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Administrivia

❖ Congrats on finishing the midterm!
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❖ Everyone should have grades for HW1 now
■ If you got a zero and you turned it in, it’s likely a tagging issue. 

File a regrade request!

❖ Exercise 12 was due this morning
❖ Exercise 13 isn’t due until Monday (July 29th)

■ Take a break or work on HW3

❖ HW3 due next Thursday (August 1st)
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Lecture Outline

❖ C++ Inheritance
▪ Dynamic Dispatch &  VTables

▪ Static Dispatch

▪ Abstract Classes

▪ Constructors and Destructors

▪ Assignment

❖ Casting

Reference:  C++ Primer, Chapter 15
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int main(int argc, char** argv) {
  DividendStock d;

  Foo(&d);
}

Stock.cc

class Stock : public Asset {
 public:

  virtual void GetCost();
};

class DividendStock : public Stock {

};

Stock.h

void Foo(Asset* asset_ptr) {

  asset_ptr->GetCost();
}

Asset.cc

class Asset {
 public:

  virtual void GetCost();
};

Asset.h
Most-Derived
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  // GetCost will use dynamic
  // dispatch

  // Stock::GetCost overrides 
  // Asset::GetCost

  // DividendStock inherits
  // Stock::GetCost()

  // Whose GetCost() is 
  // called?

  // Calls Stock::GetCost()
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How Can This Possibly Work?

❖ The compiler produces Asset.o from just Asset.cc
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▪ It doesn’t know that Stock exists during this process

▪ So then how does the emitted code for Bar in Asset.o know to 

call Stock::GetCost()  instead of Asset::GetCost()?

Function pointers!
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Dynamic Dispatch in C - Simple Version
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Stock.c

typedef struct {
  void (*CostImpl)();
} Stock;
void Stock_GetCost();
Stock mkStock(); // Don’t need for now

Stock.h

Asset mkAsset(){
  Asset asset;
  asset.CostImpl =
    Asset_GetCost();
  return asset;
}

Asset.c

typedef struct {
  void (*CostImpl)();
} Asset;
void Asset_GetCost();
Asset mkAsset();

Asset.h

void Bar(Asset* asset_ptr)
{
  asset_ptr->CostImpl();
}

typedef struct {
  void (*CostImpl)();
} DividendStock;
DividendStock mkDividendStock();

DividendStock mkDividendStock() {
  DividendStock dstock;
  dstock.CostImpl = Stock_GetCost();
  return dstock;
}
void Foo() {
  DividendStock d = mkDividendStock();
  Bar(&d);
}
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vtables

❖ Conceptually, this is how it works at runtime
■ At compile time there is more type-checking
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❖ In practice, C++ adds another layer of indirection
■ Instead of storing all function pointers on every object, 

one global table of function pointers per class

■ Each object stores a pointer to that table

■ Called the class’s “vtable” (“v” for “virtual”)

■ Better when there are lots of virtual functions
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vtables and the vptr

❖ If a class contains any virtual methods, the compiler emits:

▪ A (single) virtual function table (vtable) for the class
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▪ A virtual table pointer (vptr) for each object instance

• A pointer to a virtual table as a “hidden” member variable

• Contains a function pointer for each virtual method in the class

• The pointers in the vtable point to the most-derived function for that 
class

• When the object’s constructor is invoked, the vptr is initialized to point 
to the vtable for the newly constructed object’s class

• Thus, the vptr “remembers” what class the object is
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class Base {
 public:
  virtual void f1();
  virtual void f2();
};

class Der1 : public Base {
 public:
  virtual void f1();
};

class Der2 : public Base {
 public:
  virtual void f2();
};

Base b;
Der1 d1;
Der2 d2;

Base* b0ptr = &b;
Base* b1ptr = &d1;
Base* b2ptr = &d2;

b0ptr->f1();  // Base::f1()
b0ptr->f2();  // Base::f2()

b1ptr->f1();  // Der1::f1()
b1ptr->f2();  // Base::f2()

d2.f1();      // Base::f1()
b2ptr->f1();  // Base::f1()
b2ptr->f2();  // Der2::f2()
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vtable/vptr Example
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Base b;
Der1 d1;
Der2 d2;

Base* b0ptr = &d1;

b0ptr->f1();

object
instances

class
vtables

compiled
code

vptrb

vptrd1

vptrd2

Base
f1()
f2()

Der1
f1()
f2()

Der2
f1()
f2()

Base::f1()
  push %rbp
  ...

