
CSE333, Spring 2024L16: C++ Smart Pointers

C++ Smart Pointers
CSE 333

Instructor: Alex Sanchez-Stern

Teaching Assistants:
Justin Tysdal
Sayuj Shahi
Nicholas Batchelder
Leanna Mi Nguyen

CSE333, Spring 2024L16: C++ Smart Pointers

Administrivia

❖ Exercise 13 is due Monday (July 29th)

2

❖ HW3 due next Thursday (August 1st)

CSE333, Spring 2024L16: C++ Smart Pointers

Lecture Outline

❖ Abstract Classes
❖ Smart Pointers

▪ Intro and toy_ptr

▪ std::unique_ptr
▪ std::shared_ptr and std::weak_ptr

3

CSE333, Spring 2024L16: C++ Smart Pointers

Abstract Classes

❖ Sometimes we want to include a function in a class just
for overriding

▪ In Java, we would use an abstract method

▪ In C++, we use a “pure virtual” function

• Example: virtual string noise() = 0;virtual string noise() = 0;

4

❖ A class containing any pure virtual methods is abstract

▪ You can’t create instances of an abstract class

▪ Extend abstract classes and override methods to use them

❖ A class containing only pure virtual methods is the same
as a Java interface used to be

▪ Pure type specification without implementations

CSE333, Spring 2024L16: C++ Smart Pointers

Lecture Outline

❖ Abstract Classes
❖ Smart Pointers

▪ Intro and toy_ptr

▪ std::unique_ptr
▪ std::shared_ptr and std::weak_ptr

❖ Reference: C++ Primer, Chapter 12.1

5

CSE333, Spring 2024L16: C++ Smart Pointers

Last Week…
❖ We learned about STL

❖ We noticed that STL was doing an enormous amount of
copying

6

❖ A solution: store pointers in containers instead of objects

▪ But who’s responsible for deleting and when???

CSE333, Spring 2024L16: C++ Smart Pointers

C++ Smart Pointers

❖ A smart pointer is an object that stores a pointer to
heap-allocated data

7

▪ A smart pointer looks and behaves like a regular C++ pointer

• By overloading *, ->, [], etc.

▪ These can help you manage memory

• With correct use of smart pointers, you no longer have to remember
when to delete heap memory! (If it’s owned by a smart pointer)

• The smart pointer will delete the pointed-to object at the right time
including invoking the object’s destructor

– When that is depends on what kind of smart pointer you use

CSE333, Spring 2024L16: C++ Smart Pointers

A Toy Smart Pointer

❖ We can implement a simple one with:

▪ A constructor that accepts a pointer

▪ A destructor that frees the pointer

▪ Overloaded * and -> operators that access the pointer

8

CSE333, Spring 2024L16: C++ Smart Pointers

ToyPtr Class Template

9

ToyPtr.h

#ifndef TOYPTR_H_
#define TOYPTR_H_

template <typename T> class ToyPtr {
 public:
 explicit ToyPtr(T *ptr) : ptr_(ptr) { } // constructor

 private:
 T *ptr_; // the pointer
};

#endif // TOYPTR_H_

 ~ToyPtr() { delete ptr_; } // destructor
 T &operator*() { return *ptr_; } // * operator

 T *operator->() { return ptr_; } // -> operator

This is weird! The overload for
the -> operator behaves
differently than others

CSE333, Spring 2024L16: C++ Smart Pointers

ToyPtr Example

10

usetoy.cc

#include <iostream>
#include "ToyPtr.h"

// simply struct to illustrate the "->" operator
typedef struct { int x = 1, y = 2; } Point;
std::ostream &operator<<(std::ostream &out, const Point &rhs) {
 return out << "(" << rhs.x << "," << rhs.y << ")";
}

int main(int argc, char **argv) {
 // Create a dumb pointer
 Point *leak = new Point;

 // Create a "smart" pointer
 ToyPtr<Point> notleak(new Point);

 std::cout << " *leak: " << *leak << std::endl;
 std::cout << " leak->x: " << leak->x << std::endl;
 std::cout << " *notleak: " << *notleak << std::endl;
 std::cout << "notleak->x: " << notleak->x << std::endl;

 return 0;
}

CSE333, Spring 2024L16: C++ Smart Pointers

ToyPtr Example

11

usetoy.cc

#include <iostream>
#include "ToyPtr.h"

