
POSIX I/O, C++ Intro

CSE 333
Section 4

Logistics
● Homework 2

○ Due next Wednesday, 4/24 @ 10:00pm
○ Indexing files to allow for searching

● Exercise 8.5
○ Due Tomorrow @ 11:00am

● Exercise 9
○ Write a Vector class in C++
○ Due Monday @ 11:00am

POSIX

3

POSIX (Portable Operating System Interface)
A family of IEEE standards that maintains compatibility across
variants of Unix-like operating systems for basic I/O (file,
terminal, and network) and for threading.
1. Why might a POSIX standard be beneficial (e.g., from an application

perspective or vs. the C stdio library)?

4

● More explicit control since read and write functions are system calls and
you can directly access system resources.

● POSIX calls are unbuffered so you can implement your own buffer
strategy on top of read()/write().

● There is no standard higher level API for network and other I/O devices

What’s Tricky about (POSIX) File I/O?
● Communication with input and output devices doesn’t

always work as expected
○ Some details might be unknown (e.g., size of a file)
○ May not process all data or fail, necessitating read/write loops

● Different system calls have a variety of different failure
modes and error codes
○ Look up in the documentation and use pre-defined constants!
○ Lots of error-checking code needed

■ Need to handle resource cleanup on every termination pathway
5

Messy Roommate

6

I/O Analogy – Messy Roommate

7

● The Linux kernel (Tux) now lives with you
in room #333

● There are N pieces of trash in the room
● There is a single trash can, char bin[N]

○ (For some reason, the trash goes in a particular order)

● You can tell your roommate to pick it up, but they are
unreliable

https://en.wikipedia.org/wiki/Tux_(mascot)

I/O Analogy – Messy Roommate
num_trash = Pickup(room_num, trash_bin, amount)

“I tried to start cleaning, but something came up”
(got hungry, had a midterm, room was locked, etc.)

num_trash == -1
errno == excuse

“You told me to pick up trash, but the room was
already clean”

num_trash == 0

“I picked up some of it, but then I got distracted by
my favorite show on Netflix”

num_trash < amount

“I did it! I picked up all the trash!” num_trash == amount

8

How do we get room 333 clean?
num_trash = Pickup(room_num, trash_bin, amount)

num_trash == -1, errno == excuse

num_trash == 0

num_trash < Amount

num_trash == Amount

bin[0]

bin[N-1]
What do we
do in the
following
scenarios?

9

How do we get room 333 clean?
num_trash pickup(roomNum, trashBin, Amount)

num_trash == -1, errno == excuse

num_trash == 0

num_trash < Amount

num_trash == Amount

bin[0]

bin[N-1]I have to study
for cse333! I’ll
do it later.

Decide if the
excuse is
reasonable,
and either
let it be or
ask again.

10

How do we get room 333 clean?
num_trash pickup(roomNum, trashBin, Amount)

num_trash == -1, errno == excuse

num_trash == 0

num_trash < Amount

num_trash == Amount

bin[0]

bin[N-1]The room is
already clean,
dawg!

Stop asking
them to clean
the room!
There’s
nothing to do.

11

How do we get room 333 clean?
num_trash pickup(roomNum, trashBin, Amount)

num_trash == -1, errno == excuse

num_trash == 0

num_trash < Amount

num_trash == Amount

bin[0]

bin[N-1]
Ask them
again to pick
up the rest
of it.

I picked up 3
whole pieces of
trash! What more
do you want from
me?

12

How do we get room 333 clean?
num_trash pickup(roomNum, trashBin, Amount)

num_trash == -1, errno == excuse

num_trash == 0

num_trash < Amount

num_trash == Amount

bin[0]

bin[N-1]
They did
what you
asked, so
stop asking
them to pick
up trash.

I did it! The
whole room
is finally
clean.

13

Review from Lecture – POSIX Read
ssize_t read(int fd, void *buf, size_t count);

An error occurred result == -1
errno = error

Nothing left to read (already at EOF) result == 0

Partial Read result < count

Success! result == count

14https://man7.org/linux/man-pages/man2/read.2.html

15

Not fully
comprehensive, please
refer to the man pages

Exercises 1-4

16

int open(char *name, int flags);
➔ name is a string representing the name of the file. Can be relative or

absolute.
➔ flags is an integer code describing the access. Some common flags

are listed below:
◆ O_RDONLY – Open the file in read-only mode.
◆ O_WRONLY – Open the file in write-only mode.
◆ O_RDWR – Open the file in read-write mode.
◆ O_APPEND – Append new information to the end of the file.

