
CSE333, Spring 2024L06: C Details

Final C Details, System Calls, and I/O
CSE 333

Instructor: Alex Sanchez-Stern

Teaching Assistants:
Justin Tysdal
Sayuj Shahi
Nicholas Batchelder
Leanna Mi Nguyen

CSE333, Spring 2024L06: C Details

Administrivia

❖ New exercise (ex6) posted today, due Wednesday morning
▪ There is no exercise 5! We’re skipping it this quarter

❖ HW1 due on Friday at 11pm

2

❖ No section this week (it’s 4th of July)
❖ Still a lecture on Friday though (5th of July)

❖ HW0 grades are posted!
▪ Regrade requests can be done on gradescope

▪ Questions about your grade can go in private edboard messages.

CSE333, Spring 2024L06: C Details

Lecture Outline

❖ Header Guards and Preprocessor Tricks

❖ Visibility of Symbols

▪ extern, static

❖ File I/O with the C standard library

❖ System Calls

3

CSE333, Spring 2024L06: C Details

An #include Problem

❖ What happens when we compile foo.c?

4

struct pair {
 int a, b;
};

pair.h

#include "pair.h"

// a useful function
struct pair* make_pair(int a, int b);

util.h

#include "pair.h"
#include "util.h"

int main(int argc, char** argv) {
 // do stuff here
 ...
 return EXIT_SUCCESS;
}

foo.c

CSE333, Spring 2024L06: C Details

An #include Problem

❖ What happens when we compile foo.c?
bash$ gcc –Wall –g -o foo foo.c
In file included from util.h:1:0,
 from foo.c:2:
pair.h:1:8: error: redefinition of 'struct pair'
 struct pair { int a, b; };
 ^
In file included from foo.c:1:0:
pair.h:1:8: note: originally defined here
 struct pair { int a, b; };
 ^

5

❖ foo.c includes pair.h twice!

▪ Second time is indirectly via util.h

▪ Struct definition shows up twice

• Can see using cpp

CSE333, Spring 2024L06: C Details

Header Guards

❖ A standard C Preprocessor trick to deal with this

#ifndef PAIR_H_
#define PAIR_H_

struct pair {
 int a, b;
};

#endif // PAIR_H_

#ifndef UTIL_H_
#define UTIL_H_

#include "pair.h"

// a useful function
struct pair* make_pair(int a, int b);

#endif // UTIL_H_

pair.h util.h

6

▪ Uses macro definition (#define) in combination with conditional

compilation (#ifndef and #endif)

CSE333, Spring 2024L06: C Details

7

#include "pair.h"
#include "util.h"

int main(int argc, char** argv) {
 // do stuff here
 ...
 return EXIT_SUCCESS;
}

foo.c

#ifndef PAIR_H_
#define PAIR_H_

struct pair {
 int a, b;
};

#endif // PAIR_H_

#include "pair.h"

// a useful function
struct pair* make_pair(int a, int b);

util.h

CSE333, Spring 2024L06: C Details

Other Preprocessor Tricks

❖ A way to deal with “magic numbers” (constants)

int globalbuffer[1000];

void circalc(float rad,
 float* circumf,
 float* area) {
 *circumf = rad * 2.0 * 3.1415;
 *area = rad * 3.1415 * 3.1415;
}

#define BUFSIZE 1000
#define PI 3.14159265359

int globalbuffer[BUFSIZE];

void circalc(float rad,
 float* circumf,
 float* area) {
 *circumf = rad * 2.0 * PI;
 *area = rad * PI * PI;
}

Bad code
(littered with magic constants)

Better code

8

CSE333, Spring 2024L06: C Details

Macros
❖ #define definitions can take arguments;

these are called “macros”:
#define ODD(x) ((x) % 2 != 0)

void foo() {
 if (ODD(5))
 printf("5 is odd!\n");
}

void foo() {
 if (((5) % 2 != 0))
 printf("5 is odd!\n");
}

cpp

#define ODD(x) ((x) % 2 != 0)
#define WEIRD(x) x % 2 != 0

ODD(5 + 1);

WEIRD(5 + 1);

((5 + 1) % 2 != 0);

5 + 1 % 2 != 0;

cpp

9

❖ Beware of operator precedence issues!

