
CSE333, Spring 2024L09: Low-Level I/O (POSIX)

Low-Level I/O – the POSIX Layer
CSE 333

Instructor: Alex Sanchez-Stern

Teaching Assistants:
Justin Tysdal
Sayuj Shahi
Nicholas Batchelder
Leanna Mi Nguyen

CSE333, Spring 2024L09: Low-Level I/O (POSIX)

Administrivia

❖ Exercise 6 was due this morning
▪ Reminder: there is no exercise 5 this quarter

❖ Exercise 7 is ready, due on Friday
❖ No sections tomorrow

2

❖ Today, we cover the materials for Exercise 7:

▪ POSIX I/O for directories and reading data from files

▪ Read a directory and open/copy text files found there

• Copy exactly and only the bytes in the file(s). No extra output, no
“formatting”, no “titles”, no other transformations.

CSE333, Spring 2024L09: Low-Level I/O (POSIX)

Administrivia

❖ Homework 1 due on Friday at 11pm

3

CSE333, Spring 2024L09: Low-Level I/O (POSIX)

pollev.com/uwcse333wntbs

❖ What are two pieces of functionality that the OS provides
to processes that run on it?

4

CSE333, Spring 2024L09: Low-Level I/O (POSIX)

POSIX (Portable Operating System
Interface)
❖ Standards for Unix-like operating system interfaces

❖ Maintained by the IEEE

❖ Allows more code to be portable across OS’s

5

❖ Mostly handling:

➢ I/O (including from files, terminals, and the network)

➢ Threading

CSE333, Spring 2024L09: Low-Level I/O (POSIX)

Remember This Picture?

❖ Your program can access many
layers of APIs:

▪ C standard library

• Some are just ordinary functions
(<string.h>, for example)

• Some also call OS-level (POSIX)
functions (<stdio.h>, for example)

▪ POSIX compatibility API

• C-language interface to OS system
calls (fork(), read(), etc.)

▪ Underlying OS system calls

• Assembly language ☺

6

architecture-independent code

architecture-dependent code

glibc

C standard
library

POSIX

Linux
system calls

Linux kernel

Your program

CSE333, Spring 2024L09: Low-Level I/O (POSIX)

What’s Tricky about (POSIX) File I/O?

❖ Communication with input and output devices doesn’t always

work as expected
■ May not process all data or fail, necessitating read/write loops

7

❖ Different system calls have a variety of different failure
modes and error codes
■ Look up in the documentation and use pre-defined constants!
■ Lots of error-checking code needed

● Need to handle resource cleanup on every termination pathway

CSE333, Spring 2024L09: Low-Level I/O (POSIX)

Lecture Outline

❖ Reading and Writing Files

❖ Reading and Writing Directories

8

CSE333, Spring 2024L09: Low-Level I/O (POSIX)

C Standard Library File I/O

❖ So far you’ve used the C standard library to access files

▪ Use a provided FILE* stream abstraction

▪ fopen(), fread(), fwrite(), fclose(), fseek()

❖ These are convenient and portable

▪ They are buffered

▪ They are implemented using lower-level OS calls

9

CSE333, Spring 2024L09: Low-Level I/O (POSIX)

Lower-Level File Access

❖ Most UNIX-en support a common set of lower-level file
access APIs: POSIX – Portable Operating System Interface

▪ open(), read(), write(), close(), lseek()
• Similar in spirit to their f*() counterparts from C std lib

• Lower-level and unbuffered compared to their counterparts

• Also less convenient

10

▪ We will have to use these to read file system directories and for

network I/O, so we might as well learn them now

CSE333, Spring 2024L09: Low-Level I/O (POSIX)

open()/close()

❖ To open a file:

▪ Pass in the filename and access mode

• Similar to fopen()

11

#include <fcntl.h> // for open()
#include <unistd.h> // for close()
 ...
 int fd = open("foo.txt", O_RDONLY);
 if (fd == -1) {
 perror("open failed");
 exit(EXIT_FAILURE);
 }
 ...
 close(fd);

▪ Get back a “file descriptor”

• Similar to FILE* from fopen(), but is just an int

• Defaults: 0 is stdin, 1 is stdout, 2 is stderr
Optional third

argument

CSE333, Spring 2024L09: Low-Level I/O (POSIX)

Reading from a File

❖ ssize_t read(int fd, void* buf, size_t count);

▪ Returns the number of bytes read

• Might be fewer bytes than you requested (!!!)