// simply struct to illustrate the "->" operator
typedef struct { int x = 1, y = 2; } Point;
std::ostream &operator<<(std::ostream &out, const Point &rhs) {
 return out << "(" << rhs.x << "," << rhs.y << ")";
}

int main(int argc, char **argv) {
 // Create a dumb pointer
 Point *leak = new Point;

 // Create a "smart" pointer (OK, it's still pretty dumb)
 ToyPtr<Point> notleak(new Point);

 std::cout << " *leak: " << *leak << std::endl;
 std::cout << " leak->x: " << leak->x << std::endl;
 std::cout << " *notleak: " << *notleak << std::endl;
 std::cout << "notleak->x: " << notleak->x << std::endl;

 return 0;
}

==2554== Memcheck, a memory error detector
==2554== Copyright (C) 2002-2024, and GNU GPL'd, by Julian Seward et al.
==2554== Using Valgrind-3.23.0 and LibVEX; rerun with -h for copyright info
==2554== Command: ./usetoy
==2554==
 *leak: (1,2)
 leak->x: 1
 *notleak: (1,2)
notleak->x: 1
==2554==
==2554== HEAP SUMMARY:
==2554== in use at exit: 8 bytes in 1 blocks
==2554== total heap usage: 4 allocs, 3 frees, 74,768 bytes allocated

CSE333, Spring 2024L16: C++ Smart Pointers

What Makes This a Toy?

❖ Can’t handle:

▪ Arrays

▪ Copying

▪ Reassignment

▪ Comparison

▪ … plus many other subtleties…

❖ Luckily, others have built non-toy smart pointers for us!

12

CSE333, Spring 2024L16: C++ Smart Pointers

Lecture Outline

❖ C++ Inheritance
❖ Smart Pointers

▪ Intro and toy_ptr

▪ std::unique_ptr
▪ std::shared_ptr and std::weak_ptr

❖ Reference: C++ Primer, Chapter 12.1

13

CSE333, Spring 2024L16: C++ Smart Pointers

std::unique_ptr

❖ A unique_ptr<T> takes ownership of a pointer

▪ Template parameter is the type that the “owned” pointer

references (i.e., the T in pointer type T*)

▪ Part of C++’s standard library (C++11)

14

▪ Its destructor invokes delete on the owned pointer

• Invoked when unique_ptr object is delete’d or falls out of scope

CSE333, Spring 2024L16: C++ Smart Pointers

Using unique_ptr
#include <iostream> // for std::cout, std::endl
#include <memory> // for std::unique_ptr
#include <cstdlib> // for EXIT_SUCCESS

void Leaky() {

}

void NotLeaky() {

}

int main(int argc, char **argv) {
 Leaky();
 NotLeaky();
 return EXIT_SUCCESS;
}

15

unique1.cc

 int *x = new int(5); // heap-allocated
 (*x)++;
 std::cout << *x << std::endl;
 // never used delete, therefore leak

 std::unique_ptr<int> x(new int(5)); // wrapped, heap-allocated
 (*x)++;
 std::cout << *x << std::endl;
 // never used delete, but no leak

CSE333, Spring 2024L16: C++ Smart Pointers

Why are unique_ptrs useful?

❖ If you have many potential exits out of a function, it’s easy
to forget to call delete on all of them

16

void NotLeaky() {
 std::unique_ptr<int> x(new int(5));
 ...
 // lots of code, including several returns
 // lots of code, including potential exception throws
 ...
}

▪ unique_ptr will delete its pointer when it falls out of scope

▪ Thus, a unique_ptr also helps with exception safety

CSE333, Spring 2024L16: C++ Smart Pointers

unique_ptr Operations

#include <memory> // for std::unique_ptr
#include <cstdlib> // for EXIT_SUCCESS

using namespace std;
typedef struct { int a, b; } IntPair;

int main(int argc, char **argv) {
 unique_ptr<int> x(new int(5));

 return EXIT_SUCCESS;
}

17

unique2.cc

 int val = *x; // Return the value of pointed-to object
 int *ptr = x.get(); // Return a pointer to pointed-to object

 // Access a field or function of a pointed-to object
 unique_ptr<IntPair> ip(new IntPair);
 ip->a = 100;

 // Deallocate current pointed-to object and store new pointer
 x.reset(new int(1));

 ptr = x.release(); // Release responsibility for freeing
 delete ptr; If we don’t do this, the int in x

will leak!

ptr is invalid after reset!

