
CSE333, Spring 2024L16: C++ Smart Pointers

C++ Inheritance Continued and
Casting
CSE 333

Instructor: Alex Sanchez-Stern

Teaching Assistants:
Justin Tysdal
Sayuj Shahi
Nicholas Batchelder
Leanna Mi Nguyen

CSE333, Spring 2024L16: C++ Smart Pointers

Administrivia

❖ Congrats on finishing the midterm!

2

❖ Everyone should have grades for HW1 now
■ If you got a zero and you turned it in, it’s likely a tagging issue.

File a regrade request!

❖ Exercise 12 was due this morning
❖ Exercise 13 isn’t due until Monday (July 29th)

■ Take a break or work on HW3

❖ HW3 due next Thursday (August 1st)

CSE333, Spring 2024L16: C++ Smart Pointers

Lecture Outline

❖ C++ Inheritance
▪ Dynamic Dispatch & VTables

▪ Static Dispatch

▪ Abstract Classes

▪ Constructors and Destructors

▪ Assignment

❖ Casting

Reference: C++ Primer, Chapter 15

3

CSE333, Spring 2024L16: C++ Smart Pointers

int main(int argc, char** argv) {
 DividendStock d;

 Foo(&d);
}

Stock.cc

class Stock : public Asset {
 public:

 virtual void GetCost();
};

class DividendStock : public Stock {

};

Stock.h

void Foo(Asset* asset_ptr) {

 asset_ptr->GetCost();
}

Asset.cc

class Asset {
 public:

 virtual void GetCost();
};

Asset.h
Most-Derived

4

 // GetCost will use dynamic
 // dispatch

 // Stock::GetCost overrides
 // Asset::GetCost

 // DividendStock inherits
 // Stock::GetCost()

 // Whose GetCost() is
 // called?

 // Calls Stock::GetCost()

CSE333, Spring 2024L16: C++ Smart Pointers

How Can This Possibly Work?

❖ The compiler produces Asset.o from just Asset.cc

5

▪ It doesn’t know that Stock exists during this process

▪ So then how does the emitted code for Bar in Asset.o know to

call Stock::GetCost() instead of Asset::GetCost()?

Function pointers!

CSE333, Spring 2024L16: C++ Smart Pointers

Dynamic Dispatch in C - Simple Version

6

Stock.c

typedef struct {
 void (*CostImpl)();
} Stock;
void Stock_GetCost();
Stock mkStock(); // Don’t need for now

Stock.h

Asset mkAsset(){
 Asset asset;
 asset.CostImpl =
 Asset_GetCost();
 return asset;
}

Asset.c

typedef struct {
 void (*CostImpl)();
} Asset;
void Asset_GetCost();
Asset mkAsset();

Asset.h

void Bar(Asset* asset_ptr)
{
 asset_ptr->CostImpl();
}

typedef struct {
 void (*CostImpl)();
} DividendStock;
DividendStock mkDividendStock();

DividendStock mkDividendStock() {
 DividendStock dstock;
 dstock.CostImpl = Stock_GetCost();
 return dstock;
}
void Foo() {
 DividendStock d = mkDividendStock();
 Bar(&d);
}

CSE333, Spring 2024L16: C++ Smart Pointers

vtables

❖ Conceptually, this is how it works at runtime
■ At compile time there is more type-checking

7

❖ In practice, C++ adds another layer of indirection
■ Instead of storing all function pointers on every object,

one global table of function pointers per class

■ Each object stores a pointer to that table

■ Called the class’s “vtable” (“v” for “virtual”)

■ Better when there are lots of virtual functions

CSE333, Spring 2024L16: C++ Smart Pointers

vtables and the vptr

❖ If a class contains any virtual methods, the compiler emits:

▪ A (single) virtual function table (vtable) for the class

8

▪ A virtual table pointer (vptr) for each object instance

• A pointer to a virtual table as a “hidden” member variable

• Contains a function pointer for each virtual method in the class

• The pointers in the vtable point to the most-derived function for that
class

• When the object’s constructor is invoked, the vptr is initialized to point
to the vtable for the newly constructed object’s class

• Thus, the vptr “remembers” what class the object is

CSE333, Spring 2024L16: C++ Smart Pointers

9

class Base {
 public:
 virtual void f1();
 virtual void f2();
};

class Der1 : public Base {
 public:
 virtual void f1();
};

class Der2 : public Base {
 public:
 virtual void f2();
};

Base b;
Der1 d1;
Der2 d2;

