YA/ UNIVERSITY of WASHINGTON L11: References, Const, Classes

C++ References, Const, Classes
CSE 333

Instructor: Alex Sanchez-Stern

Teaching Assistants:
Justin Tysdal

Sayuj Shahi
Nicholas Batchelder
Leanna Mi Nguyen

CSE333, Spring 2024

W UNIVERSITY of WASHINGTON L11: References, Const, Classes

CSE333, Spring 2024

Administrivia

No new exercise today — get ahead on hw2; longer
exercise coming Friday, due Monday morning

Sections this week: makefiles, then C++ classes,
references, const

W UNIVERSITY of WASHINGTON L11: References, Const, Classes CSE333, Spring 2024

Administrivia

Homework 2 due next Thursday (7/18)

Note: 1ibhwl . a (yours or ours) needs to be in correct directory
(hwl/) for hw2 to build

Use Ctrl-D (eof) on a line by itself to exit searchshell; must
free all allocated memory

Test on directory of small self-made files where you can predict
the data structures and then check them

Valgrind takes a long time on the full test_tree. Try using enron
docs only or other small test data directory for quick checks.

W UNIVERSITY of WASHINGTON L11: References, Const, Classes CSE333, Spring 2024

Lecture Outline

¢ C++ References
&« const in C++

& C++ Classes Intro

CSE333, Spring 2024

YA/ UNIVERSITY of WASHINGTON

Pointers Reminder

L11: References, Const, Classes

Note: Arrow points
to next instruction.

« A pointer is a variable containing an address

* Modifying the pointer doesn’t modify what it points to, but you
can access/modify what it points to by dereferencing

= These work the same in C and C++

(. } .
int main(int argc, char** argv)

int x =5, y = 10;

—> int* z = &x;

*z += 1;
x += 1;

z = &y,
*z += 1;

return EXIT SUCCRESS;

{

J

pointer.cc

‘x 5
‘y 10
|z

W UNIVERSITY of WASHINGTON L11: References, Const, Classes CSE333, Spring 2024

Note: Arrow points

Pointers Reminder to next instruction.

« A pointer is a variable containing an address

* Modifying the pointer doesn’t modify what it points to, but you
can access/modify what it points to by dereferencing

= These work the same in C and C++

- j) ™
int main(int argc, char** argv) {

int x =5, y = 10; ‘ X 5
int* z = &x;

- +; = 1;

x += 1; ‘ Yy 10

z = &y,
*z += 1;

return EXIT SUCCESS; ‘ z O0x7frf.ad

}

L J
pointer.cc

W UNIVERSITY of WASHINGTON L11: References, Const, Classes CSE333, Spring 2024

Note: Arrow points

Pointers Reminder to next instruction.

« A pointer is a variable containing an address

* Modifying the pointer doesn’t modify what it points to, but you
can access/modify what it points to by dereferencing

= These work the same in C and C++

4 ™
int main(int argc, char** argv) {
int x = 5, y = 10; ‘ x 6
int* z = &x;

*z += 1; // sets x to 6

—’ x += 1; ‘ \'4 10
z = &y,
*z += 1;

return EXIT SUCCESS; ‘ z Ox7fff..ad

}

L J
pointer.cc

W UNIVERSITY of WASHINGTON L11: References, Const, Classes CSE333, Spring 2024

Note: Arrow points

Pointers Reminder to next instruction.

« A pointer is a variable containing an address

* Modifying the pointer doesn’t modify what it points to, but you
can access/modify what it points to by dereferencing

= These work the same in C and C++

4 ™
int main(int argc, char** argv) {
int x = 5, y = 10; ‘ x 7
int* z = &x;

*z += 1; // sets x to 6

x +=1; // sets x (and *z) to 7 ‘ y 10
-4'>' z = &y;
“Z 4= Ly

return EXIT SUCCESS; ‘ z Ox7fff..ad

}

L J
pointer.cc

W UNIVERSITY of WASHINGTON L11: References, Const, Classes CSE333, Spring 2024

Note: Arrow points

Pointers Reminder to next instruction.

« A pointer is a variable containing an address

* Modifying the pointer doesn’t modify what it points to, but you
can access/modify what it points to by dereferencing

= These work the same in C and C++

- j) ™
int main(int argc, char** argv) {
int x = 5, y = 10; ‘ x 7
int* z = &x;

*z += 1; // sets x to 6

x +=1; // sets x (and *z) to 7 ‘ y 10
z = &y; // sets z to the address of y
-*'F'*z += 1;
return EXIT SUCCESS; ‘ z Ox7frf.a0
}
" J

pointer.cc

W UNIVERSITY of WASHINGTON L11: References, Const, Classes CSE333, Spring 2024

Note: Arrow points

Pointers Reminder to next instruction.

