
CSE 333
Section 8
HW4 Intro, Client-side Networking

HW4 and netcat

Web Server
1. Establish client connections

a. Server socket set up
in hw4/ServerSocket.cc

2. Read client requests
a. Parse HTTP requests

in hw4/HttpConnection.cc
3. Respond to requests

a. Write HTTP responses
in hw4/HttpServer.cc

4. Fix security vulnerabilities
a. Escape characters

in hw4/Utils.cc
3

Steps 2, 3, and 4 involve a lot of
string manipulation which can be

tedious! There might be
something to help with that ☺

Okay to copy and modify
lecture/exercise code for HW4, just
make sure you know what’s going

on!

Using telnet with HW4
1. Launch the server

./http333d <port> ../projdocs/ unit_test_indices/*

2. Connect with telnet

nc -C <HostName> <port>

3. Write an HTTP request and send it

(Note: nc –C is needed on attu/vm/CSE workstations to use \r\n for newlines when talking

to web servers. The option might be different on other machines (e.g., macs)

Writing an HTTP Request
● Example HTTP Request layout can be found in HttpRequest.h

● Example HW4 file request:
○ GET /static/test_tree/books/artofwar.txt HTTP/1.1

● Example HW4 query request:
○ GET /query?terms=books+of+war HTTP/1.1

● To send a request, hit [Enter] twice

● Compare the output of solution_binaries/http333d to ./http333d

Boost Library (HW4)

Boost
Boost is a free C++ library that provides support for various tasks in C++
● Note: Boost does NOT follow the Google style guide!!!
● These will be helpful for you in hw4 to parse HTTP Requests!

Boost adds many string algorithms that you may have seen in Java
● Include with #include <boost/algorithm/string.hpp>
● Documentation: https://www.boost.org/doc/libs/1_60_0/doc/html/string_algo.html
● DO NOT use the regex library, the string library should be enough.

○ i.e., OK to use any boost libraries that do not require changing hw4 Makefile

https://www.boost.org/doc/libs/1_60_0/doc/html/string_algo.html

Helpful Functions

void boost::trim(string& input);
● Removes all leading and trailing whitespace from the string
● input is an input and output parameter (non-const reference)

void boost::replace_all(string& input,
 const string& search,
 const string& format);

● Replaces all instances of search inside input with format

Helpful Functions

void boost::split(vector<string>& output,
 const string& input,
 boost::PredicateT match_on,
 boost::token_compress_mode_type compress);

● Split the string by the characters in match_on

boost::PredicateT boost::is_any_of(const string& tokens);
● Returns predicate that matches on any of the characters in tokens

Client-Side Networking

10

Client-Side Networking in 5 Easy* Steps!
1. Figure out what IP address and port to talk to
2. Build a socket from the client
3. Connect to the server using the client socket and server socket
4. Read and/or write using the socket
5. Close the socket connection

11
*difficulty is
subjective

Remember these are POSIX operations called using glibc C
functions, though we are using them in our C++ programs

Sockets (Berkeley Sockets)
● Just a file descriptor for network communication

○ Defines a local endpoint for network communication
○ Built on various operating system calls

● Types of Sockets
○ Stream sockets (TCP)
○ Datagram sockets (UDP)
○ There are other types, which we will not discuss

● Each TCP socket is associated with a TCP port number (uint16_t) and an
IP address
○ These are in network order (not host order) in TCP/IP data structures!

(https://www.gnu.org/software/libc/manual/html_node/Byte-Order.html)
○ ai_family will help you to determine what is stored for your socket!

12

https://www.gnu.org/software/libc/manual/html_node/Byte-Order.html

Understanding Socket Addresses

fam port addr zero

fam port flow addr scope

struct sockaddr_in (IPv4)

struct sockaddr_in6 (IPv6)

struct sockaddr_storage

struct sockaddr (pointer to this struct is used as parameter type in system calls)

fam ????

16

28

Big enough to hold either

....

13

fam ????

Understanding struct sockaddr*
● It’s just a pointer. To use it, we’re going to have to dereference it and

cast it to the right type (Very strange C “inheritance”)
○ It is the endpoint your connection refers to

● Convert to a struct sockaddr_storage
○ Read the sa_family to determine whether it is IPv4 or IPv6
○ IPv4: AF_INET (macro) → cast to struct sockaddr_in
○ IPv6: AF_INET6 (macro) → cast to struct sockaddr_in6

14

Step 1: Figuring out the port and IP
● Performs a DNS Lookup for a hostname

● Use “hints” to specify constraints (struct addrinfo*)

● Get back a linked list of struct addrinfo results

int getaddrinfo(const char* hostname,
 const char* service,

 const struct addrinfo* hints,
 struct addrinfo** res);

15

Output parameter; *res is
set to the first result in LL

We will set this to nullptr to
get the default; otherwise you
can specify service/port

Hints for the lookup server/refine results

Name of host whose IP we want

struct addrinfo {
 int ai_flags; // additional flags
 int ai_family; // AF_INET, AF_INET6, AF_UNSPEC
 int ai_socktype; // SOCK_STREAM, SOCK_DGRAM, 0
 int ai_protocol; // IPPROTO_TCP, IPPROTO_UDP, 0
 size_t ai_addrlen; // length of socket addr in bytes
 struct sockaddr* ai_addr; // pointer to socket addr
 char* ai_canonname; // canonical name
 struct addrinfo* ai_next; // can have linked list of records
}