▪ Use parentheses

()

CSE333, Spring 2024L06: C Details

Conditional Compilation

❖ You can change what gets compiled

▪ In this example, #define TRACE before #ifdef to include

debug printfs in compiled code

#ifdef TRACE
#define ENTER(f) printf("Entering %s\n", f)
#define EXIT(f) printf("Exiting %s\n", f)
#else
#define ENTER(f)
#define EXIT(f)
#endif

// print n
void pr(int n) {
 ENTER("pr");
 printf("\n = %d\n", n);
 EXIT("pr");
}

ifdef.c
10

You can give macros
blank definitions to

make them do
nothing

CSE333, Spring 2024L06: C Details

Defining Symbols

❖ Besides #defines in the code, preprocessor values can
be given as part of the gcc command:

bash$ gcc -Wall -g -DTRACE -o ifdef ifdef.c

bash$ gcc -Wall -g -DNDEBUG -o faster useassert.c

11

❖ assert can be controlled the same way – defining
NDEBUG causes assert to expand to “empty”

▪ It’s a macro – see assert.h

CSE333, Spring 2024L06: C Details

12

bash$ gcc -Wall -DBAR –DFOO -o condcomp condcomp.c
bash$./condcomp

#include <stdio.h>

#define EVEN(x) !((x)%2)

#define BAZ 333

int main(int argc, char** argv) {
 int i = EVEN(42) + BAZ;
 printf("%d\n",i);
 return EXIT_SUCCESS;
}

#ifdef FOO

#endif
#ifndef DBAR

#endif

CSE333, Spring 2024L06: C Details

13

bash$ gcc -Wall -DBAR –DFOO -o condcomp condcomp.c
bash$./condcomp

#include <stdio.h>

#define EVEN(x) !((x)%2)

#define BAZ 333

int main(int argc, char** argv) {
 int i = EVEN(42) + BAZ;
 printf("%d\n",i);
 return EXIT_SUCCESS;
}

#ifdef FOO

#endif
#ifndef DBAR

#endif

CSE333, Spring 2024L06: C Details

14

bash$ gcc -Wall -DBAR –DFOO -o condcomp condcomp.c
bash$./condcomp

#include <stdio.h>

#define EVEN(x) !((x)%2)

#define BAZ 333

int main(int argc, char** argv) {
 int i = EVEN(42) + BAZ;
 printf("%d\n",i);
 return EXIT_SUCCESS;
}

#ifndef DBAR

#endif

CSE333, Spring 2024L06: C Details

15

bash$ gcc -Wall -DBAR –DFOO -o condcomp condcomp.c
bash$./condcomp

#include <stdio.h>

#define EVEN(x) !((x)%2)

#define BAZ 333

int main(int argc, char** argv) {
 int i = EVEN(42) + BAZ;
 printf("%d\n",i);
 return EXIT_SUCCESS;
}

!((42)%2) + 333;

42%2 = 0
!0 = 1

1 + 333 = 334

CSE333, Spring 2024L06: C Details

Lecture Outline

❖ Header Guards and Preprocessor Tricks

❖ Visibility of Symbols

▪ extern, static

❖ File I/O with the C standard library

❖ System Calls

16

CSE333, Spring 2024L06: C Details

Headers Aren’t Enough

❖ So far, we’ve been using header declarations to provide
encapsulation (private data/function hiding)

❖ But code can get around these by re-declaring the
variables!
■ The linker will happily link the two variables together

❖ We need a way to tell the linker which definitions should
be only accessible by their module

17

CSE333, Spring 2024L06: C Details

Namespace Problem

❖ If we define a global variable named “counter” in one C
file, is it visible in a different C file in the same program?

