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Administrivia

❖ Homework 1 is due tonight at 11pm
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❖ Exercise 7 was due this morning

❖ Exercise 8 is posted this morning, but not due until 
Wednesday

▪ It’s on C++, and we’ll be finishing our C++ intro on Monday

❖ Don’t forget to use cpplint on all your assignments!

▪ Linter errors are correctness errors in this course

❖ Homework 2 starter code is being pushed tomorrow
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Details on x86/Linux

❖ A more accurate picture:

▪ Consider a typical Linux process

▪ Its thread of execution can be in one 

of several places:

• In your program’s code

• In glibc, a shared library containing 
the C standard library, POSIX, support, 
and more

• In the Linux architecture-independent 
code

• In Linux x86-64 code
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Details on x86/Linux

❖ Some routines your program 
invokes may be entirely handled 
by glibc without involving the 
kernel

▪ e.g. strcmp() from stdio.h
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▪ There is some initial overhead when 

invoking functions in dynamically 
linked libraries (during loading)

• But after symbols are resolved, 
invoking glibc routines is basically 
as fast as a function call within your 
program itself!
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Details on x86/Linux

❖ Some routines may be handled 
by glibc, but they in turn 
invoke Linux system calls

▪ e.g. POSIX wrappers around Linux 

syscalls

• POSIX readdir() invokes the 
underlying Linux readdir()

▪ e.g. C stdio functions that read 

and write from files

• fopen(), fclose(), fprintf() 
invoke underlying Linux open(), 
close(), write(), etc.
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Details on x86/Linux

❖ Your program can choose to 
directly invoke Linux system calls 
as well

▪ Nothing is forcing you to link with 

glibc and use it
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▪ But relying on directly-invoked Linux 

system calls may make your program 
less portable across UNIX varieties

• (And won’t be portable to non-Unix 
systems like Windows that run 
standard C on top of their own, 
different syscalls)
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Details on x86/Linux

❖ Let’s walk through how a Linux 
system call actually works
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▪ We’ll assume 32-bit x86 using the 

modern SYSENTER / SYSEXIT x86 
instructions

• x86-64 code is similar, though details 
always change over time, so take this 
as an example – not a debugging 
guide
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Details on x86/Linux

Remember our 
process address 
space picture?

▪ Let’s add some 

details:
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Details on x86/Linux

Process is executing your 
program code
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Details on x86/Linux

Process calls into a 
glibc function

▪ e.g. fopen()

▪ We’ll ignore the 

messy details of
loading/linking
shared libraries
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Details on x86/Linux

glibc begins the process 
of invoking a Linux system 
call

▪ glibc’s 

fopen() likely
invokes Linux’s
open() system 
call

▪ Puts the system call # and 

arguments into registers

▪ Uses the call x86 

instruction to call into the 
routine 
__kernel_vsyscall 
located in 
linux-gate.so
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Details on x86/Linux

linux-gate.so is a 
vdso

▪ A virtual 

dynamically-linked shared 
object

▪ Is a kernel-provided 

shared library that is 
plunked into a process’ 
address space

▪ Provides the intricate 

machine code needed to 
trigger a system call
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Details on x86/Linux

linux-gate.so 
eventually invokes 
the SYSENTER x86 
instruction

▪ SYSENTER is x86’s “fast 

system call” instruction

• Causes the CPU to raise 
its privilege level

• Traps into the Linux 
kernel by changing the 
SP, IP to a 
previously-determined 
location
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Details on x86/Linux
The kernel begins executing 
code at the 
SYSENTER entry point

▪ Is in the 

architecture-dependent part 
of Linux

▪ It’s job is to:

• Look up the system call 
number in a system call 
dispatch table

• Call into the address stored in 
that table entry; this is Linux’s 
system call handler

– For open(), the handler 
is named sys_open, and 
is system call #5
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Details on x86/Linux

The system call 
handler executes

▪ What it does is

system-call specific
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▪ It may take a long time to 

execute, especially if it has 
to interact with hardware

• Linux may choose to 
context switch the CPU to 
a different runnable 
process
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Details on x86/Linux

