CSE333, Summer 2024

YA/ UNIVERSITY of WASHINGTON LO1: Intro, C

Intro, C refresher
CSE 333

Instructor: Alex Sanchez-Stern

Teaching Assistants:
Justin Tysdal

Sayuj Shahi
Nicholas Batchelder
Leanna Mi Nguyen

W UNIVERSITY of WASHINGTON LO1: Intro, C CSE333, Summer 2024

Lecture Outline

¢ Course Introduction
« Course Policies

= https://courses.cs.washington.edu/courses/cse333/24su/syllabus.html

s Clintro

Staff
Students
Code Quality
» Topic

K/ K/ K/
L X4 L X4 L X4

>

https://courses.cs.washington.edu/courses/cse333/24su/syllabus.html

W UNIVERSITY of WASHINGTON LO1: Intro, C CSE333, Summer 2024

Introductions: Course Staff

« Instructor: Alex Sanchez-Stern (asnchstr@cs)

« D TAs:
= Justin Tysdal, Sayuj Shahi, Nicholas Batchelder, and Leanna Mi

Nguyen
= Available in section, office hours, and discussion group

= An invaluable source of information and help

+ Get to know us

= \We are here to help you succeed!

W UNIVERSITY of WASHINGTON LO1: Intro, C CSE333, Summer 2024

Introductions: Students

« ~75 students this quarter

« Expected background

= Prereq: CSE 351 — C, pointers, memory model, linker, system calls
= CSE 391 or Linux skills needed for CSE 351 assumed

YA/ UNIVERSITY of WASHINGTON LO1: Intro, C

Introductions: Students

« ~70 students this quarter

= Easier to feel lost, as if everyone
is "better" than you

+ “Nearly 70% of individuals will
experience signs and symptoms
of impostor phenomenon at
least once in their life.”

» https://en.wikipedia.org/wiki/Imposto
r syndrome

CSE333, Summer 2024

THIS 1S DR. ADAMS. SHES A S0CIAL
PSYCHOLOGIST AND THE WORLD'S ToP
EXPERT ON IMPOSTOR SYNDROME.

HAHA, DONT BE SILLY! THERE
ARE LOTS OF SCHOLARS WHO
HAVE MADE. MORE SIGNIFICANT...

|
...OH MY GOD.

A

https://en.wikipedia.org/wiki/Impostor_syndrome
https://en.wikipedia.org/wiki/Impostor_syndrome

YA/ UNIVERSITY of WASHINGTON LO1: Intro, C

CSE333, Summer 2024

Code Quality

« Good code quality will help you in the long run
= Systems code is complex!

= Complexity is tamed by good habits and good abstractions
= Easy to understand code now will help you later.

« So use these:
= Coding style conventions

= Unit testing, code coverage testing, regression testing
= Documentation (code comments, design docs)

= Code reviews

« Learning to writing clean code is a lifelong process

W UNIVERSITY of WASHINGTON LO1: Intro, C CSE333, Summer 2024

Course Map: 100,000 foot view

C application C++ application Java application

C standard C++ STL/boost/
library (glibc) standard library

OS / app interface
(system calls)

HW/SW interface
(x86 + devices)

hardware

CPU memory storage network
GPU clock audio radio peripherals

W UNIVERSITY of WASHINGTON LO1: Intro, C CSE333, Summer 2024

Systems Programming

« The programming skills, knowledge, and engineering
discipline you need to build a system

= Programming: C/ C++

= Knowledge: long list of interesting topics

- Concurrency, OS interfaces and semantics, techniques for consistent
data management, distributed systems algorithms, ...

- Most important: a deep(er) understanding of the “layer below”

= Discipline: testing, debugging, performance analysis

W UNIVERSITY of WASHINGTON LO1: Intro, C CSE333, Summer 2024

Lecture Outline

<« Course Introduction
¢ Course Policies

= https://courses.cs.washington.edu/courses/cse333/24su/syllabus.html

s Clintro

W UNIVERSITY of WASHINGTON LO1: Intro, C CSE333, Summer 2024

This is Only an Overview!

% This is just the summary/highlights

= ... but you must read the full details online!
https://courses.cs.washington.edu/courses/cse333/24su/syllabus.html

+» Course Components

+ @Grading

«» Deadlines and Student Conduct
+» Communication

10

https://courses.cs.washington.edu/courses/cse333/24su/syllabus.html

W UNIVERSITY of WASHINGTON LO1: Intro, C CSE333, Summer 2024

Course Components

+ Lectures (~28)

= |ntroduce the concepts; take notes!!!

