
CSE333, Spring 2024L11: References, Const, Classes

C++ References, Const, Classes
CSE 333

Instructor: Alex Sanchez-Stern

Teaching Assistants:
Justin Tysdal
Sayuj Shahi
Nicholas Batchelder
Leanna Mi Nguyen

CSE333, Spring 2024L11: References, Const, Classes

Administrivia

❖ No new exercise today – get ahead on hw2; longer
exercise coming Friday, due Monday morning

❖ Sections this week: makefiles, then C++ classes,
references, const

2

CSE333, Spring 2024L11: References, Const, Classes

Administrivia

❖ Homework 2 due next Thursday (7/18)

▪ Note: libhw1.a (yours or ours) needs to be in correct directory

(hw1/) for hw2 to build

▪ Use Ctrl-D (eof) on a line by itself to exit searchshell; must

free all allocated memory

▪ Test on directory of small self-made files where you can predict

the data structures and then check them

▪ Valgrind takes a long time on the full test_tree. Try using enron

docs only or other small test data directory for quick checks.

3

CSE333, Spring 2024L11: References, Const, Classes

Lecture Outline

❖ C++ References

❖ const in C++

❖ C++ Classes Intro

4

CSE333, Spring 2024L11: References, Const, Classes

Pointers Reminder

❖ A pointer is a variable containing an address

▪ Modifying the pointer doesn’t modify what it points to, but you

can access/modify what it points to by dereferencing

▪ These work the same in C and C++

int main(int argc, char** argv) {
 int x = 5, y = 10;
 int* z = &x;

 *z += 1;
 x += 1;

 z = &y;
 *z += 1;

 return EXIT_SUCCESS;
}

pointer.cc

x 5

y 10

z

Note: Arrow points
to next instruction.

5

CSE333, Spring 2024L11: References, Const, Classes

Pointers Reminder

❖ A pointer is a variable containing an address

▪ Modifying the pointer doesn’t modify what it points to, but you

can access/modify what it points to by dereferencing

▪ These work the same in C and C++

int main(int argc, char** argv) {
 int x = 5, y = 10;
 int* z = &x;

 *z += 1;
 x += 1;

 z = &y;
 *z += 1;

 return EXIT_SUCCESS;
}

pointer.cc

x 5

y 10

z 0x7fff…a4

Note: Arrow points
to next instruction.

6

CSE333, Spring 2024L11: References, Const, Classes

Pointers Reminder

❖ A pointer is a variable containing an address

▪ Modifying the pointer doesn’t modify what it points to, but you

can access/modify what it points to by dereferencing

▪ These work the same in C and C++

int main(int argc, char** argv) {
 int x = 5, y = 10;
 int* z = &x;

 *z += 1; // sets x to 6
 x += 1;

 z = &y;
 *z += 1;

 return EXIT_SUCCESS;
}

pointer.cc

x 6

y 10

z 0x7fff…a4

Note: Arrow points
to next instruction.

7

CSE333, Spring 2024L11: References, Const, Classes

Pointers Reminder

❖ A pointer is a variable containing an address

▪ Modifying the pointer doesn’t modify what it points to, but you

can access/modify what it points to by dereferencing

▪ These work the same in C and C++

int main(int argc, char** argv) {
 int x = 5, y = 10;
 int* z = &x;

 *z += 1; // sets x to 6
 x += 1; // sets x (and *z) to 7

 z = &y;
 *z += 1;

 return EXIT_SUCCESS;
}

pointer.cc

x 7

y 10

z 0x7fff…a4

Note: Arrow points
to next instruction.

8

CSE333, Spring 2024L11: References, Const, Classes

Pointers Reminder

❖ A pointer is a variable containing an address

▪ Modifying the pointer doesn’t modify what it points to, but you

can access/modify what it points to by dereferencing

▪ These work the same in C and C++

int main(int argc, char** argv) {
 int x = 5, y = 10;
 int* z = &x;

 *z += 1; // sets x to 6
 x += 1; // sets x (and *z) to 7

 z = &y; // sets z to the address of y
 *z += 1;

 return EXIT_SUCCESS;
}

pointer.cc

x 7

y 10

z 0x7fff…a0

Note: Arrow points
to next instruction.