18

▪ No, if you use internal linkage

• The name “counter” refers to a different variable in each file

• The variable must be defined in each file

• When the program is linked, the symbols resolve to two locations

▪ Yes, if you use external linkage (default)

• The name “counter” refers to the same variable in both files

• The variable is defined in one file and declared in the other(s)

• When the program is linked, the symbol resolves to one location

CSE333, Spring 2024L06: C Details

External Linkage

❖ extern makes a declaration refer to something
externally-visible elsewhere

#include <stdio.h>

// A global variable, defined and
// initialized here in foo.c.
// It has external linkage by
// default.
int counter = 1;

int main(int argc, char** argv) {
 printf("%d\n", counter);
 bar();
 printf("%d\n", counter);
 return EXIT_SUCCESS;
}

foo.c

#include <stdio.h>

// "counter" is defined and
// initialized in foo.c.
// Here, we declare it, and
// specify external linkage
// by using the extern specifier.
extern int counter;

void bar() {
 counter++;
 printf("(b): counter = %d\n",
 counter);
}

bar.c
19

CSE333, Spring 2024L06: C Details

External Linkage

20

#include <stdio.h>

// A global variable, defined and
// initialized here in foo.c.
// It has external linkage by
// default.
int counter = 1;

int main(int argc, char** argv) {
 printf("%d\n", counter);
 bar();
 printf("%d\n", counter);
 return EXIT_SUCCESS;
}

foo.c

#include <stdio.h>

// "counter" is defined and
// initialized in foo.c.
// Here, we declare it, and
// specify external linkage
// by using the extern specifier.
extern int counter;

void bar() {
 counter++;
 printf("(b): counter = %d\n",
 counter);
}

bar.c

foo.c cc1 foo.o

ld a.out

bar.c cc1 bar.o

If you forget to add
this, you’ll get a

linker error!

CSE333, Spring 2024L06: C Details

Closing Thoughts on Data Visibility

❖ Don't do either of these with an unchanged NthPrime.c!

❖ Static variable in the header: every file that #includes the
header will have its own private copy of the variable

▪ Unnecessary data duplication!

❖ Extern variable in the header: the accompanying .c file
must define the extern'ed variable for successful linkage

21

#define NUM_PRECALC 20
static int16_t
kPrecalculated[NUM_PRECALC] =
 {2, 3, 5, 7, /* etc */ };

int16_t NthPrime(int16_t n);

extern int16_t kPrecalculated[];

int16_t NthPrime(int16_t n);

NthPrime.static.h NthPrime.extern.h

CSE333, Spring 2024L06: C Details

Function Visibility

#include <stdio.h>

extern int bar(int x); // "extern" is default, usually omit.
 // should be in .h file, but effect is same

int main(int argc, char** argv) {
 printf("%d\n", bar(5));
 return EXIT_SUCCESS;
}main.c

// By using the static specifier, we are indicating
// that foo() should have internal linkage. Other
// .c files cannot see or invoke foo().
static int foo(int x) {
 return x*3 + 1;
}

// Bar is "extern" by default. Thus, other .c files
// could declare our bar() and invoke it.
int bar(int x) {
 return 2*foo(x);
}bar.c

22

CSE333, Spring 2024L06: C Details

Linkage Issues

❖ Every global (variables and functions) is extern by
default

▪ Unless you add the static specifier, if some other module uses

the same name, you’ll end up with a collision!

• Best case: compiler (or linker) error

• Worst case: stomp all over each other

23

❖ It’s good practice to:

▪ Use static to “defend” your globals

• Hide your private stuff!