Base* b0ptr = &b;
Base* b1ptr = &d1;
Base* b2ptr = &d2;

b0ptr->f1(); // Base::f1()
b0ptr->f2(); // Base::f2()

b1ptr->f1(); // Der1::f1()
b1ptr->f2(); // Base::f2()

d2.f1(); // Base::f1()
b2ptr->f1(); // Base::f1()
b2ptr->f2(); // Der2::f2()

CSE333, Spring 2024L16: C++ Smart Pointers

vtable/vptr Example

10

Base b;
Der1 d1;
Der2 d2;

Base* b0ptr = &d1;

b0ptr->f1();

object
instances

class
vtables

compiled
code

vptrb

vptrd1

vptrd2

Base
f1()
f2()

Der1
f1()
f2()

Der2
f1()
f2()

Base::f1()
 push %rbp
 ...

Base::f2()
 push %rbp
 ...

Der1::f1()
 push %rbp
 ...

Der2::f2()
 push %rbp
 ...

Base* b2ptr = &d2;

b2ptr->f1();

// b0ptr -->
// d1.vptr -->
// Der1.vtable.f1 -->
// Der1::f1()

// b2ptr -->
// d2.vptr -->
// Der2.vtable.f1 -->
// Base::f1()

CSE333, Spring 2024L16: C++ Smart Pointers

Lecture Outline

❖ C++ Inheritance
▪ Vtables

▪ Static Dispatch

▪ Abstract Classes

▪ Constructors and Destructors

▪ Assignment

❖ Casting

Reference: C++ Primer, Chapter 15

11

CSE333, Spring 2024L16: C++ Smart Pointers

What happens if we omit “virtual”?

❖ By default, without virtual, methods are dispatched statically
▪ At compile time, the compiler writes in a call to the address of the

class’ method in the generated code .text segment
• Based on the compile-time visible type of the called code (callee)

▪ This is different than Java

12

class Derived : public Base {
...
 void foo();
...
};

int main(int argc, char** argv) {
 Derived d;
 Derived* dp = &d;
 Base* bp = &d;
 dp->foo();
 bp->foo();
 return 0;
}

Derived::foo()
...

Base::foo()
...

CSE333, Spring 2024L16: C++ Smart Pointers

Static Dispatch Example

❖ Removed virtual on methods:

13

DividendStock dividend();
DividendStock* ds = ÷nd;
Stock* s = ÷nd;

double Stock::GetMarketValue() const;
double Stock::GetProfit() const;

Stock.h

// Calls DividendStock::GetMarketValue()
ds->GetMarketValue();

// Calls Stock::GetMarketValue()
s->GetMarketValue();

// Calls Stock::GetProfit(), since that method is inherited.
// Stock::GetProfit() calls Stock::GetMarketValue().
ds->GetProfit();

// Calls Stock::GetProfit().
// Stock::GetProfit() calls Stock::GetMarketValue().
s->GetProfit();

CSE333, Spring 2024L16: C++ Smart Pointers

virtual is “sticky”

❖ If X::f() is declared virtual, then a vtable will be
created for class X and for all of its subclasses

▪ The vtables will include function pointers for (the correct) f

14

❖ f() will be called using dynamic dispatch even if
overridden in a derived class without the virtual
keyword

▪ Good style to help the reader and avoid bugs by using override

• Style guide controversy, if you use override should you use
virtual in derived classes? Recent style guides say just use
override, but you’ll sometimes see both, particularly in older code

CSE333, Spring 2024L16: C++ Smart Pointers

Why Not Always Use virtual?

❖ Two (fairly uncommon) reasons:

15

▪ Efficiency:

• Non-virtual function calls are a tiny bit faster (no indirect lookup)

• A class with no virtual functions has objects without a vptr field

▪ Control:

• If f() calls g() in class X and g is not virtual, we’re guaranteed to call
X::g() and not g() in some subclass

– Particularly useful for framework design

❖ In Java, all methods are virtual, except static class
methods, which aren’t associated with objects

❖ In C++, you can pick what you want

▪ Omitting virtual can cause obscure bugs

CSE333, Spring 2024L16: C++ Smart Pointers

Why Not Always Use virtual?

❖ Two (fairly uncommon) reasons:

16

▪ Efficiency:

• Non-virtual function calls are a tiny bit faster (no indirect lookup)

• A class with no virtual functions has objects without a vptr field

▪ Control:

• If f() calls g() in class X and g is not virtual, we’re guaranteed to call
X::g() and not g() in some subclass

– Particularly useful for framework design

❖ In Java, all methods are virtual, except static class
methods, which aren’t associated with objects

❖ In C++, you can pick what you want

▪ Omitting virtual can cause obscure bugs

In practice (for this class),
always use virtual!