9

CSE333, Spring 2024L11: References, Const, Classes

Pointers Reminder

❖ A pointer is a variable containing an address

▪ Modifying the pointer doesn’t modify what it points to, but you

can access/modify what it points to by dereferencing

▪ These work the same in C and C++

int main(int argc, char** argv) {
 int x = 5, y = 10;
 int* z = &x;

 *z += 1; // sets x to 6
 x += 1; // sets x (and *z) to 7

 z = &y; // sets z to the address of y
 *z += 1; // sets y (and *z) to 11

 return EXIT_SUCCESS;
}

pointer.cc

x 7

y 11

z 0x7fff…a0

Note: Arrow points
to next instruction.

10

CSE333, Spring 2024L11: References, Const, Classes

References

❖ A reference is an alias for another variable

▪ Alias: another name that is bound to the aliased variable

• Mutating a reference is mutating the aliased variable

▪ Introduced in C++ as part of the language

int main(int argc, char** argv) {
 int x = 5, y = 10;
 int& z = x;

 z += 1;
 x += 1;

 z = y;
 z += 1;

 return EXIT_SUCCESS;
}

reference.cc
11

CSE333, Spring 2024L11: References, Const, Classes

Comparing our Examples

❖ A reference is an alias for another variable

▪ Alias: another name that is bound to the aliased variable

• Mutating a reference is mutating the aliased variable

▪ Introduced in C++ as part of the language

12

int main(int argc, char** argv) {
 int x = 5, y = 10;
 int* z = &x;

 *z += 1;
 x += 1;

 z = &y;
 *z += 1;

 return EXIT_SUCCESS;
}

int main(int argc, char** argv) {
 int x = 5, y = 10;
 int& z = x;

 z += 1;
 x += 1;

 z = y;
 z += 1;

 return EXIT_SUCCESS;
}

CSE333, Spring 2024L11: References, Const, Classes

References

❖ A reference is an alias for another variable

▪ Alias: another name that is bound to the aliased variable

• Mutating a reference is mutating the aliased variable

▪ Introduced in C++ as part of the language

int main(int argc, char** argv) {
 int x = 5, y = 10;
 int& z = x;

 z += 1;
 x += 1;

 z = y;
 z += 1;

 return EXIT_SUCCESS;
}

reference.cc

x 5

y 10

Note: Arrow points
to next instruction.

13

CSE333, Spring 2024L11: References, Const, Classes

References

❖ A reference is an alias for another variable

▪ Alias: another name that is bound to the aliased variable

• Mutating a reference is mutating the aliased variable

▪ Introduced in C++ as part of the language

int main(int argc, char** argv) {
 int x = 5, y = 10;
 int& z = x; // binds the name "z" to x

 z += 1;
 x += 1;

 z = y;
 z += 1;

 return EXIT_SUCCESS;
}

reference.cc

x, z 5

y 10

Note: Arrow points
to next instruction.

14

CSE333, Spring 2024L11: References, Const, Classes

References

❖ A reference is an alias for another variable

▪ Alias: another name that is bound to the aliased variable

• Mutating a reference is mutating the aliased variable

▪ Introduced in C++ as part of the language

int main(int argc, char** argv) {
 int x = 5, y = 10;
 int& z = x; // binds the name "z" to x

 z += 1; // sets z (and x) to 6
 x += 1;

 z = y;
 z += 1;

 return EXIT_SUCCESS;
}

reference.cc

x, z 6

y 10

Note: Arrow points
to next instruction.

