
CSE333, Summer 2024L01: Intro, C

Intro, C refresher
CSE 333

Instructor: Alex Sanchez-Stern

Teaching Assistants:
Justin Tysdal
Sayuj Shahi
Nicholas Batchelder
Leanna Mi Nguyen

CSE333, Summer 2024L01: Intro, C

Lecture Outline

❖ Course Introduction

❖ Course Policies
▪ https://courses.cs.washington.edu/courses/cse333/24su/syllabus.html

❖ C Intro

2

❖ Staff
❖ Students
❖ Code Quality
❖ Topic

https://courses.cs.washington.edu/courses/cse333/24su/syllabus.html

CSE333, Summer 2024L01: Intro, C

Introductions: Course Staff

❖ Instructor: Alex Sanchez-Stern (asnchstr@cs)

3

❖ 5 TAs:
▪ Justin Tysdal, Sayuj Shahi, Nicholas Batchelder, and Leanna Mi

Nguyen

▪ Available in section, office hours, and discussion group

▪ An invaluable source of information and help

❖ Get to know us

▪ We are here to help you succeed!

CSE333, Summer 2024L01: Intro, C

Introductions: Students

❖ ~75 students this quarter

❖ Expected background

▪ Prereq: CSE 351 – C, pointers, memory model, linker, system calls

▪ CSE 391 or Linux skills needed for CSE 351 assumed

4

CSE333, Summer 2024L01: Intro, C

Introductions: Students

❖ ~70 students this quarter

▪ Easier to feel lost, as if everyone
is "better" than you

5

❖ “Nearly 70% of individuals will
experience signs and symptoms
of impostor phenomenon at
least once in their life.”
▪ https://en.wikipedia.org/wiki/Imposto

r_syndrome

https://en.wikipedia.org/wiki/Impostor_syndrome
https://en.wikipedia.org/wiki/Impostor_syndrome

CSE333, Summer 2024L01: Intro, C

Code Quality

❖ Good code quality will help you in the long run
▪ Systems code is complex!

▪ Complexity is tamed by good habits and good abstractions

▪ Easy to understand code now will help you later.

6

❖ So use these:

▪ Coding style conventions

▪ Unit testing, code coverage testing, regression testing

▪ Documentation (code comments, design docs)

▪ Code reviews

❖ Learning to writing clean code is a lifelong process

CSE333, Summer 2024L01: Intro, C

Course Map: 100,000 foot view

7

C application

C standard
library (glibc)

C++ STL/boost/
standard library

C++ application Java application

JRE

CPU memory storage network
GPU clock audio radio peripherals

HW/SW interface
(x86 + devices)

OS / app interface
(system calls)

operating system

hardware

CSE333, Summer 2024L01: Intro, C

Systems Programming

❖ The programming skills, knowledge, and engineering
discipline you need to build a system

▪ Programming: C / C++

▪ Knowledge: long list of interesting topics

• Concurrency, OS interfaces and semantics, techniques for consistent
data management, distributed systems algorithms, …

• Most important: a deep(er) understanding of the “layer below”

▪ Discipline: testing, debugging, performance analysis

8

CSE333, Summer 2024L01: Intro, C

Lecture Outline

❖ Course Introduction

❖ Course Policies
▪ https://courses.cs.washington.edu/courses/cse333/24su/syllabus.html

❖ C Intro

9

CSE333, Summer 2024L01: Intro, C

This is Only an Overview!

❖ This is just the summary/highlights

▪ … but you must read the full details online!
https://courses.cs.washington.edu/courses/cse333/24su/syllabus.html

10

❖ Course Components

❖ Grading

❖ Deadlines and Student Conduct

❖ Communication

https://courses.cs.washington.edu/courses/cse333/24su/syllabus.html

CSE333, Summer 2024L01: Intro, C

Course Components

❖ Lectures (~28)
▪ Introduce the concepts; take notes!!!