Base::f2()
  push %rbp
  ...

Der1::f1()
  push %rbp
  ...

Der2::f2()
  push %rbp
  ...

Base* b2ptr = &d2;

b2ptr->f1();

// b0ptr -->
// d1.vptr -->
// Der1.vtable.f1 -->
// Der1::f1()

// b2ptr -->
// d2.vptr -->
// Der2.vtable.f1 -->
// Base::f1()
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Lecture Outline

❖ C++ Inheritance
▪ Vtables

▪ Static Dispatch

▪ Abstract Classes

▪ Constructors and Destructors

▪ Assignment

❖ Casting

Reference:  C++ Primer, Chapter 15
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What happens if we omit “virtual”?

❖ By default, without virtual, methods are dispatched statically
▪ At compile time, the compiler writes in a call to the address of the 

class’ method in the generated code .text segment
• Based on the compile-time visible type of the called code (callee)

▪ This is different than Java
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class Derived : public Base { 
...
  void foo();
...
};

int main(int argc, char** argv) {
  Derived d;
  Derived* dp = &d;
  Base* bp = &d;
  dp->foo();
  bp->foo();
  return 0;
}

Derived::foo()
...

Base::foo()
...
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Static Dispatch Example

❖ Removed virtual on methods:
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DividendStock dividend();
DividendStock* ds = &dividend;
Stock* s = &dividend;

double Stock::GetMarketValue() const;
double Stock::GetProfit() const;

Stock.h

// Calls DividendStock::GetMarketValue()
ds->GetMarketValue();

// Calls Stock::GetMarketValue()
s->GetMarketValue();

// Calls Stock::GetProfit(), since that method is inherited.
// Stock::GetProfit() calls Stock::GetMarketValue().
ds->GetProfit();

// Calls Stock::GetProfit().
// Stock::GetProfit() calls Stock::GetMarketValue(). 
s->GetProfit();
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virtual is “sticky”

❖ If X::f() is declared virtual, then a vtable will be 
created for class X and for all of its subclasses

▪ The vtables will include function pointers for (the correct) f
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❖ f() will be called using dynamic dispatch even if 
overridden in a derived class without the virtual 
keyword

▪ Good style to help the reader and avoid bugs by using override 

• Style guide controversy, if you use override should you use 
virtual in derived classes?  Recent style guides say just use 
override, but you’ll sometimes see both, particularly in older code
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Why Not Always Use virtual?

❖ Two (fairly uncommon) reasons:
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▪ Efficiency:

• Non-virtual function calls are a tiny bit faster (no indirect lookup)

• A class with no virtual functions has objects without a vptr field

▪ Control:

• If f() calls g() in class X and g is not virtual, we’re guaranteed to call 
X::g() and not g() in some subclass

– Particularly useful for framework design

❖ In Java, all methods are virtual, except static class 
methods, which aren’t associated with objects

❖ In C++, you can pick what you want

▪ Omitting virtual can cause obscure bugs
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Why Not Always Use virtual?

❖ Two (fairly uncommon) reasons:

16

▪ Efficiency:

• Non-virtual function calls are a tiny bit faster (no indirect lookup)

• A class with no virtual functions has objects without a vptr field

▪ Control:

• If f() calls g() in class X and g is not virtual, we’re guaranteed to call 
X::g() and not g() in some subclass

– Particularly useful for framework design

❖ In Java, all methods are virtual, except static class 
methods, which aren’t associated with objects

❖ In C++, you can pick what you want

▪ Omitting virtual can cause obscure bugs

In practice (for this class), 
always use virtual!
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Mixed Dispatch

❖ Which function is called is a mix of both compile time and 
runtime decisions as well as how you call the function
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▪ If called on an object (e.g. obj.Fcn()), usually optimized into a 

hard-coded function call at compile time

▪ If called via a pointer or reference:

DeclaredT *ptr = new ActualT;
ptr->Fcn();  // which version is called?