15

CSE333, Spring 2024L11: References, Const, Classes

References

❖ A reference is an alias for another variable

▪ Alias: another name that is bound to the aliased variable

• Mutating a reference is mutating the aliased variable

▪ Introduced in C++ as part of the language

int main(int argc, char** argv) {
 int x = 5, y = 10;
 int& z = x; // binds the name "z" to x

 z += 1; // sets z (and x) to 6
 x += 1; // sets x (and z) to 7

 z = y;
 z += 1;

 return EXIT_SUCCESS;
}

reference.cc

x, z 7

y 10

Note: Arrow points
to next instruction.

16

CSE333, Spring 2024L11: References, Const, Classes

References

❖ A reference is an alias for another variable

▪ Alias: another name that is bound to the aliased variable

• Mutating a reference is mutating the aliased variable

▪ Introduced in C++ as part of the language

int main(int argc, char** argv) {
 int x = 5, y = 10;
 int& z = x; // binds the name "z" to x

 z += 1; // sets z (and x) to 6
 x += 1; // sets x (and z) to 7

 z = y; // sets z (and x) to the value of y
 z += 1;

 return EXIT_SUCCESS;
}

reference.cc

x, z 10

y 10

Note: Arrow points
to next instruction.

17

CSE333, Spring 2024L11: References, Const, Classes

References

❖ A reference is an alias for another variable

▪ Alias: another name that is bound to the aliased variable

• Mutating a reference is mutating the aliased variable

▪ Introduced in C++ as part of the language

int main(int argc, char** argv) {
 int x = 5, y = 10;
 int& z = x; // binds the name "z" to x

 z += 1; // sets z (and x) to 6
 x += 1; // sets x (and z) to 7

 z = y; // sets z (and x) to the value of y
 z += 1; // sets z (and x) to 11

 return EXIT_SUCCESS;
}

reference.cc

x, z 11

y 10

Note: Arrow points
to next instruction.

18

CSE333, Spring 2024L11: References, Const, Classes

main

Pass-By-Reference

❖ C++ allows you to use real pass-by-reference

▪ Client passes in an argument with normal syntax

• Function uses reference parameters with normal syntax

• Modifying a reference parameter modifies the caller’s argument!

void swap(int& x, int& y) {
 int tmp = x;
 x = y;
 y = tmp;
}

int main(int argc, char** argv) {
 int a = 5, b = 10;

 swap(a, b);
 cout << "a: " << a << "; b: " << b << endl;
 return EXIT_SUCCESS;
}

passbyreference.cc

(main) a 5

(main) b 10

Note: Arrow points
to next instruction.

19

CSE333, Spring 2024L11: References, Const, Classes

main

swap

Pass-By-Reference

❖ C++ allows you to use real pass-by-reference

▪ Client passes in an argument with normal syntax

• Function uses reference parameters with normal syntax

• Modifying a reference parameter modifies the caller’s argument!

void swap(int& x, int& y) {
 int tmp = x;
 x = y;
 y = tmp;
}

int main(int argc, char** argv) {
 int a = 5, b = 10;

 swap(a, b);
 cout << "a: " << a << "; b: " << b << endl;
 return EXIT_SUCCESS;
}

passbyreference.cc

(main) a
(swap) x 5

(main) b
(swap) y 10

Note: Arrow points
to next instruction.

(swap) tmp

20

CSE333, Spring 2024L11: References, Const, Classes

main

swap

Pass-By-Reference

❖ C++ allows you to use real pass-by-reference

▪ Client passes in an argument with normal syntax

• Function uses reference parameters with normal syntax

• Modifying a reference parameter modifies the caller’s argument!

void swap(int& x, int& y) {
 int tmp = x;
 x = y;
 y = tmp;
}

int main(int argc, char** argv) {
 int a = 5, b = 10;

 swap(a, b);
 cout << "a: " << a << "; b: " << b << endl;
 return EXIT_SUCCESS;
}

passbyreference.cc

(main) a
(swap) x 5

(main) b
(swap) y 10

Note: Arrow points
to next instruction.