CSE333, Spring 2024L16: C++ Smart Pointers

Transferring Ownership

❖ Use reset() and release() to transfer ownership

▪ release returns the pointer, sets wrapped pointer to nullptr

▪ reset delete’s the current pointer and stores a new one

18

CSE333, Spring 2024L16: C++ Smart Pointers

Transferring Ownership

19

int main(int argc, char **argv) {
 unique_ptr<int> x(new int(5));
 cout << "x: " << x.get() << endl;

 return EXIT_SUCCESS;
}

unique3.cc

 unique_ptr<int> y(x.release()); // x abdicates ownership to y
 cout << "x: " << x.get() << endl; // prints “0”
 cout << "y: " << y.get() << endl;

 unique_ptr<int> z(new int(10));

x owns int(5)y owns int(5), x owns nothingy owns int(5), z owns int(10), x owns nothing

 // y transfers ownership of its pointer to z.
 // z's old pointer was delete'd in the process.
 z.reset(y.release());

z owns int(5), x and y own nothing

CSE333, Spring 2024L16: C++ Smart Pointers

unique_ptrs Cannot Be Copied

❖ std::unique_ptr has disabled its copy constructor
and assignment operator

▪ You cannot copy a unique_ptr, helping maintain “uniqueness”

or “ownership”

20

#include <memory> // for std::unique_ptr
#include <cstdlib> // for EXIT_SUCCESS

int main(int argc, char **argv) {
 std::unique_ptr<int> x(new int(5)); // OK

 std::unique_ptr<int> y(x); // fail – no copy ctor

 std::unique_ptr<int> z; // OK – z is nullptr

 z = x; // fail – no assignment op

 return EXIT_SUCCESS;
}

uniquefail.cc

CSE333, Spring 2024L16: C++ Smart Pointers

unique_ptrs Cannot Be Copied

❖ std::unique_ptr has disabled its copy constructor
and assignment operator

▪ You cannot copy a unique_ptr, helping maintain “uniqueness”

or “ownership”

21

#include <memory> // for std::unique_ptr
#include <cstdlib> // for EXIT_SUCCESS

int main(int argc, char **argv) {
 std::unique_ptr<int> x(new int(5)); // line 1

 std::unique_ptr<int> y(x); // line 2

 std::unique_ptr<int> z; // line 3

 z = x; // line 4
 return EXIT_SUCCESS;
}

uniquefail.cc

CSE333, Spring 2024L16: C++ Smart Pointers

unique_ptr and STL

❖ unique_ptrs can be stored in STL containers

▪ Wait, what? STL containers like to make lots of copies of stored

objects and unique_ptrs cannot be copied…

22

❖ Move semantics to the rescue!

▪ When supported, STL containers will move rather than copy

• unique_ptrs support move semantics

CSE333, Spring 2024L16: C++ Smart Pointers

Aside: Copy Semantics

❖ Assigning values typically means making a copy

23

int main(int argc, char **argv) {

 return EXIT_SUCCESS;
}

copysemantics.cc

 std::string a("hello");
 std::string b(a); // copy a into b

std::string ReturnFoo(void) {
 std::string x("foo");
 return x; // this return might copy
}

 b = ReturnFoo(); // assign return value into b

▪ Sometimes this is what you want

• e.g. assigning a string to another makes a copy of its value

▪ Sometimes this is wasteful

• e.g. assigning a returned string goes through a temporary copy

CSE333, Spring 2024L16: C++ Smart Pointers

Move Semantics (added in C++11)

