers change somewhat over time, but you should know

the order-of-magnitudes here

L1 cache reference

Branch mispredict

L2 cache reference

Mutex lock/unlock

Main memory reference

Compress 1K bytes with Zippy

Send 2K bytes over 1 Gbps network
Read 1 MB sequentially from memory
Round trip within same datacenter
Disk seek

Read 1 MB sequentially from disk
Send packet CA->Netherlands->CA

Numbers Everyone Should Know

0.5 ns
o hs
T ns
25 ns
100 ns
3,000 ns
20,000 ns
250,000 ns
500,000 ns
10,000,000 ns
20,000,000 ns
150,000,000 ns

36

YA/ UNIVERSITY of WASHINGTON L17: IP Addresses, DNS

Connect Example

*
Qe

See connect.cc

CSE333, Spring 2024

// Get an appropriate sockaddr structure.
struct sockaddr storage addr;

size t addrlen;

LookupName (argv([l], port, &addr, &addrlen);

// Create the socket.
int socket fd = socket (addr.ss family, SOCK STREAM, O0);
1f (socket fd == -1) {
cerr << "socket () failed: " << strerror(errno) << endl;
return EXIT FAILURE;

}

// Connect the socket to the remote host.

int res = connect (socket fd,
reinterpret cast<sockaddr*>(&addr),
addrlen) ;

1f (res == -1) {

cerr << "connect () failed: " << strerror (errno) << endl;

37

W UNIVERSITY of WASHINGTON L17: IP Addresses, DNS CSE333, Spring 2024

Step 4: read ()

+ |f there is data that has already been received by the
network stack, then read will return immediately with it

= read () might return with /ess data than you asked for

« If there is no data waiting for you, by default read ()
will block until something arrives

= This might cause deadlock!

= Can read () return 0?

38

W UNIVERSITY of WASHINGTON L17: IP Addresses, DNS CSE333, Spring 2024

Step 4: read ()

+ Assume we have:
= int socket fd; // fd of connected socket
» char readbuf[BUF]; // read buffer

" int res; // to store read result

¢+ Write C++ code to read in BUF characters from
socket fd

= |f error occurs, send error message to user and exit()

39

W UNIVERSITY of WASHINGTON L17: IP Addresses, DNS

CSE333, Spring 2024

Step 4: write ()

¢ write () enqueues your datain a send buffer in the OS
and then returns

= The OS transmits the data over the network in the background

= When write () returns, the receiver probably has not yet
received the data!

« If there is no more space left in the send buffer, by default
write () will block

40

CSE333, Spring 2024

W UNIVERSITY of WASHINGTON L17: IP Addresses, DNS

Read/Write Example

[(while (1) {)
int wres = write(socket fd, readbuf, res);
1f (wres == 0) {

cerr << "socket closed prematurely" << endl;
close (socket fd);
return EXIT FAILURE;
}
1f (wres == -1) {
1f (errno == EINTR)
continue;
cerr << "socket write failure:

close (socket fd);
return EXIT FAILURE;

}

break;

}

s See sendreceive.cc

*

" << strerror (errno) << endl;

= Demo

41

W UNIVERSITY of WASHINGTON L17: IP Addresses, DNS CSE333, Spring 2024

Step 5: close ()

O

* |int close(int fd);

= Nothing special here —it’s the same function as with file /O

= Shuts down the socket and frees resources and file descriptors
associated with it on both ends of the connection

42

W UNIVERSITY of WASHINGTON L17: IP Addresses, DNS CSE333, Spring 2024

Extra Exercise #1

« Write a program that:
= Reads DNS names, one per line, from stdin
= Translates each name to one or more IP addresses

= Prints out each IP address to stdout, one per line

43