★ Returns an integer which is the file descriptor. Returns -1 if there is a
failure.

ssize_t read(int fd, void *buf, size_t count);
ssize_t write(int fd, const void *buf, size_t count);
➔ fd is the file descriptor (as returned by open()).
➔ buf is the address of a memory area into which the data is read or

written.
➔ count is the maximum amount of data to read from or write to the

stream.
★ Returns the actual amount of data read from or written to the file.

int close(int fd);

17

int fd = __; // open 333.txt
int n = ...;
char *buf = ...; // Assume buf initialized with size n
int result;

______________________________; // initialize variable for loop

... // code that populates buf happens here

while (_______________________) {

 result = write(_______, _______________, _______________________);

 if (result == -1) {
 if (errno != EINTR && errno != EAGAIN) {
 // a real error happened, return an error result
 ___________________; // cleanup
 perror("Write failed");
 return -1;
 }
 continue; // EINTR or EAGAIN happened, so loop around and try again
 }
 ________________________________; // update loop variable
}
________________; // cleanup

open("333.txt", O_WRONLY)

char *ptr = buf

ptr < buf + n

fd ptr buf + n - ptr

close(fd)

ptr += result

close(fd)

(ℹ) This is just ONE
possible way to solve

this exercise!

POSIX Analysis
3. Why is it important to store the return value from write?

Why don’t we check for a return value of 0 like read?

4. Why is it important to remember to call close once you
have finished working on a file?

18

write may not actually write all the bytes specified in count.

The 0 case for reading was EOF, but writing adds length to your file
and we know exactly how much we are trying to write.

In order to free resources (i.e., locks on those files, file descriptor
table entries).

There is No One True Loop!!!
You will need to tailor your POSIX loops to the specifics of
what you need.

Some design considerations:
● Read data in fixed-sized chunks or all at once?

○ Trade-off in disk accesses versus memory usage.
● What if we don’t know N (how many bytes to read) ahead of time?

○ Keep calling read until we get 0 back (EOF).
○ Can determine N dynamically by tracking the number of bytes read and

using malloc/realloc to allocate more space as we go.
○ This case comes up when reading/writing to the network (later in 333)!

19

Directories

20

Directories
● A directory is a special file that stores the names and

locations of the related files/directories
○ This includes itself (.), its parent directory (..), and all of its

children (i.e., the directory's contents)
○ Take CSE 451 to learn more about the directory structure

● Accessible via POSIX (dirent.h in C/C++)

● Why might we want to work with directories in a program?

21

List files, find files, search files, recursively traverse directories, etc.

POSIX Directory Basics
● POSIX defines operations for directory traversal

○ DIR * is not a file descriptor, but used similarly
○ struct dirent describes a directory entry
○ readdir() returns the ‘next’ directory entry, or NULL at end

● Error values (they also set errno):
○ DIR *opendir(const char *name); // NULL
○ struct dirent *readdir(DIR *dirp); // NULL
○ int closedir(DIR *dirp); // -1

22

struct dirent

● Returned value from readdir
○ Does not need to be “freed” or “closed” 🎉

● Fields are “unspecified” (depends on your file system)
○ glibc specifies:

23

struct dirent {
 ino_t d_ino;
 off_t d_off;
 unsigned short d_reclen;
 unsigned char d_type;
 char d_name[256];
};

Null-terminated directory entry
name (what we care about in 333)

directory entry
metadata stored
in integer types}

readdir Example

DIR *dirp = opendir("~/tiny_dir");

struct dirent *file = readdir(dirp);

file = readdir(dirp);

file = readdir(dirp);

file = readdir(dirp);

closedir(dirp);
24

~/tiny_dir/ hi.txt...

internal dir ptr:

// opens directory

// gets ptr to "."

// gets ptr to ".."
// gets ptr to "hi.txt"

// gets NULL

// clean up

Exercise 5

25

26

Given the name of a directory, write a C program that is analogous to ls, i.e.
prints the names of the entries of the directory to stdout. Be sure to handle
any errors!
int main(int argc, char** argv) {
 /* 1. Check to make sure we have a valid command line arguments */

 /* 2. Open the directory, look at opendir() */

 ...

 if (argc != 2) {
 fprintf(stderr, "Usage: ./dirdump <path>\n");
 return EXIT_FAILURE;
 }

 DIR *dirp = opendir(argv[1]);
 if (dirp == NULL) {
 fprintf(stderr, "Could not open directory\n");
 return EXIT_FAILURE;
 }

27

Given the name of a directory, write a C program that is analogous to ls, i.e.
prints the names of the entries of the directory to stdout. Be sure to handle
any errors! ...
 /* 3. Read through/parse the directory and print out file names
 Look at readdir() and struct dirent */

 /* 4. Clean up */

}

 struct dirent *entry;
 entry = readdir(dirp);
 while (entry != NULL) {

 }

 closedir(dirp);
 return EXIT_SUCCESS;

 printf("%s\n", entry->d_name);
 entry = readdir(dirp);

Pointers, References, & Const

Example

Consider the following code:
int x = 5;
int& x_ref = x;
int* x_ptr = &x;

5x, x_ref 5

0x7fff...x_ptr

What are some tradeoffs to using pointers vs references?

Note syntactic similarity to
pointer declaration

Still the address-of operator!