Static dispatch – call 
DeclaredT::fcn()

Is Fcn() defined in 
DeclaredT  

(either locally or 
inherited)?

Is DeclaredT::Fcn()  
marked virtual  in 

DeclaredT  or in one of 
its superclasses?

CompileE
rror

Dynamic dispatch – call 
most-derived version of fcn() 

visible in ActualT

Yes Yes

NoNo
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Mixed Dispatch Example
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class A {
 public:
          void m1() { cout << "a1"; }
  virtual void m2() { cout << "a2"; }
};

class B : public A {
 public:
  void m1() { cout << "b1"; }
  void m2() { cout << "b2"; }
};

void main(int argc, 
          char** argv) {
  A a;
  B b;

  A* a_ptr_a = &a;
  A* a_ptr_b = &b;
  B* b_ptr_a = &a;
  B* b_ptr_b = &b;

  a_ptr_a->m1();  // 
  a_ptr_a->m2();  // 

  a_ptr_b->m1();  // 
  a_ptr_b->m2();  // 

  b_ptr_b->m1();  // 
  b_ptr_b->m2();  // 
}

mixed.cc

a1
a2

a1
b2

b1
b2
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Mixed Dispatch Example
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class A {
 public:
  // m1 will use static dispatch
          void m1() { cout << "a1"; }
  // m2 will use dynamic dispatch
  virtual void m2() { cout << "a2"; }
};

class B : public A {
 public:
  void m1() { cout << "b1, "; }
  // m2 is still virtual by default
  void m2() { cout << "b2"; }
};

void main(int argc, 
          char** argv) {
  A a;
  B b;

  A* a_ptr_a = &a;
  A* a_ptr_b = &b;
  B* b_ptr_a = &a;
  B* b_ptr_b = &b;

  a_ptr_a->m1();  // a1
  a_ptr_a->m2();  // a2

  a_ptr_b->m1();  // a1
  a_ptr_b->m2();  // b2

  b_ptr_b->m1();  // b1
  b_ptr_b->m2();  // b2
}

mixed.cc



CSE333, Spring 2024L16:  C++ Smart Pointers

Lecture Outline

❖ C++ Inheritance
▪ Vtables

▪ Static Dispatch

▪ Abstract Classes

▪ Constructors and Destructors

▪ Assignment

❖ Casting

Reference:  C++ Primer, Chapter 15
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Derived-Class Objects

❖ A derived object contains “subobjects” corresponding to 
the data members inherited from each base class

▪ No guarantees about how these are laid out in memory (not even 

contiguousness between subobjects)

❖ Conceptual structure of DividendStock object:

members inherited 
from Stock

symbol_
total_shares_
total_cost_
current_price_

members defined by 
DividendStock

dividends_

21
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Constructors and Inheritance

❖ A derived class does not inherit the base class’ 
constructor

▪ The derived class must have its own constructor
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▪ A synthesized default constructor for the derived class first 

invokes the default constructor of the base class and then 
initializes the derived class’ member variables

• Compiler error if the base class has no default constructor

▪ The base class constructor is invoked before the constructor of the 

derived class

• You can use the initialization list of the derived class to specify which 
base class constructor to use
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Constructor Examples

class Base {  // no default ctor
 public:
  Base(int y) : y(y) { }
  int y;
};

// Compiler error when you try to 
// instantiate a Der1, as the
// synthesized default ctor needs 
// to invoke Base's default ctor.
class Der1 : public Base {
 public:
  int z;
};

class Der2 : public Base {
 public:
  Der2(int y, int z) 
    : Base(y), z(z) { }
  int z;
};

badctor.cc

// has default ctor
class Base {
 public:
  int y;
};

// works now
class Der1 : public Base {
 public:
  int z;
};