▪ Place external declarations in a module’s header file

• Header is the public specification

CSE333, Spring 2024L06: C Details

Static Confusion…
❖ C has a different use for the word “static”: to create a

persistent local variable

void foo() {
 static int count = 1;
 printf("foo has been called %d times\n", count++);
}

void bar() {
 int count = 1;
 printf("bar has been called %d times\n", count++);
}

int main(int argc, char** argv) {
 foo(); foo(); bar(); bar(); return EXIT_SUCCESS;
}static_extent.c

24

▪ The storage for that variable is allocated when the program loads, in either the

.data or .bss segment

▪ Retains its value across multiple function invocations

▪ Confusing! Don’t use!! (But you may see it ☹)

CSE333, Spring 2024L06: C Details

Additional C Topics

❖ Teach yourself!

▪ man pages are your friend!

▪ String library functions in the C standard library

• #include <string.h>
– strlen(), strcpy(), strdup(), strcat(), strcmp(), strchr(), strstr(), …

• #include <stdlib.h> or #include <stdio.h>
– atoi(), atof(), sprint(), sscanf()

▪ How to declare, define, and use a function that accepts a

variable-number of arguments (varargs)

▪ unions and what they are good for

▪ enums and what they are good for

▪ Pre- and post-increment/decrement

▪ Harder: the meaning of the “volatile” storage class 25

CSE333, Spring 2024L06: C Details

Lecture Outline

❖ Header Guards and Preprocessor Tricks

❖ Visibility of Symbols

▪ extern, static

❖ File I/O with the C standard library

❖ System Calls

26

CSE333, Spring 2024L06: C Details

Remember This Picture?

27

C application

C standard
library (glibc)

C++ STL/boost/
standard library

C++ application Java application

JRE

CPU memory storage network
GPU clock audio radio peripherals

HW/SW interface
(x86 + devices)

OS / app interface
(system calls)

operating system

hardware

CSE333, Spring 2024L06: C Details

File I/O
❖ We’ll start by using C’s standard library
▪ These functions are part of glibc on Linux

▪ They are implemented using Linux system calls

28

❖ C’s stdio defines the notion of a stream

▪ A way of reading or writing a sequence of characters to and from a

device

▪ Can be either text or binary; Linux does not distinguish

▪ Is buffered by default; libc reads ahead of your program

▪ Three streams provided by default: stdin, stdout, stderr
• You can open additional streams to read and write to files

▪ C streams are manipulated with a FILE* pointer, which is

defined in stdio.h

CSE333, Spring 2024L06: C Details

C Stream Functions

❖ Some stream functions (complete list in stdio.h):

▪ FILE* fopen(filename, mode);
• Opens a stream to the specified file in specified file access mode

▪ int fclose(stream);
• Closes the specified stream (and file)

▪ x
• Writes an array of count elements of size bytes from ptr to stream

▪
• Reads an array of count elements of size bytes from stream to ptr

29

FILE* fopen(filename, mode);

int fclose(stream);

size_t fwrite(ptr, size, count, stream);

size_t fread(ptr, size, count, stream);

CSE333, Spring 2024L06: C Details

C Stream Functions

❖ Formatted I/O stream functions (more in in stdio.h):

▪ int fprintf(stream, format, ...);
• Writes a formatted C string

– printf(...); is equivalent to fprintf(stdout, ...);

▪ int fscanf(stream, format, ...);
• Reads data and stores data matching the format string

30

int fprintf(stream, format, ...);

int fscanf(stream, format, ...);

CSE333, Spring 2024L06: C Details

Error Checking/Handling

❖ Some error functions (complete list in stdio.h):

▪ int ferror(stream);
• Checks if the error indicator associated with the specified stream is set

▪ void clearerr(stream);
• Resets error and eof indicators for the specified stream

31

int ferror(stream);

int clearerr(stream);

▪ void perror(message);
• Prints message and error message related to errno to stderr

void perror(message);

A global variable that
some library

functions set to
indicate an error

CSE333, Spring 2024L06: C Details

C Streams Example

32

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#define READBUFSIZE 128

int main(int argc, char** argv) {
 FILE *fin, *fout;
 char readbuf[READBUFSIZE]; // space for input data
 size_t readlen;

 if (argc != 3) {
 fprintf(stderr, "usage: ./cp_example infile outfile\n");
 return EXIT_FAILURE; // defined in stdlib.h
 }

