
CSE333, Spring 2024L18: C++ Inheritance I

C++ Inheritance I
CSE 333

Guest Lecturer: Hal Perkins

Instructor: Alex Sanchez-Stern

Teaching Assistants:
Justin Tysdal
Sayuj Shahi
Nicholas Batchelder
Leanna Mi Nguyen

CSE333, Spring 2024L18: C++ Inheritance I

Administrivia

❖ ex11 (STL Vector) due Saturday (tomorrow) night, 11 pm
▪ Unusual deadline because of hw2 yesterday and midterm Monday

❖ New ex12 (STL map) out today, due Wed. 10 am (usual time)
❖ Midterm Monday, in-class

▪ Everything up through core C++ but not templates/STL, inheritance
▪ Can bring one hand-written notecard for reference during the exam

(blank cards available after class)
▪ Review session Sun. 1pm, MGH 241. ~1 hour or a bit longer if

needed. Bring your questions!

❖ HW3 writeup on web now. Starter code will be pushed this
weekend & demo in class today
▪ Get started immediately after Monday’s midterm – don’t wait

2

CSE333, Spring 2024L18: C++ Inheritance I

Lecture Outline

❖ C++ Inheritance
▪ Review of basic idea
▪ Dynamic Dispatch
▪ vtables and vptr

❖ Reference: C++ Primer, Chapter 15

3

CSE333, Spring 2024L18: C++ Inheritance I

Overview of Next Two Inheritance Lectures

❖ C++ inheritance
▪ Review of basic idea (pretty much the same as in Java)
▪ What’s different in C++ (compared to Java)

• Static vs dynamic dispatch - virtual functions and vtables (i.e.,
dynamic dispatch) are optional

• Pure virtual functions, abstract classes, why no Java “interfaces”
• Assignment slicing, using class hierarchies with STL

❖ Reference: C++ Primer, ch. 15
▪ (must read it! A lot of how C++ does this looks like Java, but

details differ)

4

CSE333, Spring 2024L18: C++ Inheritance I

Overview of Next Two Inheritance Lectures

❖ C++ inheritance
▪ Review of basic idea (pretty much the same as in Java)
▪ What’s different in C++ (compared to Java)

• Static vs dynamic dispatch - virtual functions and vtables (i.e.,
dynamic dispatch) are optional

• Pure virtual functions, abstract classes, why no Java “interfaces”
• Assignment slicing, using class hierarchies with STL

❖ Reference: C++ Primer, ch. 15
▪ (must read it! A lot of how C++ does this looks like Java, but

details differ)

5

CSE333, Spring 2024L18: C++ Inheritance I

Lecture Outline

❖ C++ Inheritance
▪ Review of basic idea
▪ Dynamic Dispatch
▪ vtables and vptr

❖ Reference: C++ Primer, Chapter 15

6

CSE333, Spring 2024L18: C++ Inheritance I

Stock Portfolio Example

❖ A portfolio represents a person’s financial investments
▪ Each asset has a cost (i.e. how much was paid for it) and a market

value (i.e. how much it is worth)
• The difference between the cost and market value is the profit (or

loss)

▪ Different assets compute market value in different ways
• A stock that you own has a ticker symbol (e.g. “GOOG”), a number of

shares, share price paid, and current share price
• A dividend stock is a stock that also has dividend payments
• Cash is an asset that never incurs a profit or loss

7

CSE333, Spring 2024L18: C++ Inheritance I

Design Without Inheritance

❖ One class per asset type:

▪ Redundant!
▪ Cannot treat multiple investments together

• e.g. can’t have an array or vector of different assets

❖ See sample code in initial_design/
8

Stock

symbol_
total_shares_
total_cost_

current_price_

GetMarketValue()
GetProfit()
GetCost()

Cash

amount_

GetMarketValue()

DividendStock

symbol_
total_shares_
total_cost_

current_price_
dividends_

GetMarketValue()
GetProfit()
GetCost()

CSE333, Spring 2024L18: C++ Inheritance I

Inheritance

❖ A parent-child “is-a” relationship between classes
▪ A child (derived class) extends a parent (base class)

❖ Benefits:
▪ Code reuse

• Children can automatically inherit code from parents

▪ Polymorphism
• Ability to redefine existing behavior but preserve the interface
• Children can override the behavior of the parent
• Others can make calls on objects without knowing which part of the

inheritance tree it is in

▪ Extensibility
• Children can add behavior

9

CSE333, Spring 2024L18: C++ Inheritance I

Terminology

❖ Mean the same things. You’ll hear both.