11

❖ Sections (10)
▪ Applied concepts, important tools and skills for assignments, clarification

of lectures, exam review and preparation

❖ Final exam and midterm

▪ Goal is to revisit and internalize concepts

CSE333, Summer 2024L01: Intro, C

Course Components

❖ Programming Exercises (~18)
▪ Roughly one per lecture, due the morning before the next lecture

▪ Coarse-grained grading (check plus/check/check minus = 0, 1, 2, or 3)

12

❖ Programming Projects (0+4)
▪ Warmup, then 4 “homeworks” that build on each other

▪ Individual work

❖ Lecture Activities (huge variance but can assume >50)
▪ In-class polls graded on completion not correctness

CSE333, Summer 2024L01: Intro, C

Grading

❖ Exercises: ~30%

▪ Submitted via Gradescope

▪ Evaluated on correctness and code quality; drop the lowest score

13

❖ Homeworks: ~30%

▪ Submitted via GitLab; must tag commit that you want graded

▪ “Does it work?” and code quality both matter, roughly equally

▪ Binaries provided if you didn’t get previous part working or prefer to start
with a known good solution to previous parts

❖ Lecture Activities: ~15%

❖ Midterm: ~10%

❖ Final: ~15%

CSE333, Summer 2024L01: Intro, C

Deadlines and Student Conduct

❖ Late policies

▪ Exercises: no late submissions accepted, due 10 am before class

▪ Projects: 4 late days for entire quarter, max 2 per project

▪ Need to get things done on time – difficult to catch up!

• But we will work with you if unusual circumstances / problems

14

❖ Academic Integrity (read the full policy on the web)

▪ This does not mean suffer in silence – learn from the course staff
and peers, talk, share ideas; but don’t share or copy work that is
supposed to be yours

CSE333, Summer 2024L01: Intro, C

Gadgets

Please:
❖ No laptops in class unless you’re taking notes
❖ The only app you should be using on your phone is

PollEverywhere

15

CSE333, Summer 2024L01: Intro, C

Communication

❖ Website: http://cs.uw.edu/333

▪ Schedule, policies, materials, assignments, etc.

16

❖ Office Hours: spread throughout the week

▪ Schedule posted shortly and will start as soon as we can

❖ One-on-ones: by appointment

▪ Send us a message with your availability in the next 3 days

▪ Do not expect a response in less than 24 hours!

http://cs.uw.edu/333

CSE333, Summer 2024L01: Intro, C

Communication
❖ Messages to staff: things unsuitable for Ed chat or

Gradescope regrade requests
▪ Please send email to cse333-staff@cs.uw.edu. Reaches all staff so

the right person can help out quickly, and helps follow up until
resolved

▪ (don’t email to instructor or individual TAs if possible – we can get
quick answers for you and coordinate better if it goes to the staff

17

❖ Discussion: Ed group linked to course home page
▪ Ask and answer questions – staff will monitor and contribute

▪ Use private messages for questions about detailed code, etc.

❖ Announcements: will use broadcast Ed messages to send
“things everyone must read and know”

mailto:cse333-staff@cs.uw.edu

CSE333, Summer 2024L01: Intro, C

Starting…. NOW!

❖ First exercise out today, due Thursday morning 10am before class
❖ HW0 (the warmup project) published wednesday,
 due next Monday

18

❖ Goal is to figure out setup and computing infrastructure
right away so we don’t put that off and then have a crunch
later in the quarter

❖ Logistics for larger projects explained in sections Thursday
▪ It’s okay to ignore the homework details until section on Thursday,

but try to start the setup

▪ Bring a laptop to sections! We may have time to go through some
of the initial configuration parts for hw0.

CSE333, Summer 2024L01: Intro, C

Deep Breath….

❖ Any questions, comments, observations, before we go on
to some technical stuff?

19

CSE333, Summer 2024L01: Intro, C

Lecture Outline

❖ Course Introduction

❖ Course Policies
▪ https://courses.cs.washington.edu/courses/cse333/24su/syllabus.html

❖ C Intro
▪ Workflow, Variables, Functions

20

CSE333, Summer 2024L01: Intro, C

C

❖ Created in 1972 by Dennis Ritchie

▪ Designed for creating system software

▪ Portable across machine architectures

▪ More recently updated in 1999 (C99) and 2011 (C11)
and 2017 (C17)

21

❖ Characteristics

▪ “Low-level” language that allows us to exploit underlying features
of the architecture – but easy to fail spectacularly (!)

▪ Procedural (not object-oriented)

▪ Typed but unsafe (often necessary to bypass the type system)

▪ Small standard library compared to Java, C++, most others….