Step 1: Obtaining your server’s socket address

16

● ai_addr points to a struct sockaddr describing a socket address, can be IPv4 or
IPv6

Steps 2 and 3: Building a Connection

17

2. Create a client socket to manage (returns an integer file descriptor, just
like POSIX open)

// returns file descriptor on success, -1 on failure (errno set)
int socket(int domain, // AF_INET, AF_INET6, etc.
 int type, // SOCK_STREAM, SOCK_DGRAM, etc.
 int protocol); // just put 0 (network abstraction)

3. Use that created client socket to connect to the server socket
// Connects to the server
// returns 0 on success, -1 on failure (errno set)
int connect(int sockfd, // socket file descriptor
 struct sockaddr* serv_addr, // socket addr of server
 socklen_t addrlen); // size of serv_addr

Usually from getaddrinfo!

Steps 4 and 5: Using your Connection

18

// returns amount read, 0 for EOF, -1 on failure (errno set)
ssize_t read(int fd, void* buf, size_t count);

// returns amount written, -1 on failure (errno set)
ssize_t write(int fd, void* buf, size_t count);

// returns 0 for success, -1 on failure (errno set)
int close(int fd);

● Same POSIX methods we used for file I/O!
(so they require the same error checking...)

Helpful References

1. Figure out what IP address and port to talk to
• dnsresolve.cc

2. Build a socket from the client
• connect.cc

3. Connect to the server using the client socket and server socket
• sendreceive.cc

4. Read and/or write using the socket
• sendreceive.cc (same as above)

5. Close the socket connection
19

https://courses.cs.washington.edu/courses/cse333/23sp/lectures/22/code/dnsresolve.cc
https://courses.cs.washington.edu/courses/cse333/23sp/lectures/22/code/connect.cc
https://courses.cs.washington.edu/courses/cse333/23sp/lectures/22/code/sendreceive.cc

Exercise 2

20

21

Input
param

Output param

TODO: Fill in this chart with the
steps described in the slides on
how to interact with a server as a
client!

1. getaddrinfo()
● Performs a DNS Lookup for a hostname

● Use “hints” to specify constraints (struct addrinfo*)

● Get back a linked list of struct addrinfo results

int getaddrinfo(const char* hostname,
 const char* service,
 const struct addrinfo* hints,
 struct addrinfo** res);

22

1. getaddrinfo() - Interpreting Results
struct addrinfo {

int ai_flags; // additional flags
int ai_family; // AF_INET, AF_INET6, AF_UNSPEC
int ai_socktype; // SOCK_STREAM, SOCK_DGRAM, 0
int ai_protocol; // IPPROTO_TCP, IPPROTO_UDP, 0
size_t ai_addrlen; // length of socket addr in bytes
struct sockaddr* ai_addr; // pointer to sockaddr for address
char* ai_canonname; // canonical name
struct addrinfo* ai_next; // can form a linked list

};

23

*Note that we get a linked list of results

1. getaddrinfo() - Interpreting Results
struct addrinfo {

int ai_family; // AF_INET, AF_INET6, AF_UNSPEC
struct sockaddr* ai_addr; // pointer to socket addr
...

};

24

● These records are dynamically allocated; you should pass the head of the

linked list to freeaddrinfo()

● The field ai_family describes if it is IPv4 or IPv6

● ai_addr points to a struct sockaddr describing the socket address

1. getaddrinfo() - Interpreting Results
With a struct sockaddr*:

● The field sa_family describes if it is IPv4 or IPv6

● Cast to struct sockaddr_in* (v4)or struct sockaddr_in6*

(v6) to access/modify specific fields (i.e. ports)

● Store results in a struct sockaddr_storage to have a space big

enough for either

25

2. Build client side socket
int socket(int domain, // AF_INET, AF_INET6

 int type, // SOCK_STREAM (for TCP)
 int protocol); // 0 for the default

26

● This gives us an unbound socket that’s not connected to anywhere in particular
● Returns a socket file descriptor (we can use it everywhere we can use any other file

descriptor as well as in socket specific system calls)

socket

2. Build client side socket

27

socket domain

struct
sockaddr_storage*

Remember to have
enough space for

sockaddr_storage*

3. connect()

int connect(int socket, // socket fd
 const struct sockaddr *addr, // address to connect to
 socklen_t addr_len); // length of *addr

28

● This takes our unbound socket and connects it to the host at addr
● Returns 0 on success, -1 on error with errno set appropriately
● After this call completes, we can actually use our socket for communication!

4. connect()
● Connects an available socket to a specified address

● Returns 0 on success, -1 on failure

int connect(int socket,

 const struct sockaddr *addr,

 socklen_t addr_len);

29

3. connect()
● Connects an available socket to a specified address

● Returns 0 on success, -1 on failure

int connect(int socket, // from 1
 const struct sockaddr *addr, // from 2
 socklen_t addr_len); // size of serv_addr

Cast sockaddr_storage* to sockaddr*!

30

4. read/write and 5. close
● Thanks to the file descriptor abstraction, use as normal!
● read from and write to a buffer, the OS will take care of

sending/receiving data across the network
● Make sure to close the fd afterward

31

32