❖ “Move semantics”
move values from
one object to
another without
copying

24

std::string ReturnFoo(void) {
 std::string x("foo");
 // this return might copy
 return x;
}

int main(int argc, char **argv) {
 std::string a("hello");

 // moves a to b
 std::string b = std::move(a);
 std::cout << "a: " << a << std::endl;
 std::cout << "b: " << b << std::endl;

 // moves the returned value into b
 b = std::move(ReturnFoo());
 std::cout << "b: " << b << std::endl;

 return EXIT_SUCCESS;
}

movesemantics.cc

▪ Useful for optimizing

away temporary copies

▪ A complex topic that

uses things called
“rvalue references”

• Mostly beyond the
scope of 333 this
quarter

CSE333, Spring 2024L16: C++ Smart Pointers

Transferring Ownership via Move

❖ unique_ptr supports move semantics

▪ Can “move” ownership from one unique_ptr to another

• Behavior is equivalent to the “release-and-reset” combination

25

int main(int argc, char **argv) {
 unique_ptr<int> x(new int(5));
 cout << "x: " << x.get() << endl;

 unique_ptr<int> y = std::move(x); // x abdicates ownership to y
 cout << "x: " << x.get() << endl;
 cout << "y: " << y.get() << endl;

 unique_ptr<int> z(new int(10));

 // y transfers ownership of its pointer to z.
 // z's old pointer was delete'd in the process.
 z = std::move(y);

 return EXIT_SUCCESS;
}

unique4.ccequivalent to:
unique_ptr<int> y(x.release())

equivalent to:
z.reset(y.release())

CSE333, Spring 2024L16: C++ Smart Pointers

unique_ptr and STL Example

26

int main(int argc, char **argv) {
 std::vector<std::unique_ptr<int> > vec;

 vec.push_back(std::unique_ptr<int>(new int(9)));
 vec.push_back(std::unique_ptr<int>(new int(5)));
 vec.push_back(std::unique_ptr<int>(new int(7)));

 return EXIT_SUCCESS;
}

uniquevec.cc

 // z gets a copy of int value pointed to by vec[1]
 int z = *vec[1];
 std::cout << "z is: " << z << std::endl;

 // won’t compile! Cannot copy unique_ptr
 std::unique_ptr<int> copied = vec[1];

 // Works! vec[1] now wraps a nullptr
 std::unique_ptr<int> moved = std::move(vec[1]);
 std::cout << "*moved: " << *moved << std::endl;
 std::cout << "vec[1].get(): " << vec[1].get() << std::endl;

No leaks!

CSE333, Spring 2024L16: C++ Smart Pointers

unique_ptr and “<”

❖ A unique_ptr implements some comparison operators,
including operator<

27

▪ However, it doesn’t invoke operator< on the pointed-to objects

• Instead, it just promises a stable, strict ordering (probably based on
the pointer address, not the pointed-to-value)

▪ So to use sort() on vectors, you want to provide it with a

comparison function

template <class Iter, class T>
 sort(Iter begin_it, Iter end_it,
 bool (*sort_function)(T, T));

CSE333, Spring 2024L16: C++ Smart Pointers

unique_ptr and STL Sorting

28

using namespace std;

void printfunction(unique_ptr<int> &x) { cout << *x << endl; }

int main(int argc, char **argv) {
 vector<unique_ptr<int>> vec;
 vec.push_back(unique_ptr<int>(new int(9)));
 vec.push_back(unique_ptr<int>(new int(5)));
 vec.push_back(unique_ptr<int>(new int(7)));

 return EXIT_SUCCESS;
}

uniquevecsort.cc

bool sortfunction(const unique_ptr<int> &x,
 const unique_ptr<int> &y) { return *x < *y; }

 // buggy: sorts based on the values of the ptrs
 sort(vec.begin(), vec.end());
 cout << "Sorted:" << endl;
 for_each(vec.begin(), vec.end(), &printfunction);

 // better: sorts based on the pointed-to values
 sort(vec.begin(), vec.end(), &sortfunction);
 cout << "Sorted:" << endl;
 for_each(vec.begin(), vec.end(), &printfunction);

