
CSE333, Spring 2024L12:  C++ Constructor Insanity

C++ Constructor Insanity
CSE 333

Instructor: Alex Sanchez-Stern

Teaching Assistants:
Justin Tysdal
Sayuj Shahi
Nicholas Batchelder
Leanna Mi Nguyen



CSE333, Spring 2024L12:  C++ Constructor Insanity

Lecture Outline

❖ Constructors

❖ Copy Constructors

❖ Assignment

❖ Destructors

❖ An extended example

2



CSE333, Spring 2024L12:  C++ Constructor Insanity

Constructors

❖ A constructor (ctor) initializes a newly-instantiated object

▪ A class can have multiple constructors that differ in parameters

• Which one is invoked depends on how the object is instantiated

❖ Written with the class name as the method name:

Point(const int x, const int y);

3



CSE333, Spring 2024L12:  C++ Constructor Insanity

Default Constructor

❖ The default constructor does not take any parameters

4

Point();

❖ C++ will automatically synthesize a default constructor if 
you have no user-defined constructors

▪ Calls the default constructors on all non-“plain old data” 

(non-POD) member variables

▪ Will fail if you have non-initialized const or reference data 

members



CSE333, Spring 2024L12:  C++ Constructor Insanity

Synthesized Default Constructor

5

class SimplePoint {
 public:
  // no constructors declared!
  int get_x() const { return x_; }     // inline member function
  int get_y() const { return y_; }     // inline member function
  double Distance(const SimplePoint& p) const;
  void SetLocation(const int x, const int y);

 private:
  int x_;  // data member
  int y_;  // data member
};  // class SimplePoint SimplePoint.h

#include "SimplePoint.h"

... // definitions for Distance() and SetLocation()

int main(int argc, char** argv) {
  SimplePoint x;  // invokes synthesized default constructor
  return 0;
}

SimplePoint.cc



CSE333, Spring 2024L12:  C++ Constructor Insanity

Synthesized Default Constructor

❖ If you define any constructors, C++ assumes you have 
defined all the ones you intend to be available and will not 
add any others

6

#include "Point.h"

// defining a constructor with two arguments
Point::Point(const int x, const int y) {
  x_ = x;
  y_ = y;
} 

void foo() {
  Point x;        // compiler error:  if you define any 
                  // ctors, C++ will NOT synthesize a 
                  // default constructor for you.

  Point y(1, 2);  // works:  invokes the 2-int-arguments
                  // constructor
}



CSE333, Spring 2024L12:  C++ Constructor Insanity

Multiple Constructors (overloading)

#include "Point.h"

// default constructor
Point::Point() {
  x_ = 0;
  y_ = 0;
}

// constructor with two arguments
Point::Point(const int x, const int y) {
  x_ = x;
  y_ = y;
} 

void foo() {
  Point x;        // invokes the default constructor
  Point a[3];     // invokes the default constructor 3 times
                   //   (fails if no default constructor)
  Point y(1, 2);  // invokes the 2-int-arguments constructor
}

7



CSE333, Spring 2024L12:  C++ Constructor Insanity

Initialization Lists

❖ C++ lets you optionally declare an initialization list as part 
of a constructor definition

▪ Initializes fields according to parameters in the list

▪ The following two are (nearly) identical:

8

// constructor with an initialization list
Point::Point(const int x, const int y) : x_(x), y_(y) {
  std::cout << "Point constructed: (" << x_ << ",";
  std::cout << y_<< ")" << std::endl;
}

Point::Point(const int x, const int y) {
  x_ = x;
  y_ = y;
  std::cout << "Point constructed: (" << x_ << ",";
  std::cout << y_<< ")" << std::endl;
}



CSE333, Spring 2024L12:  C++ Constructor Insanity

Initialization vs. Construction

9

class Point3D {
 public:
  // constructor with 3 int arguments
  Point3D(const int x, const int y, const int z) : y_(y), x_(x) {
    z_ = z;
  }

 private:
  int x_, y_, z_;  // data members
};  // class Point3D

First, initialization list is applied.

