
CSE333, Spring 2024L13: C++ Heap

C++ Class Details, Heap
CSE 333

Instructor: Alex Sanchez-Stern

Teaching Assistants:
Justin Tysdal
Sayuj Shahi
Nicholas Batchelder
Leanna Mi Nguyen

CSE333, Spring 2024L13: C++ Heap

Administrivia

❖ Homework 2 due Thursday night

▪ Check your work!! Allocate time to clone the repo when you’re

done, do git checkout hw2-final; cd hw1 and
copy/build libhw1.a; cd hw2; make; then test everything
looks good

▪ Reminder: do not modify header files

▪ Reminder: commit/push your work regularly, not all at once at the

en

2

CSE333, Spring 2024L13: C++ Heap

Administrivia

❖ Exercise 9 due this morning, Exercise 10 due on
Wednesday

3

❖ Unfortunately, Exercise 11 needs to be due before the
midterm…

CSE333, Spring 2024L13: C++ Heap

Administrivia

❖ Midterm exam in a week:
Monday 7/22, 1:10 - 2:10 in SMI 211

▪ Topic list and old exams on website now (see exams link on

resources page)

▪ Closed book, slides, etc., but you may have one 5x8 notecard with

whatever handwritten notes you want on both sides

4

CSE333, Spring 2024L13: C++ Heap

Administrivia

❖ Extra midterm points for coming to office hours this week
■ +5 points on the midterm (out of 100), but can’t go above 100

total

■ Must go to an existing, in-person office hours and bring a

problem set to work on; either from the extra-problems in the
slides, or an old midterm question

■ Make sure the TA writes down your name

5

CSE333, Spring 2024L13: C++ Heap

Administrivia

❖ Midterm review in section this week

6

CSE333, Spring 2024L13: C++ Heap

Lecture Outline

❖ Class Details

▪ Rule of Three / Making Copies

▪ Access Controls and Friends

▪ Namespaces

❖ Using the Heap

▪ new / delete / delete[]

▪ String Class walkthrough

7

CSE333, Spring 2024L13: C++ Heap

Rule of Three

❖ If you define any of:

1) Destructor

2) Copy Constructor

3) Assignment (operator=)

❖ Then you should normally define all three

8

class Point {
 public:
 Point() = default; // the default ctor
 ~Point() = default; // the default dtor
 Point(const Point& copyme) = default; // the default cctor
 Point& operator=(const Point& rhs) = default; // the default "="
 ...

▪ Can explicitly ask for default synthesized versions (C++11 & later):

CSE333, Spring 2024L13: C++ Heap

Dealing with the insanity

❖ C++ style guide tip:
▪ If possible, disable the copy constructor and assignment operator if not

needed – avoids implicit invocation and excessive copying. C++11 and
later have direct syntax to indicate this:

9

class Point {
 public:
 Point(const int x, const int y) : x_(x), y_(y) { } // ctor
 ...
 Point(const Point& copyme) = delete; // declare cctor and "=" to
 Point& operator=(const Point& rhs) = delete; // be deleted (C++11)
 private:
 ...
}; // class Point

Point w; // compiler error (no default constructor)
Point x(1, 2); // OK!
Point y = w; // compiler error (no copy constructor)
y = x; // compiler error (no assignment operator)

Point_2011.h

CSE333, Spring 2024L13: C++ Heap

If you’re dealing with old code …
❖ In pre-C++11 code the copy constructor and assignment

were often disabled by making them private and not
implementing them (you may see this)…

10

class Point {
 public:
 Point(const int x, const int y) : x_(x), y_(y) { } // ctor
 ...
 private:
 Point(const Point& copyme); // disable cctor (no def.)
 Point& operator=(const Point& rhs); // disable "=" (no def.)
 ...
}; // class Point

Point w; // compiler error (no default constructor)
Point x(1, 2); // OK!
Point y = w; // compiler error (no copy constructor)
y = x; // compiler error (no assignment operator)

Point.h

CSE333, Spring 2024L13: C++ Heap

Lecture Outline

❖ Class Details

▪ Rule of Three / Making Copies

▪ Access Controls and Friends

▪ Namespaces

❖ Using the Heap

▪ new / delete / delete[]