Eventually, the 
system call handler
finishes

▪ Returns back to the 

system call entry point

• Places the system call’s 
return value in the 
appropriate register

• Calls SYSEXIT to return 
to the user-level code
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Details on x86/Linux

SYSEXIT transitions the 
processor back to 
user-mode code

▪ Restores the

IP, SP to 
user-land values

▪ Sets the CPU 

back to 
unprivileged mode

▪ Returns the processor 

back to glibc
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Details on x86/Linux

glibc continues to 
execute

▪ Might execute more 

system calls

▪ Eventually 

returns back to 
your program code
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strace

❖ A useful Linux utility that shows the sequence of system 
calls that a process makes:
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bash$ strace ls 2>&1 | less
execve("/usr/bin/ls", ["ls"], [/* 41 vars */]) = 0
brk(NULL)                               = 0x15aa000
mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 

0x7f03bb741000
access("/etc/ld.so.preload", R_OK)      = -1 ENOENT (No such file or 

directory)
open("/etc/ld.so.cache", O_RDONLY|O_CLOEXEC) = 3
fstat(3, {st_mode=S_IFREG|0644, st_size=126570, ...}) = 0
mmap(NULL, 126570, PROT_READ, MAP_PRIVATE, 3, 0) = 0x7f03bb722000
close(3)                                = 0
open("/lib64/libselinux.so.1", O_RDONLY|O_CLOEXEC) = 3
read(3, "\177ELF\2\1\1\0\0\0\0\0\0\0\0\0\3\0>\0\1\0\0\0\300j\0\0\0\0\0\0"..., 

832) = 832
fstat(3, {st_mode=S_IFREG|0755, st_size=155744, ...}) = 0
mmap(NULL, 2255216, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_DENYWRITE, 3, 0) = 

0x7f03bb2fa000
mprotect(0x7f03bb31e000, 2093056, PROT_NONE) = 0
mmap(0x7f03bb51d000, 8192, PROT_READ|PROT_WRITE, 

MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE, 3, 0x23000) = 0x7f03bb51d000
... etc ...
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If You’re Curious

❖ Download the Linux kernel source code

▪ Available from http://www.kernel.org/ 

❖ man, section 2:  Linux system calls

▪ man 2 intro
▪ man 2 syscalls

❖ man, section 3:  glibc/libc library functions

▪ man 3 intro

❖ The book:  The Linux Programming Interface by Michael 
Kerrisk (keeper of the Linux man pages) 
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http://www.kernel.org/
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Today’s Goals

❖ An introduction to C++

▪ Some comparisons to C and shortcomings that C++ addresses

▪ Give you a perspective on how to learn C++

▪ Kick the tires and look at some code

▪ Not trying to explain all the details, just an introduction.
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❖ Advice: Read related sections in the C++ Primer!

▪ It’s hard to learn the “why is it done this way” from reference 

docs, and even harder to learn from random stuff on the web

▪ Lectures and examples will introduce the main ideas, but aren’t 

everything you’ll want need to understand

▪ And free access through UW libraries (O’Reilly books online)
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C

❖ We had to work hard to mimic encapsulation, abstraction
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▪ Encapsulation:  hiding implementation details

• Used header file conventions and the “static” specifier to separate 
private functions from public functions

• Cast structure pointers to (void*) to hide details

▪ Operational Abstraction:  associating behavior with 

encapsulated state

• Function that operate on a LinkedList were not really tied to the 
linked list structure

• We passed a linked list to a function, rather than invoking a 
method on a linked list instance
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C++

❖ A major addition is support for classes and objects!
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▪ Classes

• Public, private, and protected methods and instance variables

• (multiple!) inheritance

▪ Polymorphism

• Static polymorphism:  multiple functions or methods with the same 
name, but different argument types (overloading)

– Works for all functions, not just class members

• Dynamic (subtype) polymorphism:  derived classes can override 
methods of parents, and methods will be dispatched correctly
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C