CSE333, Spring 2024L16: C++ Smart Pointers

unique_ptr and Arrays

❖ unique_ptr can store arrays as well

▪ Will call delete[] on destruction

29

#include <memory> // for std::unique_ptr
#include <cstdlib> // for EXIT_SUCCESS

using namespace std;

int main(int argc, char **argv) {
 unique_ptr<int[]> x(new int[5]);

 x[0] = 1;
 x[2] = 2;

 return EXIT_SUCCESS;
}

unique5.cc

CSE333, Spring 2024L16: C++ Smart Pointers

Lecture Outline

❖ C++ Inheritance
❖ Smart Pointers

▪ Intro and toy_ptr

▪ std::unique_ptr
▪ std::shared_ptr and std::weak_ptr

❖ Reference: C++ Primer, Chapter 12.1

30

CSE333, Spring 2024L16: C++ Smart Pointers

std::shared_ptr

❖ shared_ptr is similar to unique_ptr but we allow
shared data to have multiple owners

31

▪ How? Reference counting!

CSE333, Spring 2024L16: C++ Smart Pointers

What is Reference Counting?

❖ Idea: associate a reference count with each object

▪ Reference count holds number of references (pointers) to the

object

32

▪ Adjust reference count whenever pointers are changed:

• Increase by 1 each time we have a new pointer to an object

• Decrease by 1 each time a pointer to an object is removed

▪ When reference counter decreased to 0, no more pointers to the

object, so delete it (automatically)

CSE333, Spring 2024L16: C++ Smart Pointers

std::shared_ptr

❖ shared_ptr uses reference counting

33

▪ The copy/assign operators are not disabled; instead they

increment or decrement reference counts as needed

▪ When a shared_ptr is destroyed, the reference count is

decremented

• When the reference count hits 0, we delete the pointed-to object!

▪ Allows us to have multiple smart pointers to the same object and

still get automatic cleanup

• At the cost of maintaining reference counts at runtime

CSE333, Spring 2024L16: C++ Smart Pointers

shared_ptr Example

34

#include <cstdlib> // for EXIT_SUCCESS
#include <iostream> // for std::cout, std::endl
#include <memory> // for std::shared_ptr

int main(int argc, char **argv) {
 std::shared_ptr<int> x(new int(10)); // ref count: 1

 return EXIT_SUCCESS;
}

sharedexample.cc

 // temporary inner scope with local y (!)
 {
 std::shared_ptr<int> y = x;
 std::cout << *y << std::endl;
 }

// ref count: 2

// exit scope, y deleted

 std::cout << *x << std::endl; // ref count: 1

// ref count: 0

CSE333, Spring 2024L16: C++ Smart Pointers

shared_ptrs and STL Containers

❖ Even simpler than unique_ptrs

▪ Safe to store shared_ptrs in containers, since copy & assign

maintain a shared reference count

35

vector<std::shared_ptr<int> > vec;

vec.push_back(std::shared_ptr<int>(new int(9)));
vec.push_back(std::shared_ptr<int>(new int(5)));
vec.push_back(std::shared_ptr<int>(new int(7)));

sharedvec.cc

int z = *vec[1];
std::cout << "z is: " << z << std::endl;

std::shared_ptr<int> copied = vec[1]; // works!
std::cout << "*copied: " << *copied << std::endl;

std::shared_ptr<int> moved = std::move(vec[1]); // works!
std::cout << "*moved: " << *moved << std::endl;
std::cout << "vec[1].get(): " << vec[1].get() << std::endl;

CSE333, Spring 2024L16: C++ Smart Pointers

RefLang

❖ Suppose for the moment that we have a new C++ -like
language that uses reference counting for heap data

36

struct Node {
 int payload; // node payload
 Node * next; // next Node or nullptr
};

❖ As in C++, a struct is a type with public fields, so we can
implement lists of integers using the following Node type

❖ The reference counts are handled behind the scenes by
the memory manager code – they are not accessible to
the programmer

CSE333, Spring 2024L16: C++ Smart Pointers

Example 1

❖ Let’s execute the following code. Heap data is shown
using rectangles; associated reference counts with ovals