▪ String Class walkthrough

11

CSE333, Spring 2024L13: C++ Heap

Access Control

❖ Access modifiers for members:

▪ public: accessible to all parts of the program

▪ private: accessible to the member functions of the class

• Private to class, not object instances

12

▪ protected: accessible to member functions of the class and any

derived classes (subclasses – more to come, later)

❖ Reminders:

▪ Access modifiers apply to all members that follow until another

access modifier is reached

CSE333, Spring 2024L13: C++ Heap

struct vs. class

❖ In C, a struct can only contain data fields

▪ Has no methods and all fields are always accessible

▪ In struct foo, the foo is a “struct tag”, not an ordinary data

type

13

❖ In C++, struct and class are (nearly) the same!

▪ Both define a new type (the struct or class name)

▪ Both can have methods and member visibility

(public/private/protected)

▪ Only real (minor) difference: members are default public in a

struct and default private in a class

CSE333, Spring 2024L13: C++ Heap

struct vs. class

❖ Common style/usage convention:

▪ Use struct for simple bundles of data

• Convenience constructors can make sense though

▪ Use class for abstractions with data + functions

14

CSE333, Spring 2024L13: C++ Heap

Nonmember Functions

❖ “Nonmember functions” are just normal functions that
happen to use some class

▪ Called like a regular function instead of as a member of a class

object instance

▪ These do not have access to the class’ private members

15

❖ Useful nonmember functions often included as part of the
interface to a class

▪ Declaration goes in header file, but outside of class definition

• But inside the same namespace as the class, if it has one

CSE333, Spring 2024L13: C++ Heap

Nonmember Functions

❖ “Nonmember functions” are just normal functions that
happen to use some class

▪ Called like a regular function instead of as a member of a class

object instance

▪ These do not have access to the class’ private members

▪ Often included as part of the interface to a class

16

class Complex { ... };

void ReadFromStream(std::istream& in, Complex& a);

void ReadFromStream(std::istream& in, Complex& a) {
 double r;
 in >> r
 a.set_real(r);
// … etc …
}

CSE333, Spring 2024L13: C++ Heap

Nonmember Operators

❖ Operators can be member methods or non-member
functions

▪ Eg, overloaded operators (operator+, etc.), stream I/O

(operator<<), etc. …

17

CSE333, Spring 2024L13: C++ Heap

Review: Operator Overloading

❖ Can overload operators using member functions

▪ Restriction: left-hand side argument must be a class you are

implementing

18

Complex& Complex::operator+=(const Complex &a) { ... }

Complex operator+(const Complex &a, const Complex &b) { ... }

❖ Can overload operators using nonmember functions

▪ No restriction on arguments (can specify any two)

• Our only option when the left-hand side is a class you do not have
control over, like ostream or istream.

▪ But no access to private data members

CSE333, Spring 2024L13: C++ Heap

friend Nonmember Functions

❖ A class can give a nonmember function (or class) access to
its nonpublic members by declaring it as a friend
within its definition
▪ friend function is not a class member, but has access privileges

as if it were

▪ friend functions are usually unnecessary if your class includes
appropriate “getter” public functions

19

class Complex {
 ...
 friend std::istream& operator>>(std::istream& in, Complex& a);
 ...
}; // class Complex

std::istream& operator>>(std::istream& in, Complex& a) {
 ...
}

Complex.h

Complex.cc

CSE333, Spring 2024L13: C++ Heap

When to use Nonmember and friend

❖ Member functions:

▪ Operators that modify the object being called on

• Assignment operator (operator=)

▪ “Core” non-operator functionality that is part of the class interface

❖ Nonmember functions:

▪ Used for commutative operators

• e.g., so v1 + v2 is invoked as operator+(v1, v2)instead of
v1.operator+(v2)

▪ If operating on two types and the class is on the right-hand side

• e.g., cin >> complex;

▪ Returning a “new” object, not modifying an existing one

▪ Only grant friend permission if you NEED to

20

CSE333, Spring 2024L13: C++ Heap

Lecture Outline

❖ Class Details

▪ Rule of Three / Making Copies

▪ Access Controls and Friends

▪ Namespaces

❖ Using the Heap

▪ new / delete / delete[]

▪ String Class walkthrough

21

CSE333, Spring 2024L13: C++ Heap

❖ Namespace definition:

▪ namespace name {
 // declarations go here
}

▪ Creates a new namespace name if it did not exist, otherwise adds

to the existing namespace (!)