(swap) tmp 5

21

CSE333, Spring 2024L11: References, Const, Classes

main

swap

Pass-By-Reference

❖ C++ allows you to use real pass-by-reference

▪ Client passes in an argument with normal syntax

• Function uses reference parameters with normal syntax

• Modifying a reference parameter modifies the caller’s argument!

void swap(int& x, int& y) {
 int tmp = x;
 x = y;
 y = tmp;
}

int main(int argc, char** argv) {
 int a = 5, b = 10;

 swap(a, b);
 cout << "a: " << a << "; b: " << b << endl;
 return EXIT_SUCCESS;
}

passbyreference.cc

(main) a
(swap) x 10

(main) b
(swap) y 10

Note: Arrow points
to next instruction.

(swap) tmp 5

22

CSE333, Spring 2024L11: References, Const, Classes

main

swap

Pass-By-Reference

❖ C++ allows you to use real pass-by-reference

▪ Client passes in an argument with normal syntax

• Function uses reference parameters with normal syntax

• Modifying a reference parameter modifies the caller’s argument!

void swap(int& x, int& y) {
 int tmp = x;
 x = y;
 y = tmp;
}

int main(int argc, char** argv) {
 int a = 5, b = 10;

 swap(a, b);
 cout << "a: " << a << "; b: " << b << endl;
 return EXIT_SUCCESS;
}

passbyreference.cc

(main) a
(swap) x 10

(main) b
(swap) y 5

Note: Arrow points
to next instruction.

(swap) tmp 5

23

CSE333, Spring 2024L11: References, Const, Classes

main

Pass-By-Reference

❖ C++ allows you to use real pass-by-reference

▪ Client passes in an argument with normal syntax

• Function uses reference parameters with normal syntax

• Modifying a reference parameter modifies the caller’s argument!

void swap(int& x, int& y) {
 int tmp = x;
 x = y;
 y = tmp;
}

int main(int argc, char** argv) {
 int a = 5, b = 10;

 swap(a, b);
 cout << "a: " << a << "; b: " << b << endl;
 return EXIT_SUCCESS;
}

passbyreference.cc

(main) a 10

(main) b 5

Note: Arrow points
to next instruction.

24

CSE333, Spring 2024L11: References, Const, Classes

Pass-By-Reference: Mental Model

❖ A reference is an alias for another variable

▪ … so it's as if no additional space is allocated for it

▪ Unlike a pointer, which is a variable and does require space

void swap(int& x, int& y) {
 int tmp = x;
 x = y;
 y = tmp;
}

int main(int argc, char** argv) {
 int a = 5, b = 10;

 swap(a, b);
return EXIT_SUCCESS;
}

passbyreference.cc 25

Stack

Heap (malloc/free)

Read/Write Segment

Read-Only Segment

main
b

a

swap tmp

CSE333, Spring 2024L11: References, Const, Classes

Pass-By-Reference: Mental Model

❖ A reference is an alias for another variable

▪ … so it's as if no additional space is allocated for it

▪ Unlike a pointer, which is a variable and does require space

void swap2(int& x, int* y) {
 int tmp = x;
 x = *y;
 *y = tmp;
}

int main(int argc, char** argv) {
 int a = 5, b = 10;

 swap2(a, &b);
 return EXIT_SUCCESS;
}

passbyreferenceandpointer.cc 26

Stack

Heap (malloc/free)

Read/Write Segment

Read-Only Segment

main
b

a

swap

CSE333, Spring 2024L11: References, Const, Classes

Lecture Outline

❖ C++ References

❖ const in C++

❖ C++ Classes Intro

27

CSE333, Spring 2024L11: References, Const, Classes

const

❖ const: this cannot be changed/mutated

▪ Used much more in C++ than in C

▪ Signal of intent to compiler; meaningless at hardware level

• Results in compile-time errors

void BrokenPrintSquare(const int& i) {
 i = i*i; // compiler error here!
 std::cout << i << std::endl;
}

int main(int argc, char** argv) {
 int j = 2;
 BrokenPrintSquare(j);
 return EXIT_SUCCESS;
}

brokenpassbyrefconst.cc
28

CSE333, Spring 2024L11: References, Const, Classes

const and Pointers

❖ Since it's a variable, a pointer can modify a program's
state by:

1) Changing the value of the pointer (what it points to)

2) Changing the thing the pointer points to (via dereference)

29

CSE333, Spring 2024L11: References, Const, Classes

const and Pointers

❖ Since it's a variable, a pointer can modify a program's
state by:

1) Changing the value of the pointer (what it points to)

2) Changing the thing the pointer points to (via dereference)

❖ const can be used to prevent either/both of these
behaviors!