CSE333, Summer 2024L01: Intro, C

Generic C Program Layout

22

/* declare functions */
/* declare external variables & structs */

We’ll cover
this stuff late

next week

#include <system_files>
#include "local_files"

#define macro_name macro_expr

int main(int argc, char* argv[]) {
 /* the innards */
}

/* define other functions */

We’ll cover
this stuff

today

CSE333, Summer 2024L01: Intro, C

C Syntax: main

❖ All programs start with main:

▪ int main(int argc, char* argv[])

23

int main(int argc, char* argv[]){

❖ What do the arguments mean?

▪ argc contains the number of strings on the command line

(the executable name counts as one, plus one for each argument).

▪ argv is an array containing pointers to the arguments as strings
(more on arrays and pointers later).

❖ Example: $./foo hello 87
▪ argc = 3
▪ argv[0]="./foo", argv[1]="hello", argv[2]="87"

CSE333, Summer 2024L01: Intro, C

When Things Go Wrong…

❖ In C, functions do the same!

▪ C does not have exception handling (no try/catch)

▪ Errors are returned as integer error codes from functions

▪ Because of this, it’s easy to miss an important error

24

❖ Processes return an “exit code” when they terminate

▪ Can be read and used by parent process (shell or other)

• In main: return EXIT_SUCCESS; or return EXIT_FAILURE; (e.g., 0 or 1)

❖ Crashes

▪ If you do something bad, you hope to get a “segmentation fault”
(believe it or not, this is the “good” option)

CSE333, Summer 2024L01: Intro, C

Java vs. C (351 refresher)

❖ Are Java and C mostly similar (S) or significantly different
(D) in the following categories?

▪ List any differences you can recall (even if you put ‘S’)

25

Language Feature S/D Differences in C

Control structures S

Primitive datatypes S/D Similar but sizes can differ (char, esp.), unsigned,
no boolean, uninitialized data, …

Operators S Java has >>>, C has ->

Casting D Java enforces type safety, C does not

Arrays D Not objects, don’t know their own length, no
bounds checking

Memory management D Manual (malloc/free), no garbage collection

CSE333, Summer 2024L01: Intro, C

Primitive Types in C

❖ Integer types

▪ char, int

26

❖ Floating point

▪ float, double

❖ Modifiers

▪ short [int]

▪ long [int]

▪ signed [char, int]

▪ unsigned [char, int]

No standard size!
Can depend on architecture,

compiler, etc.

Size technically also unspecified,
but pretty much always the same

CSE333, Summer 2024L01: Intro, C

C99 Extended Integer Types

❖ Solves the conundrum of “how big is an long int?”

27

void sumstore(int x, int y, int* dest) {

void sumstore(int32_t x, int32_t y, int32_t* dest) {

#include <stdint.h>

void foo(void) {
 int8_t a; // exactly 8 bits, signed
 int16_t b; // exactly 16 bits, signed
 int32_t c; // exactly 32 bits, signed
 int64_t d; // exactly 64 bits, signed
 uint8_t w; // exactly 8 bits, unsigned
 ...
}

Use extended types in most cse333 code

But int is usually fine for simple counters

CSE333, Summer 2024L01: Intro, C

Basic Data Structures

❖ C does not support objects!!!

28

x h e l l o \n \0char* x = "hello\n";

❖ Arrays are contiguous chunks of memory
▪ Arrays have no methods and do not know their own length

▪ Can easily run off ends of arrays in C – security bugs!!!

❖ Strings are null-terminated char arrays
▪ Strings have no methods, but string.h has helpful utilities

❖ Structs are the most object-like feature, but are just
collections of fields – no “methods” or functions

• (but can contain pointers to functions!)

CSE333, Summer 2024L01: Intro, C

Function Definitions

❖ Generic format:

29

// sum of integers from 1 to max
int sumTo(int max) {
 int i, sum = 0;

 for (i = 1; i <= max; i++) {
 sum += i;
 }

 return sum;
}

returnType fname(type param1, …, type paramN) {
 // statements
}

CSE333, Summer 2024L01: Intro, C

Function Ordering

❖ You shouldn’t call a function that hasn’t been declared yet

30

#include <stdio.h>

int main(int argc, char** argv) {
 printf("sumTo(5) is: %d\n", sumTo(5));
 return 0;
}

// sum of integers from 1 to max
int sumTo(int max) {
 int i, sum = 0;

 for (i = 1; i <= max; i++) {
 sum += i;
 }
 return sum;
}

sum_badorder.c

❖ This is because C compilers used to be single-pass

CSE333, Summer 2024L01: Intro, C

Solution 1: Reverse Ordering

❖ Simple solution; however, imposes ordering restriction on
writing functions (who-calls-what?)