❖ We had to emulate generic data structures

▪ Generic linked list using void* payload

▪ Pass function pointers to generalize different “methods” for data 

structures

• Comparisons, deallocation, pickling up state, etc.
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C++

❖ Supports templates to facilitate generic data types

▪ Parametric polymorphism – same idea as Java generics, but 

different in details, particularly implementation
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▪ To declare that x is a vector of ints:  vector<int> x;

▪ To declare that x is a vector of strings:  vector<string> x;

▪ To declare that x is a vector of [vectors of floats]:

vector<vector<float>> x;
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C

❖ We had to be careful about namespace collisions

▪ C distinguishes between external and internal linkage

• Use static to prevent a name from being visible outside a source 
file (as close as C gets to “private”)

• Otherwise, name is global and visible everywhere

▪ We used naming conventions to help avoid collisions in the global 

namespace

• e.g. LLIteratorNext vs. HTIteratorNext, etc.

26
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C++

❖ Permits a module to define its own namespace!

▪ The linked list module could define an “LL” namespace while the 

hash table module could define an “HT” namespace

▪ Both modules could define an Iterator class

• One would be globally named LL::Iterator 

• The other would be globally named HT::Iterator

▪ Entire C++ standard library is in a namespace std (more later…)
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❖ Classes also allow duplicate names without collisions

▪ Namespaces group and isolate names in collections of classes and 

other “global” things (somewhat like Java packages)
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C

❖ C does not provide any standard data structures

▪ We had to implement our own linked list and hash table

▪ As a C programmer, you often reinvent the wheel… poorly

• Maybe if you’re clever you’ll use somebody else’s libraries

• But C’s lack of abstraction, encapsulation, and generics means you’ll 
probably end up tinkering with them or tweak your code to use them

28
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C++

❖ The C++ standard library is huge!

▪ Generic containers:  bitset, queue, list, associative array (including 

hash table), deque, set, stack, and vector

• And iterators for most of these

▪ A string class:  hides the implementation of strings

▪ Streams:  allows you to stream data to and from objects, consoles, 

files, strings, and so on

▪ And more…

29
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C

❖ Error handling is a pain

▪ Have to define error codes and return them

▪ Customers have to understand error code conventions and need 

to constantly test return values

▪ e.g. if a() calls b(), which calls c()
• a depends on b to propagate an error in c back to it

30
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C++

❖ Error handling is STILL a pain, but now we have exceptions

▪ try / throw / catch
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▪ If used with discipline, can simplify error processing

• But, if used carelessly, can complicate memory management

• Consider: a() calls b(), which calls c() 
– If c() throws an exception that b() doesn’t catch, you might not get a 

chance to clean up resources allocated inside b()

▪ But much C++ code still needs to work with C & old C++ libraries 

that are not exception-safe, so still uses return codes, exit(), etc.

• We won’t use (and Google style guide doesn’t use either)
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Some Tasks Still Hurt in C++

❖ Memory management

▪ C++ has no garbage collector

• You have to manage memory allocation and deallocation and track 
ownership of memory

• It’s still possible to have leaks, double frees, and so on
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▪ But there are some things that help

• “Smart pointers”

– Classes that encapsulate pointers and track reference counts

– Deallocate memory when the reference count goes to zero

• C++’s destructors permit a pattern known as “Resource Allocation Is 
Initialization” (RAII) (terrible name but super useful idea)

– Useful for releasing memory, locks, database transactions, and more
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Some Tasks Still Hurt in C++

❖ C++ doesn’t guarantee type or memory safety

▪ You can still:

• Forcibly cast pointers between incompatible types

• Walk off the end of an array and smash memory

• Have dangling pointers

• Conjure up a pointer to an arbitrary address of your choosing

33
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C++ Has Many, Many Features

❖ Operator overloading

▪ Your class can define methods for handling “+”, “->”, etc.
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❖ Object constructors, destructors

▪ Particularly handy for stack-allocated objects

❖ Reference types

▪ True call-by-reference instead of always call-by-value

❖ Advanced Objects

▪ Multiple inheritance, virtual base classes, dynamic dispatch