• Returns 0 if you’re already at the end-of-file

• Returns -1 on error

▪ read has some surprising error modes…

ssize_t read(int fd, void* buf, size_t count);

12

CSE333, Spring 2024L09: Low-Level I/O (POSIX)

Read error modes

❖ ssize_t read(int fd, void* buf, size_t count);

▪ On error, read returns -1 and sets the global errno variable

▪ You need to check errno to see what kind of error happened

• EBADF: bad file descriptor

• EFAULT: output buffer is not a valid address

• EINTR: read was interrupted, please try again (ARGH!!!! 😤😠)

• And many others…

ssize_t read(int fd, void* buf, size_t count);

13

CSE333, Spring 2024L09: Low-Level I/O (POSIX)

I/O Analogy – Messy Roommate

14

● The Linux kernel (Tux) now lives with you
in room #333

● There are N pieces of trash in the room

● There is a single trash can, char bin[N]
○ (For some reason, the trash goes in a particular order)

● You can tell your roommate to pick it up, but they are
unreliable

https://en.wikipedia.org/wiki/Tux_(mascot)

CSE333, Spring 2024L09: Low-Level I/O (POSIX)

I/O Analogy – Messy Roommate

num_trash = Pickup(room_num, trash_bin, amount)

“I tried to start cleaning, but something came up”
(got hungry, had a midterm, room was locked, etc.)

num_trash == -1
errno == excuse

“You told me to pick up trash, but the room was
already clean”

num_trash == 0

“I picked up some of it, but then I got distracted by
my favorite show on Netflix”

num_trash < amount

“I did it! I picked up all the trash!” num_trash == amount

15

CSE333, Spring 2024L09: Low-Level I/O (POSIX)

How do we get the room clean?
num_trash = Pickup(room_num, trash_bin, amount)

num_trash == -1,
errno == excuse

num_trash == 0

num_trash < Amount

num_trash == Amount

bin[0]

bin[N-1] What do we
do in the
following
scenarios?

16

CSE333, Spring 2024L09: Low-Level I/O (POSIX)

bin[0]

bin[N-1]
I have to study
for cse333! I’ll
do it later.

Decide if the
excuse is
reasonable,
and either
let it be or
ask again.

17

How do we get the room clean?
num_trash = Pickup(room_num, trash_bin, amount)

num_trash == -1,
errno == excuse

num_trash == 0

num_trash < Amount

num_trash == Amount

CSE333, Spring 2024L09: Low-Level I/O (POSIX)

bin[0]

bin[N-1]
The room is
already clean,
dawg!

Stop asking
them to clean
the room!
There’s
nothing to do.

18

How do we get the room clean?
num_trash = Pickup(room_num, trash_bin, amount)

num_trash == -1,
errno == excuse

num_trash == 0

num_trash < Amount

num_trash == Amount

CSE333, Spring 2024L09: Low-Level I/O (POSIX)

bin[0]

bin[N-1]
Ask them
again to pick
up the rest
of it.

I picked up 3
whole pieces of
trash! What
more do you
want from me?

19

How do we get the room clean?
num_trash = Pickup(room_num, trash_bin, amount)

num_trash == -1,
errno == excuse

num_trash == 0

num_trash < Amount

num_trash == Amount

CSE333, Spring 2024L09: Low-Level I/O (POSIX)

bin[0]

bin[N-1]
They did
what you
asked, so
stop asking
them to pick
up trash.

I did it! The
whole room
is finally
clean.

20

How do we get the room clean?
num_trash = Pickup(room_num, trash_bin, amount)

num_trash == -1,
errno == excuse

num_trash == 0

num_trash < Amount

num_trash == Amount

CSE333, Spring 2024L09: Low-Level I/O (POSIX)

21

Not fully
comprehensive, please
refer to the man pages

CSE333, Spring 2024L09: Low-Level I/O (POSIX)

pollev.com/uwcse333wntbs

❖ Assume you want to read n bytes from a file. Which is the
correct completion of the blank below?