Next, constructor body is executed.



CSE333, Spring 2024L12:  C++ Constructor Insanity

Initialization vs. Construction

❖ Data members in initializer list are initialized in the order they 
are defined in the class, not by the initialization list ordering (!)

▪ Data members that don’t appear in the initialization list are default 

initialized/constructed before body is executed

10

class Point3D {
 public:
  // constructor with 3 int arguments
  Point3D(const int x, const int y, const int z) : y_(y), x_(x) {
    z_ = z;
  }

 private:
  int x_, y_, z_;  // data members
};  // class Point3D

❖ Initialization preferred to assignment to avoid extra steps of 
default initialization (construction) followed by assignment

▪ (and no, real code should never mix the two styles this way ☺)



CSE333, Spring 2024L12:  C++ Constructor Insanity

Initialization vs. Construction

❖ The difference between initialization and assignment start 
to matter when we have:

▪ objects as member variables

▪ const member variables

▪ reference member variables

11

class Triangle {
 public:
  Triangle(const Point& p1, const Point& p2, const Point& p3)
    : p1_(p1.get_x(), p1.get_y()) {
    // constructor body
  }

 private:
  Point p1_, p2_, p3_;
  const Point kOrigin;
};  // class Triangle

2-parameter constructor 
called on p1_, but default 
constructor called on p2_, 
p3_, and kOrigin – is the 

default constructor's behavior 
what we want?

Triangle.h



CSE333, Spring 2024L12:  C++ Constructor Insanity

Lecture Outline

❖ Constructors

❖ Copy Constructors

❖ Assignment

❖ Destructors

❖ An extended example

12



CSE333, Spring 2024L12:  C++ Constructor Insanity

Copy Constructors

❖ C++ has the notion of a copy constructor (cctor)

▪ Used to create a new object as a copy of an existing object

13

Point::Point(const int x, const int y) : x_(x), y_(y) { }

// copy constructor
Point::Point(const Point& copyme) {
  x_ = copyme.x_;
  y_ = copyme.y_;
}

void foo() {
  Point x(1, 2);  // invokes the 2-int-arguments constructor

  Point y(x);     // invokes the copy constructor
  Point z = x;    // also invokes the copy constructor
}

▪ Initializer lists can also be used in copy constructors (preferred)



CSE333, Spring 2024L12:  C++ Constructor Insanity

When Do Copies Happen?

❖ The copy constructor is invoked if:

▪ You initialize an object from 

another object of the same 
type:

14

void foo(Point x) { ... }

Point y;      // default ctor
foo(y);       // copy ctor

Point x;      // default ctor
Point y(x);   // copy ctor
Point z = y;  // copy ctor

Point foo() {
  Point y;    // default ctor
  return y;   // copy ctor
}

▪ You pass a non-reference 

object as a value parameter 
to a function:

▪ You return a non-reference

object value from a function:



CSE333, Spring 2024L12:  C++ Constructor Insanity

Compiler Optimization

❖ The compiler sometimes uses a “return by value 
optimization” or “move semantics” to eliminate 
unnecessary copies

▪ Sometimes you might not see a constructor get invoked when you 

might expect it

15

Point foo() {
  Point y;        // default ctor
  return y;       // copy ctor? optimized?
}

Point x(1, 2);    // two-ints-argument ctor
Point y = x;      // copy ctor
Point z = foo();  // copy ctor? optimized?



