
CSE 333
Section 8
HW4 Intro, Client-side Networking



HW4 and netcat



Web Server 
1. Establish client connections

a. Server socket set up 
in hw4/ServerSocket.cc

2. Read client requests
a. Parse HTTP requests 

in hw4/HttpConnection.cc
3. Respond to requests

a. Write HTTP responses
in hw4/HttpServer.cc

4. Fix security vulnerabilities
a. Escape characters

in hw4/Utils.cc
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Steps 2, 3, and 4 involve a lot of 
string manipulation which can be 

tedious! There might be 
something to help with that ☺

Okay to copy and modify 
lecture/exercise code for HW4, just 
make sure you know what’s going 

on!



Using telnet with HW4
1. Launch the server

./http333d <port> ../projdocs/ unit_test_indices/*

2. Connect with telnet

nc -C <HostName> <port>

3. Write an HTTP request and send it

(Note: nc –C is needed on attu/vm/CSE workstations to use \r\n for newlines when talking 

to web servers.  The option might be different on other machines (e.g., macs)



Writing an HTTP Request
● Example HTTP Request layout can be found in HttpRequest.h

● Example HW4 file request:
○ GET /static/test_tree/books/artofwar.txt HTTP/1.1

● Example HW4 query request:
○ GET /query?terms=books+of+war HTTP/1.1

● To send a request, hit [Enter] twice

● Compare the output of  solution_binaries/http333d  to  ./http333d



Boost Library (HW4)



Boost
Boost is  a free C++ library that provides support for various tasks in C++
● Note:  Boost does NOT follow the Google style guide!!!
● These will be helpful for you in hw4 to parse HTTP Requests!

Boost adds many string algorithms that you may have seen in Java
● Include with #include <boost/algorithm/string.hpp>
● Documentation: https://www.boost.org/doc/libs/1_60_0/doc/html/string_algo.html
● DO NOT use the regex library, the string library should be enough.

○ i.e., OK to use any boost libraries that do not require changing hw4 Makefile

https://www.boost.org/doc/libs/1_60_0/doc/html/string_algo.html


Helpful Functions

void boost::trim(string& input);
● Removes all leading and trailing whitespace from the string 
● input is an input and output parameter (non-const reference)

void boost::replace_all(string& input,
   const string& search,
   const string& format);

● Replaces all instances of search inside input with format



Helpful Functions

void boost::split(vector<string>& output, 
  const string& input,
 boost::PredicateT match_on,
  boost::token_compress_mode_type compress);

● Split the string by the characters in match_on

 
boost::PredicateT boost::is_any_of(const string& tokens);
● Returns predicate that matches on any of the characters in tokens



Client-Side Networking
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Client-Side Networking in 5 Easy* Steps!
1. Figure out what IP address and port to talk to
2. Build a socket from the client
3. Connect to the server using the client socket and server socket
4. Read and/or write using the socket
5. Close the socket connection
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*difficulty is 
subjective

Remember these are POSIX operations called using glibc C 
functions, though we are using them in our C++ programs



Sockets (Berkeley Sockets)
● Just a file descriptor for network communication

○ Defines a local endpoint for network communication
○ Built on various operating system calls

● Types of Sockets
○ Stream sockets (TCP)
○ Datagram sockets (UDP)
○ There are other types, which we will not discuss

● Each TCP socket is associated with a TCP port number (uint16_t) and an 
IP address
○ These are in network order (not host order) in TCP/IP data structures! 

(https://www.gnu.org/software/libc/manual/html_node/Byte-Order.html)
○ ai_family will help you to determine what is stored for your socket!
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https://www.gnu.org/software/libc/manual/html_node/Byte-Order.html


Understanding Socket Addresses

fam port addr zero

fam port flow addr scope

struct sockaddr_in (IPv4)

struct sockaddr_in6 (IPv6)

struct sockaddr_storage

struct sockaddr (pointer to this struct is used as parameter type in system calls) 

fam ????
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Big enough to hold either

....

13

fam ????



Understanding struct sockaddr*
● It’s just a pointer. To use it, we’re going to have to dereference it and 

cast it to the right type (Very strange C “inheritance”)
○ It is the endpoint your connection refers to

● Convert to a struct sockaddr_storage 
○ Read the sa_family to determine whether it is IPv4 or IPv6
○ IPv4: AF_INET (macro) → cast to struct sockaddr_in
○ IPv6:  AF_INET6 (macro) → cast to struct sockaddr_in6
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Step 1: Figuring out the port and IP
● Performs a DNS Lookup for a hostname

● Use “hints” to specify constraints (struct addrinfo*)

● Get back a linked list of struct addrinfo results

int getaddrinfo(const char* hostname,
    const char* service,

            const struct addrinfo* hints,
                struct addrinfo** res);
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Output parameter; *res is 
set to the first result in LL

We will set this to nullptr to 
get the default; otherwise you 
can specify service/port

Hints for the lookup server/refine results

Name of host whose IP we want



struct addrinfo {
    int ai_flags;              // additional flags
    int ai_family;             // AF_INET, AF_INET6, AF_UNSPEC 
    int ai_socktype;           // SOCK_STREAM, SOCK_DGRAM, 0
    int ai_protocol;           // IPPROTO_TCP, IPPROTO_UDP, 0
    size_t ai_addrlen;         // length of socket addr in bytes
    struct sockaddr* ai_addr;  // pointer to socket addr
    char* ai_canonname;        // canonical name
    struct addrinfo* ai_next;  // can have linked list of records
}