« A pointer is a variable containing an address

* Modifying the pointer doesn’t modify what it points to, but you
can access/modify what it points to by dereferencing

= These work the same in C and C++

- j) ™
int main(int argc, char** argv) {
int x = 5, y = 10; ‘ x 7
int* z = &x;

*z +=1; // sets x to 6
x +=1; // sets x (and *z) to 7 ‘ y 11

z = &y; // sets z to the address of y
*z +=1; // sets y (and *z) to 11

= rcturn EXIT SUCCESS; ‘ z Ox7fff..a0

}

L J
pointer.cc

10

W UNIVERSITY of WASHINGTON L11: References, Const, Classes

References

+ A reference is an alias for another variable

= Alias: another name that is bound to the aliased variable

- Mutating a reference is mutating the aliased variable

= |ntroduced in C++ as part of the language

(. } .
int main(int argc, char** argv) {

int x = 5, y = 10;

1int& z = X;
z += 1;
x += 1;
z =Y
z += 1;

return EXIT SUCCRESS;
}

\.

J

reference.cc

CSE333, Spring 2024

11

YA/ UNIVERSITY of WASHINGTON

L11: References, Const, Classes

Comparing our Examples

+ A reference is an alias for another variable

= Alias: another name that is bound to the aliased variable

- Mutating a reference is mutating the aliased variable

= |ntroduced in C++ as part of the language

CSE333, Spring 2024

4 N
int main(int argc, char** argv) { int main(int argc, char** argv) {
int x =5, y = 10; int x =5, y = 10;
int& z = x; int* z = &x;
7z = g *z += 1;
x += 1; x += 1;
7 = vy; Z:&y;
7z = g *z += 1;
return EXIT SUCCESS; return EXIT SUCCESS;
} }
_ J _ J

\

12

W UNIVERSITY of WASHINGTON L11: References, Const, Classes CSE333, Spring 2024

Note: Arrow points

Refe rences to next instruction.

+ A reference is an alias for another variable

= Alias: another name that is bound to the aliased variable

- Mutating a reference is mutating the aliased variable

= |ntroduced in C++ as part of the language

4 ™
int main(int argc, char** argv) {
int x = 5, y = 10; ‘x 5
—> int& z = x;
z += 1;
X += 1; ‘ Yy 10
z = y;
z += 1;
return EXIT SUCCRESS;
}
\. y,

reference.cc
13

W UNIVERSITY of WASHINGTON L11: References, Const, Classes CSE333, Spring 2024

Note: Arrow points

Refe rences to next instruction.

+ A reference is an alias for another variable

= Alias: another name that is bound to the aliased variable

- Mutating a reference is mutating the aliased variable

= |ntroduced in C++ as part of the language

4 ™
int main(int argc, char** argv) {
int x = 5, y = 10; ‘ X, Z 5
int& z = x; // binds the name "z" to x
-*'P'z += 1;
X += 1; ‘ Yy 10
z = y;
z += 1;
return EXIT SUCCRESS;
}
. J

reference.cc
14

W UNIVERSITY of WASHINGTON L11: References, Const, Classes CSE333, Spring 2024

Note: Arrow points

Refe rences to next instruction.

+ A reference is an alias for another variable

= Alias: another name that is bound to the aliased variable

- Mutating a reference is mutating the aliased variable

= |ntroduced in C++ as part of the language

e '
int main(int argc, char** argv) {
int x = 5, y = 10; ‘ X, z 6
int& z = x; // binds the name "z" to x
z += 1; // sets z (and x) to 6
- < = 1; ‘ Y 10
z = y;
z += 1;
return EXIT SUCCRESS;
}
_ J

reference.cc
15

W UNIVERSITY of WASHINGTON L11: References, Const, Classes CSE333, Spring 2024

Note: Arrow points

Refe rences to next instruction.