 // Open the input file
 fin = fopen(argv[1], "rb"); // "rb" -> read, binary mode
 if (fin == NULL) {
 fprintf(stderr, "%s -- ", argv[1]);
 perror("fopen for read failed");
 return EXIT_FAILURE;
 }
 ...

cp_example.c

CSE333, Spring 2024L06: C Details

C Streams Example

33

int main(int argc, char** argv) {

 ... // previous slide’s code

 // Open the output file
 fout = fopen(argv[2], "wb"); // "wb" -> write, binary mode
 if (fout == NULL) {
 fprintf(stderr, "%s -- ", argv[2]);
 perror("fopen for write failed");
 return EXIT_FAILURE;
 }

 // Read from the file, write to fout
 while ((readlen = fread(readbuf, 1, READBUFSIZE, fin)) > 0) {
 if (fwrite(readbuf, 1, readlen, fout) < readlen) {
 perror("fwrite failed");
 return EXIT_FAILURE;
 }
 }

 ... // next slide’s code

}

cp_example.c

CSE333, Spring 2024L06: C Details

C Streams Example

34

int main(int argc, char** argv) {

 ... // code from previous 2 slides

 // Test to see if we encountered an error while reading
 if (ferror(fin)) {
 perror("fread failed");
 return EXIT_FAILURE;
 }

 fclose(fin);
 fclose(fout);

 return EXIT_SUCCESS;
}

cp_example.c

CSE333, Spring 2024L06: C Details

Buffering

❖ By default, stdio uses buffering for streams:

▪ Data written by fwrite() is copied into a buffer allocated by

stdio inside your process’ address space

▪ As some point, the buffer will be “drained” into the destination:

35

CSE333, Spring 2024L06: C Details

Buffering

❖ By default, stdio uses buffering for streams:

▪ Data written by fwrite() is copied into a buffer allocated by

stdio inside your process’ address space

▪ As some point, the buffer will be “drained” into the destination:

36

• When you explicitly call fflush() on the stream

• When the buffer size is exceeded (often 1024 or 4096 bytes)

• For stdout to console, when a newline is written (“line buffered”) or
when some other function tries to read from the console

• When you call fclose() on the stream

• When your process exits gracefully (exit() or return from
main())

CSE333, Spring 2024L06: C Details

Why Buffer?

❖ Performance – avoid disk accesses

▪ Group many small writes into a single larger write

▪ Why minimize the number of writes? Disk Latency = 😱😱😱

37

❖ Convenience – nicer API

▪ We’ll compare C’s fread() with POSIX’s read() shortly

CSE333, Spring 2024L06: C Details

Why Buffer?

❖ Disk Latency = 😱😱😱 (Jeff Dean from LADIS ’09)

38

CSE333, Spring 2024L06: C Details

Why NOT Buffer?

❖ Reliability – the buffer needs to be flushed

▪ Loss of computer power = loss of data

▪ “Completion” of a write (i.e. return from fwrite()) does not

mean the data has actually been written

• What if you signal another process to read the file you just wrote to?

39

❖ Performance – buffering takes time

▪ Copying data into the stdio buffer consumes CPU cycles and

memory bandwidth

▪ Can potentially slow down high-performance applications, like a web

server or database (“zero-copy”)

❖ When is buffering faster? Slower?

CSE333, Spring 2024L06: C Details

Disabling C’s Buffering

❖ Explicitly turn off with setbuf(stream, NULL)
▪ But potential performance problems: lots of small writes triggers

lots of slower system calls instead of a single system call that
writes a large chunk

40

❖ Use POSIX APIs instead of C’s

▪ No buffering is done at the user level

▪ We’ll see these soon

❖ But… what about the layers below?