37

Node * p = new Node();
Node * q = new Node();
Node * r = p;
q->next = new Node();
p = nullptr;
r = nullptr;
q = nullptr;

p

q

r

CSE333, Spring 2024L16: C++ Smart Pointers

Example 1

❖ Let’s execute the following code. Heap data is shown
using rectangles; associated reference counts with ovals

38

Node * p = new Node();
Node * q = new Node();
Node * r = p;
q->next = new Node();
p = nullptr;
r = nullptr;
q = nullptr;

p

q

r

1

CSE333, Spring 2024L16: C++ Smart Pointers

Example 1

❖ Let’s execute the following code. Heap data is shown
using rectangles; associated reference counts with ovals

39

Node * p = new Node();
Node * q = new Node();
Node * r = p;
q->next = new Node();
p = nullptr;
r = nullptr;
q = nullptr;

p

q

r

1

1

CSE333, Spring 2024L16: C++ Smart Pointers

Example 1

❖ Let’s execute the following code. Heap data is shown
using rectangles; associated reference counts with ovals

40

Node * p = new Node();
Node * q = new Node();
Node * r = p;
q->next = new Node();
p = nullptr;
r = nullptr;
q = nullptr;

p

q

r

2

1

CSE333, Spring 2024L16: C++ Smart Pointers

Example 1

❖ Let’s execute the following code. Heap data is shown
using rectangles; associated reference counts with ovals

41

Node * p = new Node();
Node * q = new Node();
Node * r = p;
q->next = new Node();
p = nullptr;
r = nullptr;
q = nullptr;

p

q

r

2

1 1

CSE333, Spring 2024L16: C++ Smart Pointers

Example 1

❖ Let’s execute the following code. Heap data is shown
using rectangles; associated reference counts with ovals

42

Node * p = new Node();
Node * q = new Node();
Node * r = p;
q->next = new Node();
p = nullptr;
r = nullptr;
q = nullptr;

p

q

r

1

1 1

CSE333, Spring 2024L16: C++ Smart Pointers

Example 1

❖ Let’s execute the following code. Heap data is shown
using rectangles; associated reference counts with ovals

43

Node * p = new Node();
Node * q = new Node();
Node * r = p;
q->next = new Node();
p = nullptr;
r = nullptr;
q = nullptr;

p

q

r

0

1 1

CSE333, Spring 2024L16: C++ Smart Pointers

Example 1

❖ Let’s execute the following code. Heap data is shown
using rectangles; associated reference counts with ovals

44

Node * p = new Node();
Node * q = new Node();
Node * r = p;
q->next = new Node();
p = nullptr;
r = nullptr;
q = nullptr;

p

q

r

0 10

CSE333, Spring 2024L16: C++ Smart Pointers

pollev.com/uwcse333

❖ What is the box-and-arrow diagram for this
slightly-different snippet, when it finishes execution?

45

Node * q = new Node();
Node * r = new Node();
q->next = r;
r->next = q;
r = nullptr;
q = nullptr;

q

r

CSE333, Spring 2024L16: C++ Smart Pointers

Example 2

❖ Similar to the previous code, but slightly different

46

Node * q = new Node();
Node * r = new Node();
q->next = r;
r->next = q;
r = nullptr;
q = nullptr;

q

r

CSE333, Spring 2024L16: C++ Smart Pointers

Example 2

❖ Similar to the previous code, but slightly different

47

Node * q = new Node();
Node * r = new Node();
q->next = r;
r->next = q;
r = nullptr;
q = nullptr;

q

r

1

CSE333, Spring 2024L16: C++ Smart Pointers

Example 2

❖ Similar to the previous code, but slightly different

48

Node * q = new Node();
Node * r = new Node();
q->next = r;
r->next = q;
r = nullptr;
q = nullptr;

q

r

1 1

CSE333, Spring 2024L16: C++ Smart Pointers

Example 2

❖ Similar to the previous code, but slightly different

49

Node * q = new Node();
Node * r = new Node();
q->next = r;
r->next = q;
r = nullptr;
q = nullptr;