10

Java C++

Superclass Base Class

Subclass Derived Class

CSE333, Spring 2024L18: C++ Inheritance I

Design With Inheritance

11

Stock

symbol_
total_shares_
total_cost_

current_price_

GetMarketValue()
GetProfit()
GetCost()

Cash

amount_

GetMarketValue()

DividendStock

symbol_
total_shares_
total_cost_

current_price_
dividends_

GetMarketValue()
GetProfit()
GetCost()

Asset (abstract)

GetMarketValue()
GetProfit()
GetCost()

CSE333, Spring 2024L18: C++ Inheritance I

Like Java: Access Modifiers

❖ public: visible to all other classes
❖ protected: visible to current class and its derived

 classes
❖ private: visible only to the current class

❖ Use protected for class members only when
▪ Class is designed to be extended by subclasses
▪ Subclasses must have access but clients should not be allowed
▪ (recall that C++ style guide says all data members should be

private; your getters/setters must, minimally, be protected)

12

CSE333, Spring 2024L18: C++ Inheritance I

Class derivation List

❖ Comma-separated list of classes to inherit from:

▪ Focus on single inheritance, but multiple inheritance possible

❖ Almost always you will want public inheritance
▪ Acts like extends does in Java
▪ Any member that is non-private in the base class is the same in

the derived class; both interface and implementation inheritance
• Except that constructors, destructors, copy constructor, and

assignment operator are never inherited (in spite of sloppy
description in some books that say otherwise)

13

#include "BaseClass.h"

class Name : public BaseClass {
 ...
};

CSE333, Spring 2024L18: C++ Inheritance I

Back to Stocks

 BASE DERIVED

14

Stock

symbol_
total_shares_
total_cost_

current_price_

GetMarketValue()
GetProfit()
GetCost()

DividendStock

symbol_
total_shares_
total_cost_

current_price_
dividends_

GetMarketValue()
GetProfit()
GetCost()

CSE333, Spring 2024L18: C++ Inheritance I

Back to Stocks

❖ A derived class:
▪ Inherits the behavior and state (specification) of the base class
▪ Overrides some of the base class’ member functions (opt.)
▪ Extends the base class with new member functions, variables

(opt.)

15

Stock

symbol_
total_shares_
total_cost_

current_price_

GetMarketValue()
GetProfit()
GetCost()

DividendStock

dividends_

GetMarketValue()
GetProfit()
GetCost()

PayDividend()

Stock

symbol_
total_shares_
total_cost_

current_price_

GetMarketValue()
GetProfit()
GetCost()

CSE333, Spring 2024L18: C++ Inheritance I

Lecture Outline

❖ C++ Inheritance
▪ Review of basic idea
▪ Dynamic Dispatch
▪ vtables and vptr

❖ Reference: C++ Primer, Chapter 15

16

CSE333, Spring 2024L18: C++ Inheritance I

Like Java: Dynamic Dispatch
❖ Usually, when a derived function is available for an object, we

want the derived function to be invoked
▪ This requires a run time decision of what code to invoke
▪ This is similar to Java

❖ A member function invoked on an object should be the most-
derived function accessible to the object’s visible type
▪ Can determine what to invoke from the object itself

❖ Example: PrintStock(Stock *s) { s->Print() }
▪ Calls Print() function appropriate to Stock, DividendStock, etc. without

knowing the exact class of *s, other than it is some sort of Stock
▪ So the Stock (DividendStock, etc.) object itself has to carry some sort of

information that can be used to decide which Print() to call
▪ (see inherit-design/useasssets.cc)

17

CSE333, Spring 2024L18: C++ Inheritance I

Requesting Dynamic Dispatch

❖ Prefix the member function declaration with the
virtual keyword
▪ Derived functions don’t need to repeat virtual, since it's

virtual in all subclasses, but was traditionally good style to do so
▪ This is how method calls work in Java (no virtual keyword needed)
▪ You almost always want functions to be virtual

❖ override keyword (C++11)
▪ Tells compiler this method should be overriding an inherited

virtual function – always use if available
▪ Prevents overloading vs. overriding bugs

❖ Both of these are technically optional in derived classes
▪ A virtual function is virtual in all subclasses as well
▪ Be consistent and follow local conventions

18

CSE333, Spring 2024L18: C++ Inheritance I

Dynamic Dispatch Example

❖ When a member function is invoked on an object:
▪ The most-derived function accessible to the object’s visible type is

invoked (decided at run time based on actual type of the object)

19

double DividendStock::GetMarketValue() const {
 return get_shares() * get_share_price() + dividends_;
}

double "DividendStock"::GetProfit() const { // inherited
 return GetMarketValue() – GetCost();
} // really Stock::GetProfit()

double Stock::GetMarketValue() const {
 return get_shares() * get_share_price();
}

double Stock::GetProfit() const {
 return GetMarketValue() – GetCost();
}

DividendStock.cc

Stock.cc

CSE333, Spring 2024L18: C++ Inheritance I

Dynamic Dispatch Example

20

#include "Stock.h"
#include "DividendStock.h"

DividendStock dividend();
DividendStock* ds = ÷nd;
Stock* s = ÷nd; // why is this allowed?