« Sections (10)

= Applied concepts, important tools and skills for assignments, clarification
of lectures, exam review and preparation

<« Final exam and midterm

= Goalis to revisit and internalize concepts

11

W UNIVERSITY of WASHINGTON LO1: Intro, C CSE333, Summer 2024

Course Components

«» Programming Exercises (~18)
= Roughly one per lecture, due the morning before the next lecture

= Coarse-grained grading (check plus/check/check minus =0, 1, 2, or 3)

«» Programming Projects (0+4)
= Warmup, then 4 “homeworks” that build on each other

= |Individual work

+» Lecture Activities (huge variance but can assume >50)

= In-class polls graded on completion not correctness

12

CSE333, Summer 2024

YA/ UNIVERSITY of WASHINGTON LO1: Intro, C

Grading

¢ Exercises: ~“30%
= Submitted via Gradescope
= Evaluated on correctness and code quality; drop the lowest score

¢ Homeworks: ~30%
= Submitted via GitLab; must tag commit that you want graded
= “Does it work?” and code quality both matter, roughly equally

= Binaries provided if you didn’t get previous part working or prefer to start
with a known good solution to previous parts

¢ Lecture Activities: ~15%

¢ Midterm: ~10%
¢ Final: ~15%

13

W UNIVERSITY of WASHINGTON LO1: Intro, C CSE333, Summer 2024

Deadlines and Student Conduct

« Late policies
= Exercises: no late submissions accepted, due 10 am before class
= Projects: 4 late days for entire quarter, max 2 per project

= Need to get things done on time — difficult to catch up!
- But we will work with you if unusual circumstances / problems

«» Academic Integrity (read the full policy on the web)

= This does not mean suffer in silence — learn from the course staff
and peers, talk, share ideas; but don’t share or copy work that is
supposed to be yours

14

W UNIVERSITY of WASHINGTON LO1: Intro, C CSE333, Summer 2024

Gadgets

Please:

« No laptops in class unless you're taking notes

« The only app you should be using on your phone is
PollEverywhere

15

W UNIVERSITY of WASHINGTON LO1: Intro, C CSE333, Summer 2024

Communication

+ Website: http://cs.uw.edu/333

= Schedule, policies, materials, assignments, etc.

+» Office Hours: spread throughout the week

= Schedule posted shortly and will start as soon as we can

« One-on-ones: by appointment
= Send us a message with your availability in the next 3 days

= Do not expect a response in less than 24 hours!

16

http://cs.uw.edu/333

W UNIVERSITY of WASHINGTON LO1: Intro, C CSE333, Summer 2024

Communication

«» Messages to staff: things unsuitable for Ed chat or
Gradescope regrade requests

= Please send email to cse333-staff@cs.uw.edu. Reaches all staff so
the right person can help out quickly, and helps follow up until
resolved

= (don’t email to instructor or individual TAs if possible — we can get
quick answers for you and coordinate better if it goes to the staff

+ Discussion: Ed group linked to course home page
= Ask and answer questions — staff will monitor and contribute

= Use private messages for questions about detailed code, etc.

«» Announcements: will use broadcast Ed messages to send
“things everyone must read and know”

17

mailto:cse333-staff@cs.uw.edu

W UNIVERSITY of WASHINGTON LO1: Intro, C CSE333, Summer 2024

Starting.... NOW!

« First exercise out today, due Thursday morning 10am before class
+ HWO (the warmup project) published wednesday,
due next Monday

« Goalis to figure out setup and computing infrastructure
right away so we don’t put that off and then have a crunch
later in the quarter

« Logistics for larger projects explained in sections Thursday
- It’s okay to ignore the homework details until section on Thursday,
but try to start the setup

- Bring a laptop to sections! We may have time to go through some
of the initial configuration parts for hwO.

18

W UNIVERSITY of WASHINGTON LO1: Intro, C CSE333, Summer 2024

Deep Breath....

« Any questions, comments, observations, before we go on
to some technical stuff?

19

W UNIVERSITY of WASHINGTON LO1: Intro, C CSE333, Summer 2024

Lecture Outline

<« Course Introduction
« Course Policies

= https://courses.cs.washington.edu/courses/cse333/24su/syllabus.html

¢ Clintro

= Workflow, Variables, Functions

20

W UNIVERSITY of WASHINGTON LO1: Intro, C CSE333, Summer 2024

SECOND EDITION

THE

C

+ Created in 1972 by Dennis Ritchie PROGRAMMING
LANGUAGE
= Designed for creating system software AN ERNGHAN

PRENTICE HALL SOFTWARE SERIES

= Portable across machine architectures

= More recently updated in 1999 (C99) and 2011 (C11)
and 2017 (C17)

« Characteristics

= “Low-level” language that allows us to exploit underlying features
of the architecture — but easy to fail spectacularly (!)

= Procedural (not object-oriented)
= Typed but unsafe (often necessary to bypass the type system)

= Small standard library compared to Java, C++, most others....