• This means that components (classes, functions, etc.) of a namespace
can be defined in multiple source files

– All of the standard library is in namespace std but it has many source files

Namespaces

❖ Each namespace is a separate scope

▪ Useful for avoiding symbol collisions

22

namespace name {
 // declarations go here
}

CSE333, Spring 2024L13: C++ Heap

Classes vs. Namespaces

❖ They seems somewhat similar, but classes are not
namespaces:

▪ There are no instances/objects of a namespace; a namespace is

just a group of logically-related things (classes, functions, etc.)

23

▪ To access a member of a namespace, you must use the fully

qualified name (i.e. nsp_name::member)

• Unless you are using that namespace or individual member item

• You only used the fully qualified name of a class member when you
are defining it outside of the scope of the class definition

CSE333, Spring 2024L13: C++ Heap

Lecture Outline

❖ Class Details

▪ Rule of Three / Making Copies

▪ Access Controls and Friends

▪ Namespaces

❖ Using the Heap

▪ new / delete / delete[]

▪ String Class walkthrough

24

CSE333, Spring 2024L13: C++ Heap

C++11 nullptr

❖ C and C++ have long used NULL as a pointer value that
references nothing

❖ C++11 introduced a new literal for this: nullptr
▪ New reserved word

25

▪ Interchangeable with NULL for all practical purposes, but it has

type T* for any/every T, and is not an integer value

• Avoids funny edge cases, especially with function overloading
(f(int) vs f(T*); see C++ references for details)

• Still can convert to/from integer 0 for tests, assignment, etc.

▪ Advice: prefer nullptr in C++11 code

• Though NULL will also be around for a long, long time

CSE333, Spring 2024L13: C++ Heap

new/delete

❖ To allocate on the heap using C++, you use the new
keyword instead of malloc() from stdlib.h

26

▪ You can use new to allocate an object (e.g. new Point)

• Will execute appropriate constructor as part of object allocate/create

▪ You can use new to allocate a primitive type (e.g. new int)

❖ To deallocate a heap-allocated object or primitive, use the
delete keyword instead of free() from stdlib.h
▪ Don’t mix and match!

• Never free() something allocated with new

• Never delete something allocated with malloc()

• Careful if you’re using a legacy C code library or module in C++

CSE333, Spring 2024L13: C++ Heap

new/delete Example

#include "Point.h"
using namespace std;

... // definitions of AllocateInt() and AllocatePoint()

int main() {
 Point* x = AllocatePoint(1, 2);
 int* y = AllocateInt(3);

 cout << "x's x_ coord: " << x->get_x() << endl;
 cout << "y: " << y << ", *y: " << *y << endl;

 delete x;
 delete y;
 return 0;
}

int* AllocateInt(int x) {
 int* heapy_int = new int;
 *heapy_int = x;
 return heapy_int;
}

Point* AllocatePoint(int x, int y) {
 Point* heapy_pt = new Point(x,y);
 return heapy_pt;
}

heappoint.cc

27

CSE333, Spring 2024L13: C++ Heap

28

g++ -Wall -g -std=c++17 -o heappoint \
 heappoint.cc Point.cc
valgrind ./heappoint

==3167334== Memcheck, a memory error detector
==3167334== Copyright (C) 2002-2022, and GNU GPL'd, by Julian Seward et al.
==3167334== Using Valgrind-3.22.0 and LibVEX; rerun with -h for copyright info
==3167334== Command: ./heappoint
==3167334==
Calling Point constructor
x's x_ coordinate: 1
distance between x and self: 0
y: 0x4daa110, *y: 3
==3167334==
==3167334== HEAP SUMMARY:
==3167334== in use at exit: 0 bytes in 0 blocks
==3167334== total heap usage: 4 allocs, 4 frees, 73,740 bytes allocated
==3167334==
==3167334== All heap blocks were freed -- no leaks are possible
==3167334==
==3167334== For lists of detected and suppressed errors, rerun with: -s
==3167334== ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 0 from 0)

new/delete Example

CSE333, Spring 2024L13: C++ Heap

new/delete Behavior

❖ new behavior:

▪ When allocating you can specify a constructor or initial value

• e.g., new Point(1, 2), new int(333)

▪ If no initialization specified, it will use default constructor for

objects and uninitialized (“mystery”) data for primitives

29

▪ You don’t need to check that new returns nullptr
• When an error is encountered, an exception is thrown (that we won’t

worry about)

❖ delete behavior:

▪ If you delete already deleted memory, then you will get

undefined behavior (same as when you double free in C)

CSE333, Spring 2024L13: C++ Heap

❖ To dynamically deallocate an array:

▪ Use delete[] name;

Dynamically Allocated Arrays

❖ To dynamically allocate an array:

▪ Default initialize: type* name = new type[size];

delete[] name;

30

▪ It is an incorrect to use “delete name;” on an array

• The compiler probably won’t catch this, though (!) because it can’t
always tell if name* was allocated with new type[size];
or new type;
– Especially inside a function where a pointer parameter could point to a

single item or an array and there’s no way to tell which!

• Result of wrong delete is undefined behavior

CSE333, Spring 2024L13: C++ Heap

Arrays Example (primitive)

#include "Point.h"
using namespace std;

int main() {
 int stack_int;
 int* heap_int = new int;
 int* heap_init_int = new int(12);

 int stack_arr[10];
 int* heap_arr = new int[10];

 int* heap_init_arr = new int[10](); // uncommon usage
 int* heap_init_error = new int[10](12); // bad syntax
 int* heap_init_error = new int[10]{12}; // C++11 allows
 ... // (uncommon)

 delete heap_int; //
 delete heap_init_int; //
 delete heap_arr; //
 delete[] heap_init_arr; //

 return 0;
}

31

arrays.cc

ok
ok
error – must be delete[]
ok

CSE333, Spring 2024L13: C++ Heap

Arrays Example (class objects)

#include "Point.h"
using namespace std;

int main() {
 ...

 Point stack_point(1, 2);
 Point* heap_point = new Point(1, 2);

 Point* err_pt_arr = new Point[10];// bug-no Point() ctr

 Point* err2_pt_arr = new Point[10](1,2); // bad syntax
 Point* err2_pt_arr = new Point[10]{1,2}; // C++11 allows
 ... // (uncommon)

 delete heap_point;

 ...

 return 0;
}

32

arrays.cc

CSE333, Spring 2024L13: C++ Heap

malloc vs. new

malloc() new

What is it? a function an operator or keyword

How often used (in C)? often never

How often used (in C++)? rarely often

Typed No Yes

Returns
a void*

(should be cast)
appropriate pointer type

(doesn’t need a cast)

When out of memory returns NULL throws an exception

Deallocating free() delete or delete[]

33

CSE333, Spring 2024L13: C++ Heap

Heap Member Example

❖ Let’s build a class to simulate some of the functionality of
the C++ string

▪ Internal representation: c-string to hold characters

❖ What might we want to implement in the class?

34

CSE333, Spring 2024L13: C++ Heap

Lecture Outline

❖ Class Details

▪ Rule of Three / Making Copies

▪ Access Controls and Friends

▪ Namespaces

❖ Using the Heap

▪ new / delete / delete[]

▪ String Class walkthrough

35

CSE333, Spring 2024L13: C++ Heap

Str Example Walkthrough

See:
Str.h

Str.cc

strtest.cc

❖ Look carefully at assignment operator=
▪ self-assignment test is especially important here

36

CSE333, Spring 2024L13: C++ Heap

Extra Exercise #1

❖ Write a C++ function that:

▪ Uses new to dynamically allocate an array of strings and uses

delete[] to free it

▪ Uses new to dynamically allocate an array of pointers to strings

• Assign each entry of the array to a string allocated using new

▪ Cleans up before exiting

• Use delete to delete each allocated string

• Uses delete[] to delete the string pointer array

• (whew!)

37