// Invokes DividendStock::GetMarketValue()
ds->GetMarketValue();

// Invokes DividendStock::GetMarketValue()
s->GetMarketValue();

// invokes Stock::GetProfit(), since that method is inherited.
// Stock::GetProfit() invokes DividendStock::GetMarketValue(),
// since that is the most-derived accessible function.
s->GetProfit();

CSE333, Spring 2024L18: C++ Inheritance I

Most-Derived

21

class A {
 public:
 // Foo will use dynamic dispatch
 virtual void Foo();
};

class B : public A {
 public:
 // B::Foo overrides A::Foo
 virtual void Foo();
};

class C : public B {
 // C inherits B::Foo()
};

void Bar() {
 A* a_ptr;
 C c;

 a_ptr = &c;

 // Whose Foo() is called?
 a_ptr->Foo();
}

CSE333, Spring 2024L18: C++ Inheritance I

Your Turn!

❖ Which Foo() is called?

 Q1 Q2
 A A
 B B
 D D
 ? ?

22

class A {
 public:
 virtual void Foo();
};

class B : public A {
 public:
 virtual void Foo();
};

class C : public B {
};

class D : public C {
 public:
 virtual void Foo();
};

class E : public C {
};

void Bar() {
 A* a_ptr;
 C c;
 E e;

 // Q1:
 a_ptr = &c;
 a_ptr->Foo();

 // Q2:
 a_ptr = &e;
 a_ptr->Foo();
}

CSE333, Spring 2024L18: C++ Inheritance I

How Can This Possibly Work?

❖ The compiler produces Stock.o from just Stock.cc
▪ It doesn’t know that DividendStock exists during this process
▪ So then how does the emitted code know to call
Stock::GetMarketValue() or
DividendStock::GetMarketValue()

 or something else that might not exist yet?
• Function pointers

23

double Stock::GetMarketValue() const {
 return get_shares() * get_share_price();
}

double Stock::GetProfit() const {
 return GetMarketValue() – GetCost();
} Stock.cc

virtual double Stock::GetMarketValue() const;
virtual double Stock::GetProfit() const;

Stock.h

CSE333, Spring 2024L18: C++ Inheritance I

Lecture Outline

❖ C++ Inheritance
▪ Review of basic idea
▪ Dynamic Dispatch
▪ vtables and vptr

❖ Reference: C++ Primer, Chapter 15

24

CSE333, Spring 2024L18: C++ Inheritance I

vtables and the vptr

❖ If a class contains any virtual methods, the compiler
emits:
▪ A (single) virtual function table (vtable) for the class

• Contains a function pointer for each virtual method in the class
• The pointers in the vtable point to the most-derived function for that

class

▪ A virtual table pointer (vptr) in each object instance
• A pointer to a virtual table as a “hidden” member variable
• When the object’s constructor is invoked, the vptr is initialized to

point to the vtable for the newly constructed object’s class
• Thus, the vptr “remembers” what class the object is

25

CSE333, Spring 2024L18: C++ Inheritance I

vtable/vptr Example

27

class Base {
 public:
 virtual void f1();
 virtual void f2();
};

class Der1 : public Base {
 public:
 virtual void f1();
};

class Der2 : public Base {
 public:
 virtual void f2();
};

Base b;
Der1 d1;
Der2 d2;

Base* b0ptr = &b;
Base* b1ptr = &d1;
Base* b2ptr = &d2;

b0ptr->f1(); // Base::f1()
b0ptr->f2(); // Base::f2()

b1ptr->f1(); // Der1::f1()
b1ptr->f2(); // Base::f2()

d2.f1(); // Base::f1()
b2ptr->f1(); // Base::f1()
b2ptr->f2(); // Der2::f2()

CSE333, Spring 2024L18: C++ Inheritance I

vtable/vptr Example

28

Base b;
Der1 d1;
Der2 d2;

Base* bptr = &d1;

bptr->f1();
// bptr -->
// d1.vptr -->
// Der1.vtable.f1 -->
// Der1::f1()

bptr = &d2;

bptr->f1();
// bptr -->
// d2.vptr -->
// Der2.vtable.f1 -->
// Base::f1()

object
instances

class
vtables

compiled
code

vptrb

vptrd1

vptrd2

Base
f1()
f2()

Der1
f1()
f2()

Der2
f1()
f2()

Base::f1()
 push %rbp
 ...

Base::f2()
 push %rbp
 ...

Der1::f1()
 push %rbp
 ...

Der2::f2()
 push %rbp
 ...

CSE333, Spring 2024L18: C++ Inheritance I

Let’s Look at Some Actual Code

❖ Let’s examine the following code using objdump
▪ g++ -g -o vtable vtable.cc

▪ objdump -CDS vtable > vtable.d

29

class Base {
 public:
 virtual void f1();
 virtual void f2();
};

class Der1 : public Base {
 public:
 virtual void f1();
};

int main(int argc, char** argv) {
 Der1 d1;
 d1.f1();
 Base* bptr = &d1;
 bptr->f1();
}

vtable.cc

CSE333, Spring 2024L18: C++ Inheritance I

More to Come…

Next time…

30