22

char* buf = ...; // at least size n
int bytes_left = n;
int result; // result of read()

while (bytes_left > 0) {
 result = read(fd, ______, bytes_left);
 if (result == -1) {
 if (errno != EINTR) {
 // a real error happened,
 // so return an error result
 }
 // EINTR happened,
 // so do nothing and try again
 continue;
 }
 bytes_left -= result;
}

A. buf

B. buf + bytes_left

C. buf + bytes_left - n

D. buf + n - bytes_left

E. I’m lost…

CSE333, Spring 2024L09: Low-Level I/O (POSIX)

23

int fd = open(filename, O_RDONLY);
char* buf = ...; // buffer of at least size n
int bytes_left = n;
int result;

while (bytes_left > 0) {
 result = read(fd, buf + (n - bytes_left), bytes_left);
 if (result == -1) {
 if (errno != EINTR) {
 // a real error happened, so return an error result
 }
 // EINTR happened, so do nothing and try again
 continue;
 } else if (result == 0) {
 // EOF reached, so stop reading
 break;
 }
 bytes_left -= result;
}

close(fd);

readN.c

CSE333, Spring 2024L09: Low-Level I/O (POSIX)

Other Low-Level Functions

❖ Read man pages to learn more about POSIX I/O:

▪ write() – write data

▪ fsync() – flush data to the underlying device

• Make sure you read the section 3 version (e.g. man 3 fsync)

❖ A useful shortcut sheet (from CMU):
http://www.cs.cmu.edu/~guna/15-123S11/Lectures/Lecture24.pdf

24

http://www.cs.cmu.edu/~guna/15-123S11/Lectures/Lecture24.pdf

CSE333, Spring 2024L09: Low-Level I/O (POSIX)

Exercises 1-4

25

int open(char *name, int flags);
➔ name is a string representing the name of the file. Can be relative or

absolute.
➔ flags is an integer code describing the access. Some common flags

are listed below:
◆ O_RDONLY – Open the file in read-only mode.
◆ O_WRONLY – Open the file in write-only mode.
◆ O_RDWR – Open the file in read-write mode.
◆ O_APPEND – Append new information to the end of the file.

★ Returns an integer which is the file descriptor. Returns -1 if there is a
failure.

ssize_t read(int fd, void *buf, size_t count);
ssize_t write(int fd, const void *buf, size_t count);
➔ fd is the file descriptor (as returned by open()).
➔ buf is the address of a memory area into which the data is read or

written.
➔ count is the maximum amount of data to read from or write to the

stream.
★ Returns the actual amount of data read from or written to the file.

int close(int fd);

ssize_t read(int fd, void *buf, size_t count);
ssize_t write(int fd, const void *buf, size_t count);
➔ fd is the file descriptor (as returned by open()).
➔ buf is the address of a memory area into which the data is read or

written.
➔ count is the maximum amount of data to read from or write to the

stream.
★ Returns the actual amount of data read from or written to the file.

int close(int fd);

CSE333, Spring 2024L09: Low-Level I/O (POSIX)

26

int fd = __; // open 333.txt
int n = ...;
char *buf = ...; // Assume buf initialized with size n
int result;

______________________________; // initialize variable for loop

... // code that populates buf happens here

while (_______________________) {

 result = write(_______, _______________, _______________________);

 if (result == -1) {
 if (errno != EINTR && errno != EAGAIN) {
 // a real error happened, return an error result
 ___________________; // cleanup
 perror("Write failed");
 return -1;
 }
 continue; // EINTR or EAGAIN happened, so loop around and try again
 }
 ________________________________; // update loop variable
}
________________; // cleanup

open("333.txt", O_WRONLY)

char *ptr = buf

ptr < buf + n

fd ptr buf + n - ptr

close(fd)

ptr += result

close(fd)

(ℹ) This is just ONE
possible way to solve

this exercise!

CSE333, Spring 2024L09: Low-Level I/O (POSIX)

Lecture Outline

❖ Reading and Writing Files

❖ Reading and Writing Directories

27

CSE333, Spring 2024L09: Low-Level I/O (POSIX)

Directories

❖ A directory is a special file that stores the names and locations

of the related files/directories

28

❖ Accessible via POSIX (dirent.h in C/C++)

■ Basic operation is listing files/directories in a directory

■ This includes itself (.), its parent directory (..), and all of its children

(i.e., the directory's contents)

■ Take CSE 451 to learn more about the directory structure

CSE333, Spring 2024L09: Low-Level I/O (POSIX)

POSIX Directory Basics

29

❖ Basic operations a lot like reading files

▪ opendir() - Open a directory for reading

▪ readdir() - Read the contents of a directory

▪ closedir() - Close a directory when you’re done

❖ Like C standard file I/O, but instead of FILE *, these use DIR *

■ opendir() returns a DIR *

■ readdir() and closedir() take a DIR *

❖ Instead of file bytes, reading a directory returns a

struct dirent
■ describes a directory entry

CSE333, Spring 2024L09: Low-Level I/O (POSIX)

Full Prototypes

❖ DIR *opendir(const char *name);

❖ struct dirent *readdir(DIR *dirp);

❖ int closedir(DIR *dirp);

30

Return NULL pointers
when they fail, and set

errnoReturn -1 when it
fails, and sets errno

CSE333, Spring 2024L09: Low-Level I/O (POSIX)

Using readdir()

❖ The DIR * has state; it changes each time you read it.