Pointers vs. References

Pointers References

● Can move to different data via
reassignment/pointer arithmetic

● References the same data for its
entire lifetime - can’t reassign

● Can be initialized to NULL ● No sensible “default reference,”
must be an alias

● Useful for output parameters:
MyClass* output

● Useful for input parameters:
const MyClass &input

● void func(int& arg) vs. void func(int* arg)

● Use references when you don’t want to deal with pointer semantics

○ Allows real pass-by-reference

○ Can make intentions clearer in some cases

● STYLE TIP: use references for input parameters and pointers for output
parameters, with the output parameters declared last

○ Note: A reference can’t be NULL

Pointers, References, Parameters

Const

● Mark a variable with const to make
a compile time check that a variable
is never reassigned

● Does not change the underlying
write-permissions for this variable

int x = 42;

// Read only
const int* ro_x_ptr = &x;

// Can still modify x with
rw_x_ptr!
int* rw_x_ptr = &x;

// Only ever points to x
int* const x_ptr = &x;

420x7fff... 0x7fff...

xro_x_ptr rw_x_ptr

0x7fff...

x_ptr

Legend
Red = can’t change box it’s next to
Black = read and write

Exercise 6

Exercise 6

int x = 5;
int& x_ref = x;
int* x_ptr = &x;
const int& ro_x_ref = x;
const int* ro_ptr1 = &x;
int* const ro_ptr2 = &x;

5x, x_ref

0x7fff... x_ptrro_ptr1 0x7fff...

0x7fff... ro_ptr2

“Const pointer to an
int”

“Pointer to a const int”

ro_x_ref

Tip: Read the declaration “right-to-left”

Legend
Red = can’t change box it’s
next to
Black = read and write

Exercise 6

When would you prefer void Func(int &arg); to void Func(int *arg);? Expand on this
distinction for other types besides int.

• When you don’t want to deal with pointer semantics, use references
• When you don’t want to copy stuff over (doesn’t create a copy, especially for parameters

and/or return values), use references
• Style wise, we want to use references for input parameters and pointers for output

parameters, with the output parameters declared last

Which lines result in a compiler error?
✔ OK ❌ ERROR

bar(x_ref);
bar(ro_x_ref);
foo(x_ref);
ro_ptr1 = (int*) 0xDEADBEEF;
x_ptr = &ro_x_ref;
ro_ptr2 = ro_ptr2 + 2;
*ro_ptr1 = *ro_ptr1 + 1;

Exercise 6
void foo(const int& arg);
void bar(int& arg);

int x = 5;
int& x_ref = x;
int* x_ptr = &x;
const int& ro_x_ref = x;
const int* ro_ptr1 = &x;
int* const ro_ptr2 = &x;

5x, x_ref

0x7fff...

x_ptr
ro_ptr1 0x7fff...

0x7fff...ro_ptr2

ro_x_ref

✔
❌ ro_x_ref is const
✔
✔
❌ ro_x_ref is const
❌ ro_ptr2 is const
❌ (*ro_ptr1) is const

Legend
Red = can’t change box it’s next
to
Black = “read and write”

Objects and const Methods

#ifndef POINT_H_
#define POINT_H_

class Point {
 public:
 Point(const int x, const int y);
 int get_x() const { return x_; }
 int get_y() const { return y_; }
 double Distance(const Point& p) const;
 void SetLocation(const int& x, const int& y);

 private:
 int x_;
 int y_;
}; // class Point

#endif // POINT_H_

Cannot mutate the
object it’s called on.

Trying to change x_
or y_ inside will
produce a compiler
error!

A const class object can only
call member functions that have

been declared as const

Exercise 7

Exercise 7

✔
✔
❌
✔

const MultChoice m1(1,'A');
MultChoice m2(2,'B');
cout << m1.get_resp();
cout << m2.get_q();

Which lines of the
snippets of code below
would cause compiler
errors?

✔ OK ❌ ERROR

const MultChoice m1(1,'A');
MultChoice m2(2,'B');
m1.Compare(m2);
m2.Compare(m1);

✔
✔
✔
❌

class MultChoice {
 public:
 MultChoice(int q, char resp) : q_(q), resp_(resp) { } // 2-arg ctor
 int get_q() const { return q_; }
 char get_resp() { return resp_; }
 bool Compare(MultChoice &mc) const; // do these MultChoice's match?

 private:
 int q_; // question number
 char resp_; // response: 'A','B','C','D', or 'E'
}; // class MultChoice

What would you change about the
class declaration to make it better?

class MultChoice {
 public:
 MultChoice(int q, char resp) : q_(q), resp_(resp) { } // 2-arg ctor
 int get_q() const { return q_; }
 char get_resp() { return resp_; }
 bool Compare(MultChoice &mc) const; // do these MultChoice's match?

 private:
 int q_; // question number
 char resp_; // response: 'A','B','C','D', or 'E'
}; // class MultChoice

class MultChoice {
 public:
 MultChoice(int q, char resp) : q_(q), resp_(resp) { } // 2-arg ctor
 int get_q() const { return q_; }
 char get_resp() const { return resp_; }
 bool Compare(const MultChoice &mc) const; // do these match?

 private:
 int q_; // question number
 char resp_; // response: 'A','B','C','D', or 'E'
}; // class MultChoice

• Make get_resp() const
• Make the parameter to Compare() const
• Stylistically:

o Add a setter method and default constructor
o Disable copy constructor and assignment operator