CSE333, Spring 2024L12:  C++ Constructor Insanity

Synthesized Copy Constructor

❖ If you don’t define your own copy constructor, C++ will 
synthesize one for you

▪ It will do a shallow copy of all of the fields (i.e. member variables) 

of your class

▪ Sometimes the right thing; sometimes the wrong thing

16

#include "SimplePoint.h"

int main(int argc, char** argv) {
  SimplePoint x;
  SimplePoint y(x);  // invokes synthesized copy constructor
  ...
  return 0;
}



CSE333, Spring 2024L12:  C++ Constructor Insanity

Lecture Outline

❖ Constructors

❖ Copy Constructors

❖ Assignment

❖ Destructors

❖ An extended example

17



CSE333, Spring 2024L12:  C++ Constructor Insanity

Assignment != Construction

❖ “=” is the assignment operator

▪ Assigns values to an existing, already constructed object

18

Point w;        // default ctor
Point x(1, 2);  // two-ints-argument ctor
Point y(x);     // copy ctor 
Point z = w;    // copy ctor
y = x;          // assignment operator

▪ How can you tell the difference between assignment operator= 

and a copy constructor that uses =?

• Answer: are you creating/initializing a new object?  If so, it’s a copy 
constructor; if you are just updating an existing object it’s assignment



CSE333, Spring 2024L12:  C++ Constructor Insanity

Overloading the “=” Operator

❖ You can choose to define the “=” operator

▪ But there are some rules you should follow:

19

Point& Point::operator=(const Point& rhs) {
  if (this != &rhs) {  // (1) always check against this
    x_ = rhs.x_;
    y_ = rhs.y_;
  }
  return *this;        // (2) always return *this from op=
}

Point c;       // default constructor
a = b = c;     // works because = return *this
a = (b = c);   // equiv. to above (= is right-associative)
(a = b) = c;   // "works" because = returns a non-const



CSE333, Spring 2024L12:  C++ Constructor Insanity

Synthesized Assignment Operator

❖ If you don’t define the assignment operator, C++ will 
synthesize one for you

▪ It will do a shallow copy of all of the fields (i.e. member variables) 

of your class

▪ Sometimes the right thing; sometimes the wrong thing

20

#include "SimplePoint.h"

... // definitions for Distance() and SetLocation()

int main(int argc, char** argv) {
  SimplePoint x;
  SimplePoint y(x);
  y = x;          // invokes synthesized assignment operator
  return 0;
}



CSE333, Spring 2024L12:  C++ Constructor Insanity

Lecture Outline

❖ Constructors

❖ Copy Constructors

❖ Assignment

❖ Destructors

❖ An extended example

21



CSE333, Spring 2024L12:  C++ Constructor Insanity

Destructors

❖ C++ has the notion of a destructor (dtor)

▪ Invoked automatically when a class instance is deleted, goes out 

of scope, etc. (even via exceptions or other causes!)

▪ Place to put your cleanup code – free any dynamic storage or 

other resources owned by the object

▪ Standard C++ idiom for managing dynamic resources

• Slogan: “Resource Acquisition Is Initialization” (RAII)

22

Point::~Point() {   // destructor
  // do any cleanup needed when a Point object goes away
  // (nothing to do here since we have no dynamic resources)
}



CSE333, Spring 2024L12:  C++ Constructor Insanity

Lecture Outline

❖ Constructors

❖ Copy Constructors

❖ Assignment

❖ Destructors

❖ An extended example

23



CSE333, Spring 2024L12:  C++ Constructor Insanity

Complex Example Walkthrough

See:
Complex.h

Complex.cc

testcomplex.cc

❖ (Some details like friend functions and namespaces are 
explained in more detail next lecture, but ideas should 
make sense from looking at the code and explanations in 
C++ Primer.)

24



CSE333, Spring 2024L12:  C++ Constructor Insanity

Extra Exercise #1

❖ Modify your Point3D class from Lec 10 Extra #1

▪ Disable the copy constructor and assignment operator

▪ Attempt to use copy & assignment in code and see what error the 

compiler generates

▪ Write a CopyFrom() member function and try using it instead

• (See details about CopyFrom() in next lecture)

25



CSE333, Spring 2024L12:  C++ Constructor Insanity

Extra Exercise #2

❖ Write a C++ class that:

▪ Is given the name of a file as a constructor argument

▪ Has a GetNextWord() method that returns the next 

whitespace- or newline-separated word from the file as a copy of 
a string object, or an empty string once you hit EOF

▪ Has a destructor that cleans up anything that needs cleaning up

26