q

r

1 2

CSE333, Spring 2024L16: C++ Smart Pointers

Example 2

❖ Similar to the previous code, but slightly different

50

Node * q = new Node();
Node * r = new Node();
q->next = r;
r->next = q;
r = nullptr;
q = nullptr;

q

r

2 2

CSE333, Spring 2024L16: C++ Smart Pointers

Example 2

❖ Similar to the previous code, but slightly different

51

Node * q = new Node();
Node * r = new Node();
q->next = r;
r->next = q;
r = nullptr;
q = nullptr;

q

r

2 1

CSE333, Spring 2024L16: C++ Smart Pointers

Example 2

❖ Similar to the previous code, but slightly different

52

Node * q = new Node();
Node * r = new Node();
q->next = r;
r->next = q;
r = nullptr;
q = nullptr;

q

r

1 1
Memory
leak!

CSE333, Spring 2024L16: C++ Smart Pointers

Cycle of shared_ptrs

❖ shared_ptrs are deleted when their reference count
drops to 0

❖ Linked data structures with cycles don’t play nicely
with that …

53

CSE333, Spring 2024L16: C++ Smart Pointers

Cycle of shared_ptrs

❖ What happens when we delete head?

54

#include <cstdlib>
#include <memory>

using std::shared_ptr;

struct A {
 shared_ptr<A> next;
 shared_ptr<A> prev;
};

int main(int argc, char **argv) {
 shared_ptr<A> head(new A());
 head->next = shared_ptr<A>(new A());
 head->next->prev = head;

 return EXIT_SUCCESS;
}

strongcycle.cc

next

prev

next

prev

head

12

CSE333, Spring 2024L16: C++ Smart Pointers

Cycle of shared_ptrs

❖ What happens when we delete head? Nodes
unreachable but not deleted because ref counts > 0

55

#include <cstdlib>
#include <memory>

using std::shared_ptr;

struct A {
 shared_ptr<A> next;
 shared_ptr<A> prev;
};

int main(int argc, char **argv) {
 shared_ptr<A> head(new A());
 head->next = shared_ptr<A>(new A());
 head->next->prev = head;

 return EXIT_SUCCESS;
}

strongcycle.cc

next

prev

next

prev

head

11

CSE333, Spring 2024L16: C++ Smart Pointers

std::weak_ptr

❖ weak_ptr is similar to a shared_ptr but doesn’t
affect the reference count

56

▪ Can only “point to” an object that is managed by a shared_ptr

▪ Because it doesn’t influence the reference count, weak_ptrs can

become “dangling”

• Object referenced may have been delete’d

▪ Can’t actually dereference unless you check if the object still exists

• Then you can “get” its associated shared_ptr

❖ Can be used to fix our cycle problem!

CSE333, Spring 2024L16: C++ Smart Pointers

Breaking the Cycle with weak_ptr

❖ Now what happens when we delete head?

57

#include <cstdlib>
#include <memory>

using std::shared_ptr;
using std::weak_ptr;

struct A {
 shared_ptr<A> next;
 weak_ptr<A> prev;
};

int main(int argc, char **argv) {
 shared_ptr<A> head(new A());
 head->next = shared_ptr<A>(new A());
 head->next->prev = head;

 return EXIT_SUCCESS;
}

weakcycle.cc

next

prev

next

prev

head

11

CSE333, Spring 2024L16: C++ Smart Pointers

Breaking the Cycle with weak_ptr

❖ Now what happens when we delete head? Ref counts
go to 0 and nodes deleted!