CSE333, Spring 2024L16: C++ Smart Pointers

Mixed Dispatch

❖ Which function is called is a mix of both compile time and
runtime decisions as well as how you call the function

17

▪ If called on an object (e.g. obj.Fcn()), usually optimized into a

hard-coded function call at compile time

▪ If called via a pointer or reference:

DeclaredT *ptr = new ActualT;
ptr->Fcn(); // which version is called?

Static dispatch – call
DeclaredT::fcn()

Is Fcn() defined in
DeclaredT

(either locally or
inherited)?

Is DeclaredT::Fcn()
marked virtual in

DeclaredT or in one of
its superclasses?

CompileE
rror

Dynamic dispatch – call
most-derived version of fcn()

visible in ActualT

Yes Yes

NoNo

CSE333, Spring 2024L16: C++ Smart Pointers

Mixed Dispatch Example

18

class A {
 public:
 void m1() { cout << "a1"; }
 virtual void m2() { cout << "a2"; }
};

class B : public A {
 public:
 void m1() { cout << "b1"; }
 void m2() { cout << "b2"; }
};

void main(int argc,
 char** argv) {
 A a;
 B b;

 A* a_ptr_a = &a;
 A* a_ptr_b = &b;
 B* b_ptr_a = &a;
 B* b_ptr_b = &b;

 a_ptr_a->m1(); //
 a_ptr_a->m2(); //

 a_ptr_b->m1(); //
 a_ptr_b->m2(); //

 b_ptr_b->m1(); //
 b_ptr_b->m2(); //
}

mixed.cc

a1
a2

a1
b2

b1
b2

CSE333, Spring 2024L16: C++ Smart Pointers

Mixed Dispatch Example

19

class A {
 public:
 // m1 will use static dispatch
 void m1() { cout << "a1"; }
 // m2 will use dynamic dispatch
 virtual void m2() { cout << "a2"; }
};

class B : public A {
 public:
 void m1() { cout << "b1, "; }
 // m2 is still virtual by default
 void m2() { cout << "b2"; }
};

void main(int argc,
 char** argv) {
 A a;
 B b;

 A* a_ptr_a = &a;
 A* a_ptr_b = &b;
 B* b_ptr_a = &a;
 B* b_ptr_b = &b;

 a_ptr_a->m1(); // a1
 a_ptr_a->m2(); // a2

 a_ptr_b->m1(); // a1
 a_ptr_b->m2(); // b2

 b_ptr_b->m1(); // b1
 b_ptr_b->m2(); // b2
}

mixed.cc

CSE333, Spring 2024L16: C++ Smart Pointers

Lecture Outline

❖ C++ Inheritance
▪ Vtables

▪ Static Dispatch

▪ Abstract Classes

▪ Constructors and Destructors

▪ Assignment

❖ Casting

Reference: C++ Primer, Chapter 15

20

CSE333, Spring 2024L16: C++ Smart Pointers

Derived-Class Objects

❖ A derived object contains “subobjects” corresponding to
the data members inherited from each base class

▪ No guarantees about how these are laid out in memory (not even

contiguousness between subobjects)

❖ Conceptual structure of DividendStock object:

members inherited
from Stock

symbol_
total_shares_
total_cost_
current_price_

members defined by
DividendStock

dividends_

21

CSE333, Spring 2024L16: C++ Smart Pointers

Constructors and Inheritance

❖ A derived class does not inherit the base class’
constructor

▪ The derived class must have its own constructor

22

▪ A synthesized default constructor for the derived class first

invokes the default constructor of the base class and then
initializes the derived class’ member variables

• Compiler error if the base class has no default constructor

▪ The base class constructor is invoked before the constructor of the

derived class

• You can use the initialization list of the derived class to specify which
base class constructor to use

CSE333, Spring 2024L16: C++ Smart Pointers

Constructor Examples

class Base { // no default ctor
 public:
 Base(int y) : y(y) { }
 int y;
};

// Compiler error when you try to
// instantiate a Der1, as the
// synthesized default ctor needs
// to invoke Base's default ctor.
class Der1 : public Base {
 public:
 int z;
};

class Der2 : public Base {
 public:
 Der2(int y, int z)
 : Base(y), z(z) { }
 int z;
};

badctor.cc

// has default ctor
class Base {
 public:
 int y;
};