31

#include <stdio.h>

// sum of integers from 1 to max
int sumTo(int max) {
 int i, sum = 0;

 for (i = 1; i <= max; i++) {
 sum += i;
 }
 return sum;
}

int main(int argc, char** argv) {
 printf("sumTo(5) is: %d\n", sumTo(5));
 return 0;
}

sum_betterorder.c

CSE333, Summer 2024L01: Intro, C

Solution 2: Function Declaration
❖ Teaches the compiler arguments and return types;

function definitions can then be in a logical order, and call
each other without restriction

32

sum_declared.c #include <stdio.h>

int sumTo(int); // func prototype

int main(int argc, char** argv) {
 printf("sumTo(5) is: %d\n", sumTo(5));
 return 0;
}

// sum of integers from 1 to max
int sumTo(int max) {
 int i, sum = 0;
 for (i = 1; i <= max; i++) {
 sum += i;
 }
 return sum;
}

Code examples from
slides are on the course

web for you to
experiment with!

CSE333, Summer 2024L01: Intro, C

Declaration vs. Definition

❖ C/C++ make a careful distinction between these two

33

❖ Definition: the thing itself

▪ e.g. code for function, variable definition that creates storage

▪ Must be exactly one definition of each thing (no duplicates)

❖ Declaration: description of a thing defined elsewhere

▪ e.g. function prototype, external variable declaration

• Often in header files and incorporated via #include
• Should also #include declaration in the file with the actual definition to

check for consistency

▪ Needs to appear in all files that use the thing

• Should appear before first use

CSE333, Summer 2024L01: Intro, C

Multi-file C Programs

34

void sumstore(int x, int y, int* dest) {
 *dest = x + y;
}

#include <stdio.h>

void sumstore(int x, int y, int* dest);

int main(int argc, char** argv) {
 int z, x = 351, y = 333;
 sumstore(x,y,&z);
 printf("%d + %d = %d\n",x,y,z);
 return 0;
}

C source file 1
(sumstore.c)

C source file 2
(sumnum.c)

Compile together:
$ gcc -o sumnum sumnum.c sumstore.c

definition

declaration

CSE333, Summer 2024L01: Intro, C

C Workflow

Editor (emacs, vi) or IDE (eclipse)

35

Source files
(.c, .h)

Object files (.o)

“COMPILE” (compile + assemble)

LINK

LOAD

EXECUTE, DEBUG, …

EDIT

foo.c bar.cfoo.h

foo.o bar.o
libZ.a

bar

Statically-linked
libraries

bar

LINK

libc.soShared libraries

LINK

CSE333, Summer 2024L01: Intro, C

C to Machine Code

36

C source file
(sumstore.c)

EDIT

void sumstore(int x, int y,
 int* dest) {
 *dest = x + y;
}

Assembly file
(sumstore.s)

C compiler (gcc –S)

sumstore:
 addl %edi, %esi
 movl %esi, (%rdx)
 ret

Assembler (gcc -c or as)

Machine code
(sumstore.o)

400575: 01 fe
 89 32
 c3

C compiler
(gcc –c)

CSE333, Summer 2024L01: Intro, C

Compiling Multi-file Programs

❖ The linker combines multiple object files plus
statically-linked libraries to produce an executable

▪ Includes many standard libraries (e.g. libc, crt1)

• A library is just a pre-assembled collection of .o files

37

sumstore.c

sumnum.c

sumstore.o

sumnum.o

libraries
(e.g. libc)

sumnum

gcc -c

gcc -c

ld or
gcc

CSE333, Summer 2024L01: Intro, C

To-do List

❖ Explore the website thoroughly: http://cs.uw.edu/333

❖ Computer setup: CSE labs, attu, or CSE Linux VM

❖ Exercise 0 is due 10 am sharp on Thursday
▪ Find exercise spec on website, submit via Gradescope

▪ Sample solution will be posted later that day

▪ Give it your best shot

❖ Project repos created and hw0 out Wednesday
▪ Ask questions on Ed!

▪ More questions? Bring them (and your laptop) to section

38

http://cs.uw.edu/333