58

#include <cstdlib>
#include <memory>

using std::shared_ptr;
using std::weak_ptr;

struct A {
 shared_ptr<A> next;
 weak_ptr<A> prev;
};

int main(int argc, char **argv) {
 shared_ptr<A> head(new A());
 head->next = shared_ptr<A>(new A());
 head->next->prev = head;

 return EXIT_SUCCESS;
}

weakcycle.cc

next

prev

next

prev

head

00

CSE333, Spring 2024L16: C++ Smart Pointers

Using a weak_ptr

59

❖ lock(): returns an "upgraded" weak_ptr to a
shared_ptr

▪ First checks if the data still exists, if not returns null

▪ Otherwise, creates a shared_ptr pointing to the same

data as this

CSE333, Spring 2024L16: C++ Smart Pointers

Using a weak_ptr

60

#include <cstdlib> // for EXIT_SUCCESS
#include <iostream> // for std::cout, std::endl
#include <memory> // for std::shared_ptr, std::weak_ptr

int main(int argc, char **argv) {
 std::weak_ptr<int> w;

 return EXIT_SUCCESS;
}

usingweak.cc

 { // temporary inner scope with local x
 std::shared_ptr<int> x;

 }

 { // temporary inner-inner scope with local y
 std::shared_ptr<int> y(new int(10));

 }

 w = y; // weak ref; ref count for “10” node is same
 x = w.lock(); // get "promoted" shared_ptr, ref cnt = 2
 std::cout << *x << std::endl;

 // y deleted; ref count now 1
 std::cout << *x << std::endl;

 std::shared_ptr<int> a = w.lock(); // nullptr
 std::cout << a << std::endl; // output is 0 (null)

// x deleted; ref count now 0; mem freed

CSE333, Spring 2024L16: C++ Smart Pointers

Using a weak_ptr

❖ use_count(): gets reference count

❖ expired(): returns (use_count() == 0)

61

❖ lock(): returns an "upgraded" weak_ptr to a
shared_ptr

▪ First checks if the data still exists, if not returns null

▪ Otherwise, creates a shared_ptr pointing to the same

data as this

CSE333, Spring 2024L16: C++ Smart Pointers

Caveat: shared_ptrs Must Share Nicely

❖ A warning: shared_ptr reference counting works as
long as the shared references to the same object result
from making copies of existing shared_ptr values

62

CSE333, Spring 2024L16: C++ Smart Pointers

shared_ptr Caveat

63

#include <cstdlib> // for EXIT_SUCCESS
#include <iostream> // for std::cout, std::endl
#include <memory> // for std::shared_ptr

int main(int argc, char **argv) {
 std::shared_ptr<int> x(new int(10)); // ref count: 1
 std::shared_ptr<int> y(x); // ref count: 2

 int *p = new int(10);
 std::shared_ptr<int> xbug(p); // ref count: 1
 std::shared_ptr<int> ybug(p); // separate ref count: 1

 return EXIT_SUCCESS;
} // x and y ref count: 0 – ok delete
 // xbug and ybug ref counts both 0
 // both try to delete p
 // -- double-delete error!

sharedbug.cc

CSE333, Spring 2024L16: C++ Smart Pointers

Caveat: shared_ptrs Must Share Nicely

❖ If we create multiple shared_ptrs using the same raw
pointer, the shared_ptrs will have separate reference
counts.

▪ Causes double deletes!

▪ Good practice: allocate with new and create shared_ptr in the
same line.

64

std::shared_ptr<int> x(new int(10));

int *p = new int(10);
std::shared_ptr<int> x(p);

Good

Bad

CSE333, Spring 2024L16: C++ Smart Pointers

Reference Counting Perspective

❖ Reference counting works great! But…
▪ Extra overhead on every pointer copy or delete

▪ Not general enough for the language to do it automatically

• Cannot reclaim linked objects with circular references

65

CSE333, Spring 2024L16: C++ Smart Pointers

Summary
❖ A unique_ptr takes ownership of a pointer

▪ Cannot be copied, but can be moved

▪ get() returns a copy of the pointer, but is dangerous to use;

better to use release() instead

▪ reset() deletes old pointer value and stores a new one

66

❖ A shared_ptr allows shared objects to have multiple
owners by doing reference counting

▪ deletes an object once its reference count reaches zero

❖ A weak_ptr works with a shared object but doesn’t
affect the reference count

▪ Can’t actually be dereferenced, but can check if the object still

exists and can get a shared_ptr from the weak_ptr if it does

CSE333, Spring 2024L16: C++ Smart Pointers

Don’t Forget!

❖ Exercise 13 is due Monday (July 29th)

67

❖ HW3 due next Thursday (August 1st)