+ A reference is an alias for another variable

= Alias: another name that is bound to the aliased variable

- Mutating a reference is mutating the aliased variable

= |ntroduced in C++ as part of the language

e N
int main(int argc, char** argv) {
int x =5, y = 10; ‘ X, z 7
int& z = x; // binds the name "z" to x
z += 1; // sets z (and x) to 6
x += 1; // sets x (and z) to 7 ‘ y 10
*Z :y;
z += 1;

return EXIT SUCCRESS;
}

_)
reference.cc

16

YA/ UNIVERSITY of WASHINGTON

L11: References, Const, Classes CSE333, Spring 2024

Note: Arrow points
to next instruction.

References

+ A reference is an alias for another variable

= Alias: another name that is bound to the aliased variable

- Mutating a reference is mutating the aliased variable

= |ntroduced in C++ as part of the language

r p\
int main(int argc, char** argv) {
int x = 5, y = 10; ‘ X, z 10
int& z = x; // binds the name "z" to x
z += 1; // sets z (and x) to 6
x += 1; // sets x (and z) to 7 ‘ y 10
z =1vy; // sets z (and x) to the value of y
-z = 1;
return EXIT SUCCRESS;
}
Q y

reference.cc

17

YA/ UNIVERSITY of WASHINGTON

L11: References, Const, Classes CSE333, Spring 2024

Note: Arrow points
to next instruction.

References

A reference is an alias for another variable

= Alias: another name that is bound to the aliased variable
- Mutating a reference is mutating the aliased variable

= |ntroduced in C++ as part of the language

r N
int main(int argc, char** argv) {
int x = 5, y = 10; ‘ X, z 11
int& z = x; // binds the name "z" to x
z += 1; // sets z (and x) to 6
x +=1; // sets x (and z) to 7 ‘ y 10
z =1vy; // sets z (and x) to the value of y
z += 1; // sets z (and x) to 11
= rcturn EXIT SUCCESS;
\} y

reference.cc

18

YA/ UNIVERSITY of WASHINGTON

Pass-By-Reference

L11: References, Const, Classes

CSE333, Spring 2024

Note: Arrow points
to next instruction.

«» C++ allows you to use real pass-by-reference

= Client passes in an argument with normal syntax

- Function uses reference parameters with normal syntax

- Modifying a reference

parameter modifies the caller’s argument!

. . .)
volid swap(int& x, 1nté& vy) { main
int tmp = x; .
_ F | (main) a 5
X = y;
y = tmp;
}
int main(int argc, char** argv) { | (main) b 10
int a =5, b = 10;
=3 swap(a, b);
cout << "a: " <K<K a <<« "; b: " <K< b << endl;
return EXIT SUCCESS;
\} J

passbyreference.cc 19

YA/ UNIVERSITY of WASHINGTON

Pass-By-Reference

L11: References, Const, Classes

CSE333, Spring 2024

Note: Arrow points
to next instruction.

«» C++ allows you to use real pass-by-reference

= Client passes in an argument with normal syntax

- Function uses reference parameters with normal syntax

- Modifying a reference parameter modifies the caller’s argument!

. . . N
‘ void swap(int& x, 1nté& y) | main
int tmp = Xx;)
_ .p (main) a
X = V; 5
vy = tmp; (swap) x
}
int main(int argc, char** argv) { (main) b 10
int a = 5, b = 10; (swap) y
swap (a, b); swap
cout << "a: " << a << "; b: " << b << endl;
return EXIT SUCCESS; (swap) tmp
\} J

passbyreference.cc

20

YA/ UNIVERSITY of WASHINGTON

L11: References, Const, Classes

Pass-By-Reference

CSE333, Spring 2024

Note: Arrow points

to next in

«» C++ allows you to use real pass-by-reference

= Client passes in an argument with normal syntax

- Function uses reference parameters with normal syntax

struction.

- Modifying a reference parameter modifies the caller’s argument!

4 . . .)
void swap(int& x, 1nté& y) | main
int tmp = Xx;)
_ .p (main) a
+ X = y, 5
vy = tmp; (swap) x
}
int main(int argc, char** argv) { (main) b 10
int a = 5, b = 10; (swap) y
swap (a, b); swap
cout << "a: " << a << "; b: " << b << endl;
return EXIT SUCCESS; (swap) tmp 5
\} J

passbyreference.cc

21

W UNIVERSITY of WASHINGTON L11: References, Const, Classes CSE333, Spring 2024

Note: Arrow points

Pass-By-Reference to next instruction.

«» C++ allows you to use real pass-by-reference

= Client passes in an argument with normal syntax
« Function uses reference parameters with normal syntax

- Modifying a reference parameter modifies the caller’s argument!