Step 1: Obtaining your server’s socket address
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● ai_addr points to a struct sockaddr describing a socket address, can be IPv4 or 
IPv6 



Steps 2 and 3: Building a Connection
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2. Create a client socket to manage (returns an integer file descriptor, just 
like POSIX open)

// returns file descriptor on success, -1 on failure (errno set)
int socket(int domain,           // AF_INET, AF_INET6, etc.
           int type,             // SOCK_STREAM, SOCK_DGRAM, etc.
           int protocol);        // just put 0 (network abstraction)

3. Use that created client socket to connect to the server socket
// Connects to the server
// returns 0 on success, -1 on failure (errno set)
int connect(int sockfd,                  // socket file descriptor
            struct sockaddr* serv_addr,  // socket addr of server
            socklen_t addrlen);          // size of serv_addr

Usually from getaddrinfo!



Steps 4 and 5: Using your Connection
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// returns amount read, 0 for EOF, -1 on failure (errno set)
ssize_t read(int fd, void* buf, size_t count);
 
// returns amount written, -1 on failure (errno set)
ssize_t write(int fd, void* buf, size_t count);
 
// returns 0 for success, -1 on failure (errno set)
int close(int fd);

● Same POSIX methods we used for file I/O! 
(so they require the same error checking...)



Helpful References

1. Figure out what IP address and port to talk to
• dnsresolve.cc

2. Build a socket from the client
• connect.cc

3. Connect to the server using the client socket and server socket
• sendreceive.cc

4. Read and/or write using the socket
• sendreceive.cc (same as above)

5. Close the socket connection
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https://courses.cs.washington.edu/courses/cse333/23sp/lectures/22/code/dnsresolve.cc
https://courses.cs.washington.edu/courses/cse333/23sp/lectures/22/code/connect.cc
https://courses.cs.washington.edu/courses/cse333/23sp/lectures/22/code/sendreceive.cc


Exercise 2
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21

Input 
param

Output param

TODO: Fill in this chart with the 
steps described in the slides on 
how to interact with a server as a 
client!



1. getaddrinfo()
● Performs a DNS Lookup for a hostname

● Use “hints” to specify constraints (struct addrinfo*)

● Get back a linked list of struct addrinfo results

int getaddrinfo(const char* hostname,
  const char* service,
  const struct addrinfo* hints,
  struct addrinfo** res);
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1. getaddrinfo() - Interpreting Results
struct addrinfo {

int ai_flags; // additional flags
int ai_family; // AF_INET, AF_INET6, AF_UNSPEC
int ai_socktype; // SOCK_STREAM, SOCK_DGRAM, 0
int ai_protocol; // IPPROTO_TCP, IPPROTO_UDP, 0
size_t ai_addrlen; // length of socket addr in bytes 
struct sockaddr* ai_addr; // pointer to sockaddr for address
char* ai_canonname; // canonical name
struct addrinfo* ai_next; // can form a linked list

};
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*Note that we get a linked list of results



1. getaddrinfo() - Interpreting Results
struct addrinfo {

int ai_family; // AF_INET, AF_INET6, AF_UNSPEC
struct sockaddr* ai_addr; // pointer to socket addr 
...

};
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● These records are dynamically allocated; you should pass the head of the 

linked list to freeaddrinfo()

● The field ai_family  describes if it is IPv4 or IPv6

● ai_addr points to a struct sockaddr describing the socket address



1. getaddrinfo() - Interpreting Results
With a struct sockaddr*:

● The field sa_family describes if it is IPv4 or IPv6

● Cast to  struct sockaddr_in* (v4)or  struct sockaddr_in6* 

(v6) to access/modify specific fields (i.e. ports)

● Store results in a  struct sockaddr_storage to have a space big 

enough for either
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2. Build client side socket
int socket(int domain,     // AF_INET, AF_INET6

   int type,       // SOCK_STREAM (for TCP)
   int protocol);  // 0 for the default
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● This gives us an unbound socket that’s not connected to anywhere in particular
● Returns a socket file descriptor (we can use it everywhere we can use any other file 

descriptor as well as in socket specific system calls)

socket



2. Build client side socket
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socket domain

struct
sockaddr_storage*

Remember to have 
enough space for 

sockaddr_storage*



3. connect()

int connect(int socket,                  // socket fd
 const struct sockaddr *addr, // address to connect to
 socklen_t addr_len);         // length of *addr
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● This takes our unbound socket and connects it to the host at addr
● Returns 0 on success, -1 on error with errno set appropriately
● After this call completes, we can actually use our socket for communication!



4. connect()
● Connects an available socket to a specified address

● Returns 0 on success, -1 on failure

int connect(int socket,                 

   const struct sockaddr *addr,

   socklen_t addr_len); 
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3. connect()
● Connects an available socket to a specified address

● Returns 0 on success, -1 on failure

int connect(int socket,                  // from 1
   const struct sockaddr *addr,  // from 2
   socklen_t addr_len); // size of serv_addr

Cast sockaddr_storage* to sockaddr*!
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4. read/write and 5. close
● Thanks to the file descriptor abstraction, use as normal!
● read from and write to a buffer, the OS will take care of 

sending/receiving data across the network
● Make sure to close the fd afterward
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