// still works
class Der2 : public Base {
 public:
  Der2(int z) : z(z) { }
  int z;
};

goodctor.cc
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Destructors and Inheritance

❖ Destructor of a derived 
class:

▪ First runs body of the dtor

▪ Then invokes of the dtor 

of the base class

class Base {
 public:
  Base() { x = new int; }
  ~Base() { delete x; }
  int* x;
};

class Der1 : public Base {
 public:
  Der1() { y = new int; }
  ~Der1() { delete y; }
  int* y;
};

void foo() {
  Base* b0ptr = new Base;
  Base* b1ptr = new Der1;

  delete b0ptr;  // OK
  delete b1ptr;  // leaks Der1::y
}

baddtor.cc
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❖ Static dispatch of 
destructors is almost 
always a mistake!

▪ Good habit to always 

define a dtor as virtual

• Empty body if there’s
no work to do
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Assignment and Inheritance

❖ C++ allows you to assign 
the value of a derived 
class to an instance of 
a base class

▪ Known as object slicing

• It’s legal since b=d passes
type checking rules

• But b doesn’t have space
for any extra fields in d

class Base {
 public:
  Base(int x) : x_(x) { }
  int x_;
};

class Der1 : public Base {
 public:
  Der1(int y) : Base(16), y_(y) { }
  int y_;
};

void foo() {
  Base b(1);
  Der1 d(2);

  d = b;  // compiler error
  b = d;  // what happens to y_?
}

slicing.cc
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STL and Inheritance

❖ Recall:  STL containers store copies of values

▪ What happens when we want to store mixes of object types in a 

single container?  (e.g. Stock and DividendStock)

▪ You get sliced ☹
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#include <list>
#include "Stock.h"
#include "DividendStock.h"

int main(int argc, char** argv) {
  Stock s;
  DividendStock ds;
  list<Stock> li;

  li.push_back(s);   // OK
  li.push_back(ds);  // OUCH!

  return 0;
}
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STL and Inheritance

❖ Instead, store pointers to heap-allocated objects in STL 
containers

▪ No slicing! ☺
▪ sort() does the wrong thing ☹
▪ You have to remember to delete your objects before destroying 

the container ☹
• Smart pointers next lecture will help with this!
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Lecture Outline

❖ C++ Inheritance
▪ Vtables

▪ Static Dispatch

▪ Abstract Classes

▪ Constructors and Destructors

▪ Assignment

❖ Casting

❖ Reference:  C++ Primer, Chapter 12.1
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Explicit Casting in C

❖ Simple syntax:  lhs = (new_type) rhs;

❖ Used to:

▪ Convert between pointers of arbitrary type

• Don’t change the data, but treat differently

▪ Forcibly convert a primitive type to another

• Actually changes the representation

❖ You can still use C-style casting in C++, but that uses one 
notation for different purposes

29

lhs = (new_type) rhs;
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Casting in C++

❖ C++ provides an alternative casting style that is more 
informative:

▪ static_cast<to_type>(expression)
▪ dynamic_cast<to_type>(expression)
▪ const_cast<to_type>(expression)
▪ reinterpret_cast<to_type>(expression)
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❖ Always use these in C++ code

▪ Intent is clearer

▪ Easier to find in code via searching
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static_cast

❖ static_cast can convert:

▪ Pointers to classes of related type

• Compiler error if classes are not related

• Dangerous to cast down a class hierarchy

31

class A {
 public:
  int x;
};

class B {
 public:
  float x;
};

class C : public B {
 public:
  char x;
};

void foo() {
  B b; C c;

  // compiler error
  A* aptr = static_cast<A*>(&b);
  // OK
  B* bptr = static_cast<B*>(&c); 
  // compiles, but dangerous
  C* cptr = static_cast<C*>(&b);
}

staticcast.cc

▪ Non-pointer conversion

• e.g. float to int

❖ static_cast is 
checked at compile time

Use static_cast to cast pointers up the 
class hierarchy, or for numeric casts 
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dynamic_cast