// works now
class Der1 : public Base {
 public:
 int z;
};

// still works
class Der2 : public Base {
 public:
 Der2(int z) : z(z) { }
 int z;
};

goodctor.cc

23

CSE333, Spring 2024L16: C++ Smart Pointers

Destructors and Inheritance

❖ Destructor of a derived
class:

▪ First runs body of the dtor

▪ Then invokes of the dtor

of the base class

class Base {
 public:
 Base() { x = new int; }
 ~Base() { delete x; }
 int* x;
};

class Der1 : public Base {
 public:
 Der1() { y = new int; }
 ~Der1() { delete y; }
 int* y;
};

void foo() {
 Base* b0ptr = new Base;
 Base* b1ptr = new Der1;

 delete b0ptr; // OK
 delete b1ptr; // leaks Der1::y
}

baddtor.cc

24

❖ Static dispatch of
destructors is almost
always a mistake!

▪ Good habit to always

define a dtor as virtual

• Empty body if there’s
no work to do

CSE333, Spring 2024L16: C++ Smart Pointers

Assignment and Inheritance

❖ C++ allows you to assign
the value of a derived
class to an instance of
a base class

▪ Known as object slicing

• It’s legal since b=d passes
type checking rules

• But b doesn’t have space
for any extra fields in d

class Base {
 public:
 Base(int x) : x_(x) { }
 int x_;
};

class Der1 : public Base {
 public:
 Der1(int y) : Base(16), y_(y) { }
 int y_;
};

void foo() {
 Base b(1);
 Der1 d(2);

 d = b; // compiler error
 b = d; // what happens to y_?
}

slicing.cc

25

CSE333, Spring 2024L16: C++ Smart Pointers

STL and Inheritance

❖ Recall: STL containers store copies of values

▪ What happens when we want to store mixes of object types in a

single container? (e.g. Stock and DividendStock)

▪ You get sliced ☹

26

#include <list>
#include "Stock.h"
#include "DividendStock.h"

int main(int argc, char** argv) {
 Stock s;
 DividendStock ds;
 list<Stock> li;

 li.push_back(s); // OK
 li.push_back(ds); // OUCH!

 return 0;
}

CSE333, Spring 2024L16: C++ Smart Pointers

STL and Inheritance

❖ Instead, store pointers to heap-allocated objects in STL
containers

▪ No slicing! ☺
▪ sort() does the wrong thing ☹
▪ You have to remember to delete your objects before destroying

the container ☹
• Smart pointers next lecture will help with this!

27

CSE333, Spring 2024L16: C++ Smart Pointers

Lecture Outline

❖ C++ Inheritance
▪ Vtables

▪ Static Dispatch

▪ Abstract Classes

▪ Constructors and Destructors

▪ Assignment

❖ Casting

❖ Reference: C++ Primer, Chapter 12.1

28

CSE333, Spring 2024L16: C++ Smart Pointers

Explicit Casting in C

❖ Simple syntax: lhs = (new_type) rhs;

❖ Used to:

▪ Convert between pointers of arbitrary type

• Don’t change the data, but treat differently

▪ Forcibly convert a primitive type to another

• Actually changes the representation

❖ You can still use C-style casting in C++, but that uses one
notation for different purposes

29

lhs = (new_type) rhs;

CSE333, Spring 2024L16: C++ Smart Pointers

Casting in C++

❖ C++ provides an alternative casting style that is more
informative:

▪ static_cast<to_type>(expression)
▪ dynamic_cast<to_type>(expression)
▪ const_cast<to_type>(expression)
▪ reinterpret_cast<to_type>(expression)

30

❖ Always use these in C++ code

▪ Intent is clearer

▪ Easier to find in code via searching

CSE333, Spring 2024L16: C++ Smart Pointers

static_cast

❖ static_cast can convert:

▪ Pointers to classes of related type

• Compiler error if classes are not related

• Dangerous to cast down a class hierarchy

31

class A {
 public:
 int x;
};

class B {
 public:
 float x;
};

class C : public B {
 public:
 char x;
};

void foo() {
 B b; C c;

 // compiler error
 A* aptr = static_cast<A*>(&b);
 // OK
 B* bptr = static_cast<B*>(&c);
 // compiles, but dangerous
 C* cptr = static_cast<C*>(&b);
}

staticcast.cc

▪ Non-pointer conversion

• e.g. float to int

❖ static_cast is
checked at compile time

Use static_cast to cast pointers up the
class hierarchy, or for numeric casts

CSE333, Spring 2024L16: C++ Smart Pointers

dynamic_cast

❖ dynamic_cast can convert:

▪ Pointers to classes of related type

▪ References to classes of related type

32

void bar() {
 Base b; Der1 d;

 // OK (run-time check passes)
 Base* bptr = dynamic_cast<Base*>(&d);
 assert(bptr != nullptr);

 // OK (run-time check passes)
 Der1* dptr = dynamic_cast<Der1*>(bptr);
 assert(dptr != nullptr);

 // Run-time check fails, returns nullptr
 bptr = &b;
 dptr = dynamic_cast<Der1*>(bptr);
 assert(dptr != nullptr);
}

dynamiccast.cc
class Base {
 public:
 virtual void foo() { }
 float x;
};

class Der1 : public Base {
 public:
 char x;
};❖ dynamic_cast is checked at both

compile time and
run time

▪ Casts between

unrelated classes fail
at compile time

▪ Casts from base to

derived fail at run
time if the pointed-to
object is not the
derived type

Use static_cast to cast pointers down
the class hierarchy, or for casting

references

CSE333, Spring 2024L16: C++ Smart Pointers

const_cast

❖ const_cast adds or strips const-ness

▪ Dangerous (!)

33

void foo(int* x) {
 *x++;
}

void bar(const int* x) {
 foo(x); // compiler error
 foo(const_cast<int*>(x)); // succeeds
}

int main(int argc, char** argv) {
 int x = 7;
 bar(&x);
 return 0;
}

CSE333, Spring 2024L16: C++ Smart Pointers

reinterpret_cast

❖ reinterpret_cast casts between incompatible types

▪ Low-level reinterpretation of the bit pattern

▪ e.g. storing a pointer in an int64_t, or vice-versa

• Works as long as the integral type is “wide” enough

▪ Converting between incompatible pointers

• Dangerous (!)

• This is used (carefully) in hw3

34

CSE333, Spring 2024L16: C++ Smart Pointers

Implicit Conversion

❖ The compiler tries to infer some kinds of conversions

▪ When types are not equal and you don’t specify an explicit cast,

the compiler looks for an acceptable implicit conversion

35

void bar(std::string x);

void foo() {
 int x = 5.7; // conversion, float -> int
 bar("hi"); // conversion, (const char*) -> string
 char c = x; // conversion, int -> char
}

CSE333, Spring 2024L16: C++ Smart Pointers

Sneaky Implicit Conversions

36

class Foo {
 public:
 Foo(int x) : x(x) { }
 int x;
};

int Bar(Foo f) {
 return f.x;
}

int main(int argc, char** argv) {
 return Bar(5); // equivalent to return Bar(Foo(5));
}

But char → int → Foo is fine!

❖ (const char*) to string conversion?
■ If a class has a constructor with a single parameter, the compiler

will use it it to perform implicit conversions
■ At most, one user-defined implicit conversion will happen

● Can do int → Foo, but not int → Foo → Baz

CSE333, Spring 2024L16: C++ Smart Pointers

Avoiding Sneaky Implicits

❖ Declare one-argument constructors as explicit if you
want to disable them from being used as an implicit
conversion path

▪ Usually a good idea

37

class Foo {
 public:
 explicit Foo(int x) : x(x) { }
 int x;
};

int Bar(Foo f) {
 return f.x;
}

int main(int argc, char** argv) {
 return Bar(5); // compiler error
}

CSE333, Spring 2024L16: C++ Smart Pointers

Administrivia

38

❖ Check your HW1 grades
■ If you got a zero and you turned it in, it’s likely a tagging issue.

File a regrade request!

❖ Exercise 13 isn’t due until Monday (July 29th)
■ Take a break or work on HW3

❖ HW3 due next Thursday (August 1st)

CSE333, Spring 2024L16: C++ Smart Pointers

Extra Exercise #1

❖ Design a class hierarchy to represent shapes

▪ e.g. Circle, Triangle, Square

❖ Implement methods that:

▪ Construct shapes

▪ Move a shape (i.e. add (x,y) to the shape position)

▪ Returns the centroid of the shape

▪ Returns the area of the shape

▪ Print(), which prints out the details of a shape

39

CSE333, Spring 2024L16: C++ Smart Pointers

Extra Exercise #2

❖ Implement a program that uses Extra Exercise #1 (shapes
class hierarchy):

▪ Constructs a vector of shapes

▪ Sorts the vector according to the area of the shape

▪ Prints out each member of the vector

❖ Notes:

▪ Avoid slicing!

▪ Make sure the sorting works properly!

40