4 . . .)
void swap(inté& x, inté& y) | main
int tmp = x; .
main) a
£ =y (main) 10
+ y = tmp; (swap) x
}
int main(int argc, char** argv) { (main) b 10
int a = 5, b = 10; (swap) y
swap (a, b); swap
cout << "a: " <K<K a <<« "; b: " <K< b << endl;
return EXIT SUCCESS; (swap) tmp 5
\} J

passbyreference.cc 22

YA/ UNIVERSITY of WASHINGTON

L11: References, Const, Classes

Pass-By-Reference

CSE333, Spring 2024

Note: Arrow points

to next in

«» C++ allows you to use real pass-by-reference

= Client passes in an argument with normal syntax

- Function uses reference parameters with normal syntax

struction.

- Modifying a reference parameter modifies the caller’s argument!

4 . . .)
void swap(inté& x, inté& y) | main
int tmp = x; .
main) a
£ =y (main) Lo
y = tmp; (swap) x
int main(int argc, char** argv) { (main) b 5
int a = 5, b = 10; (swap) y
swap (a, b); swap
cout << "a: " <K<K a <<« "; b: " <K< b << endl;
return EXIT SUCCESS; (swap) tmp 5
\} J

passbyreference.cc

23

YA/ UNIVERSITY of WASHINGTON

Pass-By-Reference

L11: References, Const, Classes

CSE333, Spring 2024

Note: Arrow points
to next instruction.

«» C++ allows you to use real pass-by-reference

= Client passes in an argument with normal syntax

- Function uses reference parameters with normal syntax

- Modifying a reference

parameter modifies the caller’s argument!

. . .)
volid swap(inté& x, 1nté& y) | main
int tmp = x; .
_ .p | (main) a 10
X = y;
y = tmp;
}
int main(int argc, char** argv) { | (main) b S5
int a =5, b = 10;
swap (a, b);
=P cout << "a: " << a << "; b: " << b << endl;
return EXIT SUCCESS;
)

J

passbyreference.cc ”

YA/ UNIVERSITY of WASHINGTON

L11: References, Const, Classes

CSE333, Spring 2024

Pass-By-Reference: Mental Model

+ A reference is an alias for another variable

= ...soit's asif no additional space is allocated for it

= Unlike a pointer, which is a variable and does require space

Stack

main

swap tmp

Heap (malloc/free)

4 . . .
vold swap (1nt& x, 1nté& y) |
int tmp = x;
-*'»»x = 2
y = tmp;
}
int main(int argc, char** argv) {
int a = 5, b = ;
swap (a, b);
return EXIT SUCCESS;
}
\ J

passbyreference.cc

Read/Write Segment

Read-Only Segment

25

W UNIVERSITY of WASHINGTON L11: References, Const, Classes CSE333, Spring 2024

Pass-By-Reference: Mental Model

+ A reference is an alias for another variable

= ...soit's asif no additional space is allocated for it

= Unlike a pointer, which is a variable an Stack
. a
main
4) L2
void swap2 (int& x, int* y) {
int tmp = x;
- x = *y; swap
*y = tmp;

} v

int main(int argc, char** argv) {
int a = 5, b = ;

swap2 (a, &b); ?
return EXIT SUCCESS;
}

_ J
passbyreferenceandpointer.cc Read-Only Segment 2

Heap (malloc/free)
Read/Write Segment

W UNIVERSITY of WASHINGTON L11: References, Const, Classes CSE333, Spring 2024

Lecture Outline

& C++ References
¢ constin C++

& C++ Classes Intro

27

W UNIVERSITY of WASHINGTON L11: References, Const, Classes CSE333, Spring 2024

const

+» const:this cannot be changed/mutated
= Used much more in C++thanin C

= Signal of intent to compiler; meaningless at hardware level

 Results in compile-time errors

-
void BrokenPrintSquare (const inté& 1) {
i = 1i*i; // compiler error here!

std::cout << 1 << std::endl;
}

int main(int argc, char** argv) {
int J = 2;
BrokenPrintSquare (j) ;
return EXIT SUCCRSS;

}

\. J

brokenpassbyrefconst.cc

28

W UNIVERSITY of WASHINGTON L11: References, Const, Classes CSE333, Spring 2024

const and Pointers

« Since it's a variable, a pointer can modify a program'’s
state by:
1) Changing the value of the pointer (what it points to)
2) Changing the thing the pointer points to (via dereference)

w UNIVERSITY of WASHINGTON CSE333, Spring 2024

Note: Arrow points

POinters Reminder to next instruction.