▪ const next to pointer name means you can’t change the value of

the pointer

▪ const next to data type pointed to means you can’t use this

pointer to change the thing being pointed to

▪ Tip: read variable declaration from right-to-left
30

CSE333, Spring 2024L11: References, Const, Classes

const and Pointers

❖ The syntax with pointers is confusing:

int main(int argc, char** argv) {
 int x = 5; // int
 const int y = 6; // (const int)
 y++; // compiler error

 const int *z = &y; // pointer to a (const int)
 *z += 1; // compiler error
 z++; // ok

 int *const w = &x; // (const pointer) to a (variable int)
 *w += 1; // ok
 w++; // compiler error

 const int *const v = &x; // (const pointer) to a (const int)
 *v += 1; // compiler error
 v++; // compiler error

 return EXIT_SUCCESS;
}

constmadness.cc 31

CSE333, Spring 2024L11: References, Const, Classes

const Parameters

❖ A const parameter cannot
be mutated inside the
function

▪ Therefore it does not matter if

the argument can be mutated
or not

❖ A non-const parameter
could be mutated inside the
function

▪ It would be BAD if you could

pass it a const var

▪ Illegal regardless of whether or

not the function actually tries
to change the var

32

void foo(const int* y) {
 std::cout << *y << std::endl;
}

void bar(int* y) {
 std::cout << *y << std::endl;
}

int main(int argc, char** argv) {
 const int a = 10;
 int b = 20;

 foo(&a); // OK
 foo(&b); // OK
 bar(&a); // not OK – error
 bar(&b); // OK

 return EXIT_SUCCESS;
}

CSE333, Spring 2024L11: References, Const, Classes

Google Style Guide Convention

❖ Use const references or call-by-value for input values

▪ Particularly for large values, use references (no copying)

❖ Use pointers for output parameters

❖ List input parameters first, then output parameters last

33

void CalcArea(const int& width, const int& height,
 int* const area) {
 *area = width * height;
}

int main(int argc, char** argv) {
 int w = 10, h = 20, a;
 CalcArea(w, h, &a);
 return EXIT_SUCCESS;
}

styleguide.cc

ordinary int
probably better
here, but shows

how const ref works

ordinary int (not int&)
probably better here,
but shows how const

ref can be used

CSE333, Spring 2024L11: References, Const, Classes

When to Use References?

❖ A stylistic choice, not mandated by the C++ language

❖ Google C++ style guide suggests:

▪ Input parameters:

• Either use values (for primitive types like int or small structs/objects)

• Or use const references (for complex struct/object instances)

▪ Output parameters:

• Use const pointers

– Unchangeable pointers referencing changeable data

34

CSE333, Spring 2024L11: References, Const, Classes

Lecture Outline

❖ C++ References

❖ const in C++

❖ C++ Classes Intro

35

CSE333, Spring 2024L11: References, Const, Classes

Classes

❖ Class definition syntax (in a .h file):

▪ Members can be functions (methods) or data (variables)

36

class Name {
 public:
 // public member declarations & definitions go here

 private:
 // private member delarations & definitions go here
}; // class Name

CSE333, Spring 2024L11: References, Const, Classes

Class Member Functions

❖ Class member functions can be:

1. defined within the class definition

• typically only used for trivial method definitions, like getters/setters

37

retType Name::MethodName(type1 param1, …, typeN paramN) {
 // body statements
}

class Name {
 retType MethodName(type1 param1, …, typeN paramN) {
 // body statements
 }
}; // class Name

class Name {
 retType MethodName(type1 param1, …, typeN paramN);
}; // class Name

2. declared within the class definition and then defined elsewhere

CSE333, Spring 2024L11: References, Const, Classes

Class Organization (.h/.cc)

❖ It’s a little more complex than in C when modularizing
with struct definition:

▪ Class definition is part of interface and should go in .h file

• Private members still must be included in definition (!)