▪ The OS caches disk reads and writes in the file system buffer cache

▪ Disk controllers have caches too!

CSE333, Spring 2024L06: C Details

Lecture Outline

❖ Header Guards and Preprocessor Tricks

❖ Visibility of Symbols

▪ extern, static

❖ File I/O with the C standard library

❖ System Calls

41

CSE333, Spring 2024L06: C Details

What’s an OS?

42

C application

C standard
library (glibc)

C++ STL/boost/
standard library

C++ application Java application

JRE

CPU memory storage network
GPU clock audio radio peripherals

HW/SW interface
(x86 + devices)

OS / app interface
(system calls)

operating system

hardware

CSE333, Spring 2024L06: C Details

What’s an OS?

❖ Software that:

▪ Abstracts away messy hardware devices

• Provides high-level, convenient, portable abstractions
(e.g. files, disk blocks)

43

▪ Directly interacts with the hardware

• OS is trusted to do so; user-level programs are not

• OS must be ported to new hardware; user-level programs are portable

▪ Manages (allocates, schedules, protects) hardware resources

• Decides which programs can access which files, memory locations,
pixels on the screen, etc. and when

CSE333, Spring 2024L06: C Details

OS: Abstraction Provider

❖ The OS is the “layer below”

▪ A module that your program can call (with system calls)

▪ Provides a powerful OS API – POSIX, Windows, etc.

44

a process running
your program

OS

OS
API

File System
• open(), read(), write(), close(), …

Network Stack
• connect(), listen(), read(), write(), ...

Virtual Memory
• brk(), shm_open(), …

Process Management
• fork(), wait(), nice(), …fi

le
 s

ys
te

m

n
et

w
o

rk
 s

ta
ck

vi
rt

u
al

 m
em

o
ry

p
ro

ce
ss

 m
gm

t.

…
 e

tc
 …

CSE333, Spring 2024L06: C Details

OS: Protection System

❖ OS isolates process from each other

▪ But permits controlled sharing between them

• Through shared name spaces (e.g. file names)

45

OS
(trusted)

HW (trusted)

Pr
o

ce
ss

 A
(u

nt
ru

st
ed

)

Pr
o

ce
ss

 B
(u

nt
ru

st
ed

)

Pr
o

ce
ss

 C
(u

nt
ru

st
ed

)

Pr
o

ce
ss

 D
(t

ru
st

ed
)

Linux kernel

Your program

❖ OS isolates itself from processes

▪ Must prevent processes from accessing the

hardware directly

❖ OS is allowed to access the hardware

▪ User-level processes run with the CPU

(processor) in unprivileged mode

▪ The OS runs with the CPU in privileged mode

▪ User-level processes invoke system calls to

safely enter the OS

CSE333, Spring 2024L06: C Details

System Call Trace

46

OS
(trusted)

HW (trusted)
Pr

o
ce

ss
 A

(u
nt

ru
st

ed
)

Pr
o

ce
ss

 B
(u

nt
ru

st
ed

)

Pr
o

ce
ss

 C
(u

nt
ru

st
ed

)

Pr
o

ce
ss

 D
(t

ru
st

ed
)

A CPU (thread of
execution) is running

user-level code in Process
A; the CPU is set to
unprivileged mode.

Linux kernel

Your program

CSE333, Spring 2024L06: C Details

OS
(trusted)

HW (trusted)
Pr

o
ce

ss
 A

(u
nt

ru
st

ed
)

Pr
o

ce
ss

 B
(u

nt
ru

st
ed

)

Pr
o

ce
ss

 C
(u

nt
ru

st
ed

)

Pr
o

ce
ss

 D
(t

ru
st

ed
)

System Call Trace

47

Code in Process A invokes
a system call; the

hardware then sets the
CPU to privileged mode
and traps into the OS,

which invokes the
appropriate system call

handler.

sy
st

em
 c

al
l

Linux kernel

Your program

CSE333, Spring 2024L06: C Details

OS
(trusted)

HW (trusted)
Pr

o
ce

ss
 A

(u
nt

ru
st

ed
)

Pr
o

ce
ss

 B
(u

nt
ru

st
ed

)

Pr
o

ce
ss

 C
(u

nt
ru

st
ed

)

Pr
o

ce
ss

 D
(t

ru
st

ed
)

System Call Trace

48

Because the CPU
executing the thread
that’s in the OS is in

privileged mode, it is able
to use privileged

instructions that interact
directly with hardware

devices like disks.

