CSE 333

Section 3
HW2 Overview, Makefiles

W UNIVERSITY of WASHINGTON

Checking In & Logistics

Quick check-in: REMINDERS:

Do you have any Exercise 5: Due Today (4/11) @ 11:00 pm
questions, comments,

Exercise 6: Due Monday (4/15) @ 11:00 am
or concerns”?

Exercise 7: Due Monday (4/15) @ 11:00 am
Exercises going ok?

Lectures making
sense?

Homework 2 Overview

Homework 2 Search

Go

e Main Idea: Build a search engine for a file system
o It can take in queries and output a list of files in a directory that has that query
o The query will be ordered based on the number of times the query is in that file
o Should handle multiple word queries (Note: all words in a query have to be in the
file)

e \What does this mean?
o Part A: Parsing a file and reading all of its contents into heap allocated memory
o Part B: Crawling a directory (reading all regular files recursively in a directory)
and building an index to query from
o Part C: Build a searchshell (search engine) to query your index for results

Note: It will use the LinkedList and
HashTable implementations from HW1!

Part A: File Parsing

Read a file and generate a
HashTable of WordPositions!

Word positions will include the word
and LinkedList of its positions in a
file.

typedef struct WordPositions {

char *word; // normalized word. Owned.

LinkedList *positions; // list of DocPositionOffset_t.

} WordPositions;

somefile.txt

My goodness! I love the course CSE333.\n
I'll recommend this course to my friends.

\n

ParseIntoWordPositionsTable(contents)

Note that the key is the hashed C-string of
WordPositions

RO %
T I e e T .
. "goodness” >
FNV64(my) [——> 3 I~
FNV64(goodness) i [14 | &4---»] 40 [~-.]
FNV64(i
NV64(i) iove]
FNV64(love) | 18 J-.]
"the”
FNV64(the) - 21 Sag
“course" I J I r 'I
FNV64(course) L j L= 1 .4"'>
["cse" |
FNV64(cse) [>l 32 [--.] ——
FNV64(ll) e - > | -l 42 [~~.]
["recommend” |
FNV64(recommend) - 1 | a5 f‘ :' o
FNVG4(this) [— o= T—]
o)
e [I i |
FNV64(friends)
[“friends” |
> —>_ 73 [~.]

Part B: Directory Crawling — DocTable

Read through a directory in CrawlFileTree.c

For each file visited, build your DocTable and
Memlindex!

DocTable maps document names to IDs.
FNV64 is a hash function.

struct doctable_st {

HashTable *id_to_name; // mapping doc id to doc name
HashTable *name_to_id; // mapping docname to doc 1id
DocID_t max_1id; // max docID allocated so far
}s

DocID_t DocTable_Add(DocTable xtable, char *doc_name);

Key Value
5 *—
1 o——
4 &
2 o—
3 o—|

docid_to_docname

Key Value
FNV64("test_tree/README.TXT") o——»
FNV64("test_tree/example.txt") o—
FNV64("test_tree/enron_email/2.") e—1t—p
FNV64("test_tree/bash-4.2/trap.c") o— >
FNV64("test_tree/books/ulysses.txt") o——p
B

docname_to_docid

- "test_tree/README.TXT"

— "test_tree/books/ulysses.txt"
— "test_tree/bash-4.2/trap.c”
—p- "test_tree/enron_email/i2.”

= "test_tree/example.txt”

(DocID_t) 5
(DocID_t) 3
(DocID_t) 2
(DoclID_t) 4

(DoclD_t) 1

Part B: Directory Crawling - Memlindex

. . . . DocID_t
Memindex is an index to view files. NG
It's a HashTable of WordPostings. HashTable | |urdrestines \\H,?thablvjm
FNV64("course”) — == k 3
typedef struct { FNV64("recommend’) 7
char *word; — LinkedList [& T e---»[& T]
HashTable *postings; i it 7
} WordPostings;
| W eemnen? ! pocPosition0ffset_t
Let’s try to find what contains L
“course”: Sute— o [s
e WordPostings’ postings has an o T T] ———
element with key == 3 (Only 3 N
7] I TPl : I
DoclID 3 has “course in its file”) |
e The value is the LinkedList of — e

offsets the words are in DocID 3

Part C: Searchshell

e Use queries to ask for a result!
o Formatting should match example output
o Exact implementation is up to you!

MemlIndex.h

typedef struct SearchResult {
uint64_t docid; // a document that matches a search query

uint32_t rank; // an 1indicator of the quality of the match

} SearchResult, *SearchResultPtr;

MemIndex_Search(MemIndex,

Query
Results from Query!

course friends my QueryArray, Querylen);

Hints

e Read the . h files for documentation about functions!
e Understand the high level idea and data structures before getting started
e Follow the suggested implementation steps given in the CSE 333 HW2 spec

Extern and Static

Extern and Static

e cxtern makes a declaration visible in any module, but tells the linker to
look for the definition in a different module

e static makes a definition private to the current module, and disallows
access from other modules regardless of any further extern declaration

e #include's make it difficult to reason about which files have the declarations
and definitions :(

ccl

11

Extern and Static: A Few Examples ..

Scenario 1;

O

(@)

We have an extern'ed declaration in £ib.h, which is #include'd intothe fib and main

modules

There is nothing in fib.c

ccl

ccl

12

Extern and Static: A Few Examples ..

e Scenario 2;

O We have an extern'ed declaration in £ib.h, which is #include'd intothe fib and main
modules

o There is a definitionin fib.c

Extern and Static: A Few Examples ..

Scenario 3;

O

(@)

We have a static'ed definition in £ib.h, which is #include'd into the £fib and main

modules

We remove the definition from fib.c

ccl

ccl

14

Extern and Static: A Few Examples ..

Scenario 4;

O

(@)

We have no declarations nor definitions in £ib.h, which continues to be #include'd into the

fib and main modules

We put the definition back into fib.c

ccl

ccl

15

Makefile Demo

Exercise 1