21

YA/ UNIVERSITY of WASHINGTON LO1: Intro, C

CSE333, Summer 2024

Generic C Program Layout

-

#include <system files> We’'ll cover
#include "local files" this stuff late

next week

#define macro name macro expr

/* declare functions */
/* declare external variables &

We’'ll cover
int main(int argc, char* argv[]) this stuff

/* the innards */ today

/* define other functions */

.

22

W UNIVERSITY of WASHINGTON LO1: Intro, C CSE333, Summer 2024

C Syntax: main

« All programs start with main:

[int main (int argc, char* argv[]){]

What do the arguments mean?

7
L X4

= argc contains the number of strings on the command line

(the executable name counts as one, plus one for each argument).

= 31 gV isan array containing pointers to the arguments as strings
(more on arrays and pointers later).

«» Example: S ./foo hello 87

"= argc = 3

" argv[0]="./foo", argv[l]="hello", argv[2]="87"

23

W UNIVERSITY of WASHINGTON LO1: Intro, C CSE333, Summer 2024

When Things Go Wrong...

«» Processes return an “exit code” when they terminate

= Can be read and used by parent process (shell or other)
* In main: return EXIT_SUCCESS; or return EXIT_FAILURE; (e.g.,0or 1)

« In C, functions do the same!
= C does not have exception handling (no try/catch)
= Errors are returned as integer error codes from functions

= Because of this, it’s easy to miss an important error

« Crashes

* |f you do something bad, you hope to get a “segmentation fault”
(believe it or not, this is the “good” option)

24

YA/ UNIVERSITY of WASHINGTON

LO1: Intro, C CSE333, Summer 2024

Java vs. C (351 refresher)

+ Are Java and C mostly similar (S) or significantly different
(D) in the following categories?

= List any differences you can recall (even if you put ‘S’)

Language Feature S/D Differencesin C

Control structures S

Primitive datatypes S/D | Similar but sizes can differ (char, esp.), unsigned,
no boolean, uninitialized data, ...

Operators S Java has >>>, C has ->

Casting D | Java enforces type safety, C does not

Arrays D Not objects, don’t know their own length, no
bounds checking

Memory management D Manual (malloc/free), no garbage collection

25

W UNIVERSITY of WASHINGTON LO1: Intro, C CSE333, Summer 2024

Primitive Types in C

No standard size!
+ Integer types Can depend on architecture,

» char, int compiler, etc.

+ Floating point
» float,double Size technically also unspecified,

but pretty much always the same

«» Modifiers
short [int]

long [int]

signed [char, int]

unsigned [char, int]

26

YA/ UNIVERSITY of WASHINGTON

CSE333, Summer 2024

LO1: Intro, C

C99 Extended Integer Types

% Solves the conundrum of “how bigisan 1ong

int?”

p
#include <stdint.h>

volid foo (void)

Use extended types in most cse333 code

{

r

vold sumstore (int

\

int8 t a; // exactly 8 bits, signed
intlé t b; // exactly 16 bits, signed
int32 t c¢; // exactly 32 bits, signed
int64 t d; // exactly 64 bits, signed
uint8 t w; // exactly 8 bits, unsigned

void sumstore(int32 t x,

int32 t vy,

But int is usually fine for simple counters
int32 t* dest) {

27

W UNIVERSITY of WASHINGTON LO1: Intro, C CSE333, Summer 2024

Basic Data Structures

C does not support objects!!!
¢ Arrays are contiguous chunks of memory

R/
%®

= Arrays have no methods and do not know their own length

= Can easily run off ends of arrays in C —security bugs!!!

¢ Strings are null-terminated char arrays

= Strings have no methods, but st ring.h has helpful utilities

char* x = "hello\n"; x| h !l e | | | | o [\n|\O

¢ Structs are the most object-like feature, but are just

collections of fields — no “methods” or functions
+ (but can contain pointers to functions!)

28

W UNIVERSITY of WASHINGTON LO1: Intro, C CSE333, Summer 2024

Function Definitions

<+ Generic format:

returnType fname (type paraml, .., type paramN) {
// statements

4 N
// sum of integers from 1 to max

int sumTo (int max) {
int 1, sum = 0;

for (i = 1; i <= max; i++) {
sum += 1i;

}

return sum;

29

YA/ UNIVERSITY of WASHINGTON LO1: Intro, C

CSE333, Summer 2024

Function Ordering

« You shouldn’t call a function that hasn’t been declared yet
« This is because C compilers used to be single-pass

sum_badorder.c [#include <stdio.h>)

int main(int argc, char** argv) {
printf ("sumTo (5) is: %d\n", sumTo (5)):;
return O;