❖ Each read returns one file or subdirectory, moves the DIR *

to the next one

31

❖ After all directory contents have been read, returns NULL
➢ Doesn’t change errno if it’s just the end of the directory

CSE333, Spring 2024L09: Low-Level I/O (POSIX)

readdir() Example

DIR *dirp = opendir("~/tiny_dir");

struct dirent *file = readdir(dirp);

file = readdir(dirp);

file = readdir(dirp);

file = readdir(dirp);

closedir(dirp);

32

~/tiny_dir/
hi.txt...

internal dir ptr:

// opens directory

// gets ptr to "."

// gets ptr to ".."

// gets ptr to "hi.txt"

// gets NULL

// clean up

CSE333, Spring 2024L09: Low-Level I/O (POSIX)

struct dirent
❖ Returned value from readdir
❖ Fields are “unspecified” (depends on your operating system)

33

directory entry
metadata stored
in integer types}

❖ Does not need to be “freed” or “closed”

struct dirent {
 ino_t d_ino;
 off_t d_off;
 unsigned short d_reclen;
 unsigned char d_type;
 char d_name[256];
};

■ glibc specifies:

Null-terminated directory entry
name (what we care about in 333)

CSE333, Spring 2024L09: Low-Level I/O (POSIX)

Exercise 5

34

CSE333, Spring 2024L09: Low-Level I/O (POSIX)

35

Given the name of a directory, write a C program that is analogous to ls, i.e. prints
the names of the entries of the directory to stdout. Be sure to handle any errors!

int main(int argc, char** argv) {
 /* 1. Check to make sure we have a valid command line arguments */

 /* 2. Open the directory, look at opendir() */

 if (argc != 2) {
 fprintf(stderr, "Usage: ./dirdump <path>\n");
 return EXIT_FAILURE;
 }

 DIR *dirp = opendir(argv[1]);
 if (dirp == NULL) {
 fprintf(stderr, "Could not open directory\n");
 return EXIT_FAILURE;
 }
…

CSE333, Spring 2024L09: Low-Level I/O (POSIX)

36

Given the name of a directory, write a C program that is analogous to ls, i.e. prints
the names of the entries of the directory to stdout. Be sure to handle any errors!

 ...
 /* 3. Read through/parse the directory and print out file names
 Look at readdir() and struct dirent */

 /* 4. Clean up */

}

 struct dirent *entry;
 entry = readdir(dirp);

 while (entry != NULL) {

 }

 closedir(dirp);
 return EXIT_SUCCESS;

 printf("%s\n", entry->d_name);
 entry = readdir(dirp);

if (errno != 0) {
 fprintf(stderr, “Error reading directory”);
 return EXIT_FAILURE;
}

errno = 0;

CSE333, Spring 2024L09: Low-Level I/O (POSIX)

Extra Exercise #1

❖ Write a program that:

▪ Loops forever; in each loop:

• Prompt the user to
input a filename

• Reads a filename
from stdin

• Opens and reads
the file

• Prints its contents
to stdout in the format shown:

❖ Hints:

▪ Use man to read about fgets

▪ Or, if you’re more courageous, try man 3 readline to learn about

libreadline.a and Google to learn how to link to it
37

00000000 50 4b 03 04 14 00 00 00 00 00 9c 45 26 3c f1 d5
00000010 68 95 25 1b 00 00 25 1b 00 00 0d 00 00 00 43 53
00000020 45 6c 6f 67 6f 2d 31 2e 70 6e 67 89 50 4e 47 0d
00000030 0a 1a 0a 00 00 00 0d 49 48 44 52 00 00 00 91 00
00000040 00 00 91 08 06 00 00 00 c3 d8 5a 23 00 00 00 09
00000050 70 48 59 73 00 00 0b 13 00 00 0b 13 01 00 9a 9c
00000060 18 00 00 0a 4f 69 43 43 50 50 68 6f 74 6f 73 68
00000070 6f 70 20 49 43 43 20 70 72 6f 66 69 6c 65 00 00
00000080 78 da 9d 53 67 54 53 e9 16 3d f7 de f4 42 4b 88
00000090 80 94 4b 6f 52 15 08 20 52 42 8b 80 14 91 26 2a
000000a0 21 09 10 4a 88 21 a1 d9 15 51 c1 11 45 45 04 1b
... etc ...