38

▪ Usually put member function definitions into companion .cc file

with implementation details

• Common exception: setter and getter methods

▪ These files can also include non-member functions that use the

class (more about this later)

❖ Unlike Java, you can name files anything you want

▪ But normally Name.cc and Name.h for class Name

CSE333, Spring 2024L11: References, Const, Classes

Class Definition (.h file)

39

#ifndef POINT_H_
#define POINT_H_

class Point {
 public:
 Point(const int x, const int y); // constructor
 int get_x() const { return x_; } // inline member function
 int get_y() const { return y_; } // inline member function
 double Distance(const Point& p) const; // member function
 void SetLocation(const int x, const int y); // member function

 private:
 int x_; // data member
 int y_; // data member
}; // class Point

#endif // POINT_H_

Point.h

These are
defined

These are
just declared

Everything
under here is

private

CSE333, Spring 2024L11: References, Const, Classes

Class Member Definitions (.cc file)

40

#include <cmath>
#include "Point.h"

Point::Point(const int x, const int y) {
 x_ = x;
 this->y_ = y; // "this->" is optional unless name conflicts
}

double Point::Distance(const Point& p) const {
 // We can access p’s x_ and y_ variables either through the
 // get_x(), get_y() accessor functions or the x_, y_ private
 // member variables directly, since we’re in a member
 // function of the same class.
 double distance = (x_ - p.get_x()) * (x_ - p.get_x());
 distance += (y_ - p.y_) * (y_ - p.y_);
 return sqrt(distance);
}

void Point::SetLocation(const int x, const int y) {
 x_ = x;
 y_ = y;
}

Point.cc

CSE333, Spring 2024L11: References, Const, Classes

Class Usage (a different .cc file)

41

#include <iostream>
#include "Point.h"

using namespace std;

int main(int argc, char** argv) {
 Point p1(1, 2); // allocate a new Point on the Stack
 Point p2(4, 6); // allocate a new Point on the Stack

 cout << "p1 is: (" << p1.get_x() << ", ";
 cout << p1.get_y() << ")" << endl;

 cout << "p2 is: (" << p2.get_x() << ", ";
 cout << p2.get_y() << ")" << endl;

 cout << "dist : " << p1.Distance(p2) << endl;
 return 0;
}

usepoint.cc

You can break your
prints into many

lines

CSE333, Spring 2024L11: References, Const, Classes

Reading Assignment

❖ Before next time, you must read the sections in C++
Primer covering class constructors, copy constructors,
assignment (operator=), and destructors

▪ Ignore “move semantics” for now

▪ The table of contents and index are your friends…
▪ Seriously – the next lecture will make a lot more sense if you’ve

done some background reading ahead of time

• Don’t worry whether it all makes sense the first time you read it – it
won’t! The goal is to be aware of what the main issues are….

42

CSE333, Spring 2024L11: References, Const, Classes

Extra Exercise #1

❖ Write a C++ program that:

▪ Has a class representing a 3-dimensional point

▪ Has the following methods:

• Return the inner product of two 3D points

• Return the distance between two 3D points

• Accessors and mutators for the x, y, and z coordinates

43

CSE333, Spring 2024L11: References, Const, Classes

Extra Exercise #2

❖ Write a C++ program that:

▪ Has a class representing a 3-dimensional box

• Use your Extra Exercise #1 class to store the coordinates of the
vertices that define the box

• Assume the box has right-angles only and its faces are parallel to the
axes, so you only need 2 vertices to define it

▪ Has the following methods:

• Test if one box is inside another box

• Return the volume of a box

• Handles <<, =, and a copy constructor

• Uses const in all the right places

44