« A pointer is a variable containing an address

= Modifying the pointer doesn’t modify what it points to, but you
can access/modify what it points to by dereferencing

= These work the same in C and C++

-
int main(int argc, char** argv) ({
int x = 5, y = ; I x I 7 I
int* z = &x;

*z += 1; // sets x to 6
X += 1; // sets x (and *z) to 7 y I 11 |

z = &y; // sets z to the address of y
*z += 1; // sets y (and *z) to 11

=—tp rcturn EXIT SUCCESS; l z |“*"'
}

. J

pointer.cc

13

29

YA/ UNIVERSITY of WASHINGTON L11: References, Const, Classes

CSE333, Spring 2024

const and Pointers

« Since it's a variable, a pointer can modify a program'’s
state by:
1) Changing the value of the pointer (what it points to)
2) Changing the thing the pointer points to (via dereference)

+» const can be used to prevent either/both of these
behaviors!

= const next to pointer name means you can’t change the value of
the pointer

= const next to data type pointed to means you can’t use this
pointer to change the thing being pointed to

= Tip: read variable declaration from right-to-left

30

YA/ UNIVERSITY of WASHINGTON

L11: References, Const, Classes CSE333, Spring 2024

const and Pointers

+ The syntax with pointers is confusing:

7

int main(int argc,

int x = 5;

const int y = 6;
y++;

const int *z = &y;
*z += 1;

Z++;

int *const w = &x;
*w o += 1;

wt++;

const int *const v =
*v += 1;

v++;

return EXIT SUCCESS;

&X;

char** argv) {

//
//
//

//
//
//

//
//
//

//
//
//

int
(const 1int)
compiler error

pointer to a (const int)
compiler error
ok

(const pointer) to a (variable 1int)
ok
compiler error

(const pointer) to a (const int)
compiler error
compiler error

J

constmadness.cc

W UNIVERSITY of WASHINGTON L11: References, Const, Classes CSE333, Spring 2024

const Parameters

» A const parameter cannot (void foo(const int* y) {
. . std::cout << *y << std::endl;
be mutated inside the }

function

void bar (int* y) {
std::cout << *y << std::endl;

}

= Therefore it does not matter if

the argument can be mutated
int main(int argc, char** argv) {

or not
const int a = 10;
+ Anon-const parameter int b = 20;

could be mutated inside the foo(sa); // OK
£ ti foo (&b) ; // OK
unction bar (&a) ; // not OK — error
= |t would be BAD if you could beeslEls) /7 O

passita const var return EXIT SUCCESS;

= |llegal regardless of whether or
not the function actually tries
to change the var .

W UNIVERSITY of WASHINGTON L11: References, Const, Classes CSE333, Spring 2024

Google Style Guide Convention

+» Use const references or call-by-value for input values

= Particularly for large values, use references (no copying)
«» Use pointers for output parameters

« List input parameters first, then output parameters last

y
void CalcArea (const int& width, const int& height,
int* const

*area = width * height;

}
{

int main(int argc, char** argv)
int w = 10, h = 20, a;
CalcArea(w, h, &a);

return EXIT SUCCESS;

}

.

styleguide.cc

33

W UNIVERSITY of WASHINGTON L11: References, Const, Classes CSE333, Spring 2024

When to Use References?

« A stylistic choice, not mandated by the C++ language

«» Google C++ style guide suggests:

" |nput parameters:
- Either use values (for primitive types like i nt or small structs/objects)
- Or use const references (for complex struct/object instances)

= Qutput parameters:

- Use const pointers

— Unchangeable pointers referencing changeable data

34

W UNIVERSITY of WASHINGTON L11: References, Const, Classes CSE333, Spring 2024

Lecture Outline

& C++ References
&« const in C++

¢ C++ Classes Intro

35

W UNIVERSITY of WASHINGTON L11: References, Const, Classes CSE333, Spring 2024

Classes

+ Class definition syntax (in a .h file):

class Name {
public:
// public member declarations & definitions go here

private:
// private member delarations & definitions go here
}Y; // class Name

\. J

= Members can be functions (methods) or data (variables)

36

W UNIVERSITY of WASHINGTON L11: References, Const, Classes CSE333, Spring 2024

Class Member Functions

« Class member functions can be:

1. defined within the class definition

- typically only used for trivial method definitions, like getters/setters

r

class Name {
retType MethodName (typel paraml, .., typeN paramN) {
// body statements

}
}; // class Name

. J

2. declared within the class definition and then defined elsewhere

Vclass Name {
retType MethodName (typel paraml, .., typeN paramN) ;
}; // class Name

(retType Name: :MethodName (typel paraml, .., typeN paramN) {
// body statements
}

\ J

37

W UNIVERSITY of WASHINGTON L11: References, Const, Classes CSE333, Spring 2024

Class Organization (.h/.cc)

« It's a little more complex than in C when modularizing
with struct definition:

= Class definition is part of interface and should go in . h file

- Private members still must be included in definition (!)

= Usually put member function definitions into companion . cc file
with implementation details

- Common exception: setter and getter methods

= These files can also include non-member functions that use the
class (more about this later)

+ Unlike Java, you can name files anything you want

* But normally Name.cc and Name.hforclass Name

38

W UNIVERSITY of WASHINGTON L11: References, Const, Classes CSE333, Spring 2024

Class Definition (. h file)

Point.h

~\

-
#ifndef POINT H
#define POINT H

These are

class Point {

public:
Point (const int x, const int y); constructor
int get x() const { return x ; } inline member function
int get y() const { return y ; } // inline member function
double Distance (const Pointé& p) const; // member function

void SetLocation (const int x, const int y); // member function

e ' These are
int x ; // data menpe Everyth|ng. . dec] y
int y ; // data member under here is Just declare

}; // class Point pHvate

#endif // POINT H
. i

39

W UNIVERSITY of WASHINGTON L11: References, Const, Classes CSE333, Spring 2024

Class Member Definitions (. cc file)

Point.cc
.)
#include <cmath>
#include "Point.h"
Point: :Point(const int x, const int y) {
X = X;
this->y = vy; // "this->" is optional unless name conflicts

}

double Point::Distance (const Pointé& p) const {
// We can access p’s x and y variables either through the
// get x(), get y() accessor functions or the x , y private
// member variables directly, since we’re in a member
// function of the same class.
double distance = (x - p.get x()) * (x - p.get x());
distance += (y_ - p.y) * (y_ - p.Y_);
return sqrt(distance) ;

}

void Point::SetlLocation(const int x, const int y) {
X = Xy
Y = Ys

40

W UNIVERSITY of WASHINGTON L11: References, Const, Classes CSE333, Spring 2024

Class Usage (a different . cc file)

usepoint.cc

#include <iostream>
#include "Point.h"

using namespace std; You can break your

int main (int argc, char** argv) ({ prints |.nto many
Point pl(l, 2); // allocate a new Point on lines

Point p2(4, 6); // allocate a new Point on
cout << "pl 1is: (" << pl.get x() << ", ";
cout << pl.get y() << ")" << endl;
cout << "p2 1is: (" << pZ2.get x() << ", ";
cout << p2.get y () << ")" << endl;
cout << "dist : " << pl.Distance (p2) << endl;
return O;
}
\. J

41

W UNIVERSITY of WASHINGTON L11: References, Const, Classes CSE333, Spring 2024

Reading Assignhment

«» Before next time, you must read the sections in C++
Primer covering class constructors, copy constructors,
assignment (operator=), and destructors
= |gnore “move semantics” for now
= The table of contents and index are your friends...

= Seriously — the next lecture will make a lot more sense if you’'ve
done some background reading ahead of time

- Don’t worry whether it all makes sense the first time you read it — it
won’t! The goal is to be aware of what the main issues are....

42

W UNIVERSITY of WASHINGTON L11: References, Const, Classes CSE333, Spring 2024

Extra Exercise #1

«» Write a C++ program that:
= Has a class representing a 3-dimensional point

= Has the following methods:

« Return the inner product of two 3D points
- Return the distance between two 3D points

- Accessors and mutators for the x, y, and z coordinates

43

YA/ UNIVERSITY of WASHINGTON L11: References, Const, Classes

CSE333, Spring 2024

Extra Exercise #2

«» Write a C++ program that:

= Has a class representing a 3-dimensional box

- Use your Extra Exercise #1 class to store the coordinates of the
vertices that define the box

- Assume the box has right-angles only and its faces are parallel to the
axes, so you only need 2 vertices to define it

= Has the following methods:

- Test if one box is inside another box

- Return the volume of a box

- Handles <<, =, and a copy constructor
- Uses const in all the right places

44