}

// sum of integers from 1 to max
int sumTo (int max)
int i, sum = 0;

for (i = 1; 1 <= max; i++) {
sum += 1;
}

return sum;

}
- /

30

W UNIVERSITY of WASHINGTON LO1: Intro, C CSE333, Summer 2024

Solution 1: Reverse Ordering

« Simple solution; however, imposes ordering restriction on
writing functions (who-calls-what?)

sum_betterorder.c [#include <stdio.h>

// sum of integers from 1 to max
int sumTo (int max)
int i, sum = 0;

for (i = 1; 1 <= max; i++) {
sum += 1;
}

return sum;

}

int main(int argc, char** argv) {
printf ("sumTo (5) is: %d\n", sumTo(5));
return O;

}
- /

31

YA/ UNIVERSITY of WASHINGTON

LO1: Intro, C

CSE333, Summer 2024

Solution 2: Function Declaration

« Teaches the compiler arguments and return types;
function definitions can then be in a logical order, and call
each other without restriction

sum_declared.c

Code examples from
slides are on the course
web for you to
experiment with!

/%include <stdio.h>
int sumTo (int) ;

int main(int argc,
printf ("sumTo (5)
return 0O;

}

int sumTo (int max)
int i, sum = 0;
for (1 = 1; i <=
sum += i;
}

return sum;

\}

// func prototype

char** argv) {
is:

// sum of integers from 1 to max

{

max; 1i++) {

sd\n", sumTo (5)) ;

~

32

W UNIVERSITY of WASHINGTON LO1: Intro, C CSE333, Summer 2024

Declaration vs. Definition

¢« C/C++ make a careful distinction between these two

« Definition: the thing itself
= e.g. code for function, variable definition that creates storage

= Must be exactly one definition of each thing (no duplicates)

« Declaration: description of a thing defined elsewhere

= e.g. function prototype, external variable declaration
- Often in header files and incorporated via #include

« Should also #include declaration in the file with the actual definition to
check for consistency

= Needs to appear in all files that use the thing
- Should appear before first use

33

YA/ UNIVERSITY of WASHINGTON

Multi-file C Programs

LO1: Intro, C

CSE333, Summer 2024

definition

Csourcefilel| void sumstore (int x,
(sumstore.c) *dest

X + vy

int vy,

int* dest) {

C source file 2 (#include <stdio.h> _
(sumnum.c) | | | | declaration
vold sumstore(int x, i1nt y, 1nt* dest);
int main(int argc, char** argv) {

int z, x = 351, y = 333;
sumstore (x,vy, &2) ;
printf ("%d + %d = %d\n",x,vy,2);
return O;

\}

Compile together:

$ gcc —O sumnum sumnum.c sumstore.c

34

W UNIVERSITY of WASHINGTON LO1: Intro, C CSE333, Summer 2024

C Workflow

Editor (emacs, vi) or IDE (eclipse)

(G Croe) (oo U

P S —
Statically-linked [o] I[foo.o] [bar.o]J Obiject files (. o)
libraries ' ~= _l ________
LINK LINK
_ _) [bar]
Shared libraries [lle : so]
LINK lLOAD
bar]

l EXECUTE, DEBUG, ...

35

YA/ UNIVERSITY of WASHINGTON

LO1: Intro, C

CSE333, Summer 2024

C to Machine Code

/§oid sumstore (int x, int y,<\
int* dest) { C source file
*dest = x + y; (sumstore.c)
\J Y,
lC compiler (gcc -S) C compiler
(sumstore: R (gcc -c)
addl $edi, %esi Assembly file
movl %esi, (%$rdx) (sumstore. s)
_ ret Y.
lAssembler (gcc -coras)
400575: 01 fe .
39 37 Machine code

sumstore.o
c3 ()

W UNIVERSITY of WASHINGTON LO1: Intro, C CSE333, Summer 2024

Compiling Multi-file Programs

« The linker combines multiple object files plus
statically-linked libraries to produce an executable

* Includes many standard libraries (e.g. 1ibc, crtl)
- Alibrary is just a pre-assembled collection of . o files

1 gcc -c
sumstore.cJ sumstore.o

1d or
gcc

Sumnum]

gcc -cC
[sumnum. C } sumnum. o

libraries
(e.g. 1ibc)

37

W UNIVERSITY of WASHINGTON LO1: Intro, C CSE333, Summer 2024

To-do List

» Explore the website thoroughly: http://cs.uw.edu/333

« Computer setup: CSE labs, attu, or CSE Linux VM

« Exercise O is due 10 am sharp on Thursday
= Find exercise spec on website, submit via Gradescope
= Sample solution will be posted later that day
= Give it your best shot

*

Project repos created and hwO out Wednesday

= Ask questions on Ed!
= More questions? Bring them (and your laptop) to section

38

http://cs.uw.edu/333

