
CSE333, Winter 2024L07: Build Tools

Build Tools (make)
CSE 333 Winter 2024

Instructor: Hal Perkins

Teaching Assistants:
Ann Baturytski Noa Ferman Hannah Jiang
Humza Lala Leanna Nguyen Varun Pradeep
Jus=n Tysdal Deeksha Vatwani Yiqing Wang
Wei Wu Jennifer Xu

CSE333, Winter 2024L07: Build Tools

Lecture Outline

v Make and Build Tools

2

CSE333, Winter 2024L07: Build Tools

make

v make is a classic program for controlling what gets
(re)compiled and how
§ Many other such programs exist (e.g. ant, maven, IDE “projects”)

v make has tons of fancy features, but only two basic ideas:
1) Scripts for execu6ng commands
2) Dependencies for avoiding unnecessary work

v To avoid “just teaching make features” (boring and
narrow), let’s focus more on the concepts…

3

CSE333, Winter 2024L07: Build Tools

Building Software

v Programmers spend a lot of Bme “building”
§ Crea6ng programs from source code
§ Both programs that they write and other people write

v Programmers like to automate repeBBve tasks
§ Repe66ve: gcc -Wall -g -std=c17 -o widget foo.c bar.c baz.c

• Retype this every =me: 😭

• Use up-arrow or history: 😐 (s=ll retype aLer logout)

• Have an alias or bash script: 🙂

• Have a Makefile: 😊 (you’re ahead of us)
4

CSE333, Winter 2024L07: Build Tools

“Real” Build Process

v On larger projects, you can’t or don’t want to have one big (set
of) command(s) that redoes everything every Bme you change
anything:
1) If gcc didn’t combine steps for you, you’d need to preprocess,

compile, and link on your own (along with anything you used to
generate the C files)

2) If source files have mul=ple outputs (e.g. javadoc), you’d have to type
out the source file name(s) mul=ple =mes

3) You don’t want to have to document the build logic when you
distribute source code

4) You don’t want to recompile everything every =me you change
something (especially if you have 105-107 files of source code)

v A script can handle 1-3 (use a variable for filenames for 2), but
4 is trickier

5

CSE333, Winter 2024L07: Build Tools

An Example

v We have a small program that is split into mulBple Bny
modules (code on the web linked to this lecture):

v Modules:
§ speak.h/speak.c: write a string to stdout
§ shout.h/shout.c: write a string to stdout LOUDLY
§ main.c: client program

v Demo: build this program incrementally, and recompile
only necessary parts when something changes

v How do we automate this “minimal rebuild”?

6

speak.cspeak.h shout.cshout.hmain.c

CSE333, Winter 2024L07: Build Tools

Recompila>on Management

v The “theory” behind avoiding unnecessary compilaBon is
a dependency dag (directed, acyclic graph)

v To create a target 𝑡, you need sources 𝑠!, 𝑠", … , 𝑠# and a
command 𝑐 that directly or indirectly uses the sources
§ It 𝑡 is newer than every source (file-modifica6on 6mes), assume

there is no reason to rebuild it
§ Recursive building: if some source 𝑠! is itself a target for some

other sources, see if it needs to be rebuilt…
§ Cycles “make no sense”!

7

CSE333, Winter 2024L07: Build Tools

Theory Applied to Our Example
v What are the dependencies between built and source files?
v What needs to be rebuilt if something changes?

8

speak.cspeak.h shout.cshout.hmain.c

speak.o shout.omain.o

talk

CSE333, Winter 2024L07: Build Tools

make Basics

v A makefile contains a bunch of triples:

§ Colon after target is required
§ Command lines must start with a TAB, NOT SPACES
§ Multiple commands for same target are executed in order

• Can split commands over multiple lines by ending lines with ‘\’

v Example:

v Demo: look at Makefile for our example program

9

foo.o: foo.c foo.h bar.h
 gcc -Wall -o foo.o -c foo.c

target: sources
 command← Tab →

CSE333, Winter 2024L07: Build Tools

Using make

v Defaults:
§ If no -f specified, use a file named Makefile
§ If no target specified, will use the first one in the file
§ Will interpret commands in your default shell

• Set SHELL variable in makefile to ensure

v Target execution:
§ Check each source in the source list:

• If the source is a target in the Makefile, then process it recursively
• If some source does not exist, then error
• If any source is newer than the target (or target does not exist), run
command (presumably to update the target)

10

bash% make -f <makefileName> target

CSE333, Winter 2024L07: Build Tools

make Variables

v You can define variables in a makefile:
§ All values are strings of text, no “types”
§ Variable names are case-sensi6ve and can’t contain ‘:’, ‘#’, ‘=’, or

whitespace

v Example:

v Advantages:
§ Easy to change things (especially in mul6ple commands)
§ Can also specify on the command line (CC=clang FLAGS=-g)

11

CC = gcc
CFLAGS = -Wall -std=c17
foo.o: foo.c foo.h bar.h
 $(CC) $(CFLAGS) -o foo.o -c foo.c

CSE333, Winter 2024L07: Build Tools

More Variables; “phony” targets
(2 separate things)

v It’s common to use variables to hold list of filenames:

v clean is a convenBon
§ Remove generated files to “start over” from just the source
§ It’s “funny” because the target doesn’t exist and there are no

sources, but it works because:
• The target doesn’t exist, so it must be “remade” by running the

command
• These “phony” targets have several uses, such as “all”…

12

OBJFILES = foo.o bar.o baz.o
widget: $(OBJFILES)
 gcc -o widget $(OBJFILES)
clean:
 rm $(OBJFILES) widget *~

CSE333, Winter 2024L07: Build Tools

“all” Example

13

all: prog B.class someLib.a
 # notice no commands this time

prog: foo.o bar.o main.o
 gcc –o prog foo.o bar.o main.o

B.class: B.java
 javac B.java

someLib.a: foo.o baz.o
 ar r foo.o baz.o

foo.o: foo.c foo.h header1.h header2.h
 gcc -c -Wall foo.c

similar targets for bar.o, main.o, baz.o, etc...

CSE333, Winter 2024L07: Build Tools

Revenge of the Funny Characters

v Special variables:
§ $@ for target name
§ $^ for all sources
§ $< for leb-most source
§ Lots more! – see the documenta6on

v Examples:

14

CC and CFLAGS defined above
widget: foo.o bar.o
 $(CC) $(CFLAGS) -o $@ $^
foo.o: foo.c foo.h bar.h
 $(CC) $(CFLAGS) -c $<

CSE333, Winter 2024L07: Build Tools

And more…

v There are a lot of “built-in” rules – see documentaBon
v There are “suffix” rules and “paSern” rules

§ Example:

v Remember that you can put any shell command – even
whole scripts!

v You can repeat target names to add more dependencies
v OWen this stuff is more useful for reading makefiles than

wriBng your own (unBl some day…)

15

%.class: %.java
 javac $< # we need the $< here

CSE333, Winter 2024L07: Build Tools

Extra Exercise #1

v Modify the linked list code from Lecture 5 Extra
Exercise #1
§ Add sta6c declara6ons to any internal func6ons you implemented

in linkedlist.h
§ Add a header guard to the header file
§ Write a Makefile

• Use Google to figure out how to add rules to the Makefile to
produce a library (liblinkedlist.a) that contains the linked list
code

20