❖ dynamic_cast can convert:

▪ Pointers to classes of related type

▪ References to classes of related type
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void bar() {
  Base b; Der1 d;

  // OK (run-time check passes)
  Base* bptr = dynamic_cast<Base*>(&d);
  assert(bptr != nullptr);

  // OK (run-time check passes)
  Der1* dptr = dynamic_cast<Der1*>(bptr);
  assert(dptr != nullptr);

  // Run-time check fails, returns nullptr
  bptr = &b;
  dptr = dynamic_cast<Der1*>(bptr);
  assert(dptr != nullptr);
}

dynamiccast.cc
class Base {
 public:
  virtual void foo() { }
  float x;
};

class Der1 : public Base {
 public:
  char x;
};❖ dynamic_cast is checked at both

compile time and
run time

▪ Casts between 

unrelated classes fail 
at compile time

▪ Casts from base to 

derived fail at run 
time if the pointed-to 
object is not the
derived type

Use static_cast to cast pointers down 
the class hierarchy, or for casting 

references
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const_cast

❖ const_cast adds or strips const-ness

▪ Dangerous (!)
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void foo(int* x) {
  *x++;
}

void bar(const int* x) {
  foo(x);                    // compiler error
  foo(const_cast<int*>(x));  // succeeds
}

int main(int argc, char** argv) {
  int x = 7;
  bar(&x);
  return 0;
}
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reinterpret_cast

❖ reinterpret_cast casts between incompatible types

▪ Low-level reinterpretation of the bit pattern

▪ e.g. storing a pointer in an int64_t, or vice-versa

• Works as long as the integral type is “wide” enough

▪ Converting between incompatible pointers

• Dangerous (!)

• This is used (carefully) in hw3
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Implicit Conversion

❖ The compiler tries to infer some kinds of conversions

▪ When types are not equal and you don’t specify an explicit cast, 

the compiler looks for an acceptable implicit conversion
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void bar(std::string x);

void foo() {
  int x = 5.7;  // conversion, float -> int
  bar("hi");    // conversion, (const char*) -> string
  char c = x;   // conversion, int -> char
}
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Sneaky Implicit Conversions

36

class Foo {
 public:
  Foo(int x) : x(x) { }
  int x;
};

int Bar(Foo f) {
  return f.x;
}

int main(int argc, char** argv) {
  return Bar(5);  // equivalent to return Bar(Foo(5));
}

But char → int → Foo is fine!

❖ (const char*) to string conversion?
■ If a class has a constructor with a single parameter, the compiler 

will use it it to perform implicit conversions
■ At most, one user-defined implicit conversion will happen

● Can do int → Foo, but not int → Foo → Baz
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Avoiding Sneaky Implicits

❖ Declare one-argument constructors as explicit if you 
want to disable them from being used as an implicit 
conversion path

▪ Usually a good idea

37

class Foo {
 public:
  explicit Foo(int x) : x(x) { }
  int x;
};

int Bar(Foo f) {
  return f.x;
}

int main(int argc, char** argv) {
  return Bar(5);  // compiler error
}
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Administrivia
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❖ Check your HW1 grades
■ If you got a zero and you turned it in, it’s likely a tagging issue. 

File a regrade request!

❖ Exercise 13 isn’t due until Monday (July 29th)
■ Take a break or work on HW3

❖ HW3 due next Thursday (August 1st)
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Extra Exercise #1

❖ Design a class hierarchy to represent shapes

▪ e.g. Circle, Triangle, Square

❖ Implement methods that:

▪ Construct shapes

▪ Move a shape (i.e. add (x,y) to the shape position)

▪ Returns the centroid of the shape

▪ Returns the area of the shape

▪ Print(), which prints out the details of a shape
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Extra Exercise #2

❖ Implement a program that uses Extra Exercise #1 (shapes 
class hierarchy):

▪ Constructs a vector of shapes

▪ Sorts the vector according to the area of the shape

▪ Prints out each member of the vector

❖ Notes:

▪ Avoid slicing!

▪ Make sure the sorting works properly!
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