Linux kernel

Your program

CSE333, Spring 2024L06: C Details

OS
(trusted)

HW (trusted)
Pr

o
ce

ss
 A

(u
nt

ru
st

ed
)

Pr
o

ce
ss

 B
(u

nt
ru

st
ed

)

Pr
o

ce
ss

 C
(u

nt
ru

st
ed

)

Pr
o

ce
ss

 D
(t

ru
st

ed
)

System Call Trace

49

sy
st

em
 c

al
l r

et
u

rn

Once the OS has finished
servicing the system call,

which might involve long waits
as it interacts with HW, it:

(1) Sets the CPU back to
unprivileged mode and

(2) Returns out of the system
call back to the user-level code

in Process A.

Linux kernel

Your program

CSE333, Spring 2024L06: C Details

OS
(trusted)

HW (trusted)
Pr

o
ce

ss
 A

(u
nt

ru
st

ed
)

Pr
o

ce
ss

 B
(u

nt
ru

st
ed

)

Pr
o

ce
ss

 C
(u

nt
ru

st
ed

)

Pr
o

ce
ss

 D
(t

ru
st

ed
)

System Call Trace

50

The process continues
executing whatever

code is next after the
system call invocation.

Useful reference:
CSPP § 8.1–8.3
(the 351 book) Linux kernel

Your program

CSE333, Spring 2024L06: C Details

C Workflow

Editor (emacs, vi) or IDE (eclipse)

51

Source files
(.c, .h)

Object files (.o)

“COMPILE” (compile + assemble)

LINK

LOAD

EXECUTE, DEBUG, …

EDIT

foo.c bar.cfoo.h

foo.o bar.o
libZ.a

bar

Statically-linked
libraries

bar

LINK

libc.soShared libraries

LINK

CSE333, Spring 2024L06: C Details

52

0xFFFFFFFF

0x00000000

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Read-Only Segment
.text, .rodata

Shared Libraries
But not in physical

memory exclusively
owned by the

process!

❖ Where does shared code, such as strcmp(),

live in memory?

CSE333, Spring 2024L06: C Details

To do:

53

❖ New exercise (ex6) posted today, due Wednesday morning
▪ There is no exercise 5! We’re skipping it this quarter

❖ HW1 due on Friday at 11pm
❖ Bring your laptop to class on Wednesday! We’re going to

be doing some in-class exercises

CSE333, Spring 2024L06: C Details

Extra Exercise #1

❖ Write a program that:

▪ Prompts the user to input a string (use fgets())

• Assume the string is a sequence of whitespace-separated integers
(e.g. "5555 1234 4 5543")

▪ Converts the string into an array of integers

▪ Converts an array of integers into an array of strings

• Where each element of the string array is the binary representation of
the associated integer

▪ Prints out the array of strings

54

CSE333, Spring 2024L06: C Details

Extra Exercise #2

❖ Write a program that:

▪ Uses argc/argv to receive the name of a text file

▪ Reads the contents of the file a line at a time

▪ Parses each line, converting text into a uint32_t

▪ Builds an array of the parsed uint32_t’s

▪ Sorts the array

▪ Prints the sorted array to stdout

❖ Hint: use man to read about
getline, sscanf, realloc,
and qsort

55

bash$ cat in.txt
1213
3231
000005
52
bash$./extra1 in.txt
5
52
1213
3231
bash$

