
CSE 333
Section 1
C, Pointers, and Gitlab

1

Logistics
● Exercise 1:

○ Due Friday (tomorrow!) @ 11:00 AM (03/29) – no late exercises
accepted

● Homework 0:
○ Due Monday @ 10:00 PM (04/01)
○ Meant to acquaint you to your repo and project logistics
○ Must be done individually

2

3

TA Intro

Icebreaker!

Please turn to the people next to you and share:

● Name, pronouns, year

● What are you excited for this summer? Any fun
travel plans?

● What are you excited to learn in CSE 333?

4

Pointer Review

5

Pointers
● Data type that stores the address of (the lowest byte of) a datum

○ Can draw an arrow in memory diagrams from pointer to pointed to data,
particularly if actual value (stored address) is unknown

6

● Common uses:
○ Reference to data allocated elsewhere (e.g., malloc, literals, files)
○ Iterators (e.g., data structure traversal)
○ Data abstraction (e.g., head of linked list, function pointers)

Pointer Syntax and Semantics

● Declared as type* name; or type *name;
○ Doesn’t matter, just be consistent

● “Address-of” operator & gets a variable’s address
● “Dereference” operator * refers to the pointed-to datum

● Example code:

● Example diagram:

7

int* ar = (int*) malloc(3*sizeof(int)); // reference
int* p = &ar[1]; // iterator
*p = 3;

0x1b126b0

0x1b126b4

? 3 ?
ar

p

Stack Heap

Output Parameters

8

Output Parameters

● Recall: the return statement in a function passes a single value back through
the %rax register

9

● An output parameter is a C idiom that emulates “returning
values” through parameters:
○ An output parameter is a pointer (i.e., the address of a location in

memory)
○ The function with this parameter must dereference it to change the

value stored at that location
○ The new value is “returned” by persisting after the function returns

● Output parameters are the only way in C to achieve returning
multiple values

Exercise 1

1
0

Exercise 1

● Which parameters are output
parameters?

● What should go in the division
blanks?

● What should go in the printf
blanks?

11

void division(int numerator,
 int denominator,
 int* quotient,
 int* remainder) {
 *quotient = numerator / denominator;
 *remainder = numerator % denominator;
}

int main(int argc, char* argv[]) {
 int quot, rem;
 division(22, 5, _____, _____);
 printf("%d rem %d\n", _____, _____);
 return EXIT_SUCCESS;
}

quotient and remainder

" and &rem

quot and rem

Exercise 1

● Draw out a memory diagram of the
beginning of this call to division.

12

void division(int numerator,
 int denominator,
 int* quotient,
 int* remainder) {
 *quotient = numerator / denominator;
 *remainder = numerator % denominator;
}

int main(int argc, char* argv[]) {
 int quot, rem;
 division(22, 5, _____, _____);
 printf("%d rem %d\n", _____, _____);
 return EXIT_SUCCESS;
}

?quot ?rem

quotient remainder

numerator 22 denominator 5

Exercise 1

● Draw out a memory diagram of the
beginning of this call to division.

1
3

void division(int numerator,
 int denominator,
 int* quotient,
 int* remainder) {
 *quotient = numerator / denominator;
 *remainder = numerator % denominator;
}

int main(int argc, char* argv[]) {
 int quot, rem;
 division(22, 5, _____, _____);
 printf("%d rem %d\n", _____, _____);
 return EXIT_SUCCESS;
}

C-Strings

14

C-Strings

● A string in C is declared as an array of characters that is terminated by a null
character '\0'

● When allocating space for a string, remember to add an extra element for the
null character

15

char str_name[size];

Initialization Examples
● Code:

● Memory:

● Notes:
○ Both initialize the array in the declaration scope (e.g., on the stack if a local var),

though the latter can be thought of as copying the contents from the string literal into the
array

○ The size 6 is optional, as it can be inferred from the initialization
16

// list initialization
char str1[6] = {'H','e','l','l','o','\0'};
// string literal initialization
char str2[6] = "Hello";

index 0 1 2 3 4 5

value 'H' 'e' 'l' 'l' 'o' '\0'

Common String Literal Error

● Code:

● Memory:

● Notes:
○ By default, using a string literal will allocate and initialize the character array in

read-only memory (Literals)

17

index 0 1 2 3 4 5

value 'H' 'e' 'l' 'l' 'o' '\0'

// pointer instead of an array
char* str3 = "Hello";

0x402037str3

Common String Literal Error

● Code:

● Memory:

● Notes:
○ By default, using a string literal will allocate and initialize the character array in

read-only memory (Literals)
○ What would happen if we executed str3[0] = 'J';?

18

index 0 1 2 3 4 5

value 'H' 'e' 'l' 'l' 'o' '\0'

// pointer instead of an array
char* str3 = "Hello";

0x402037str3

Segfault!

Exercise 2

19

void bar(char ch) {
 ch = '3';
}

int main(int argc, char* argv[]) {
 char fav_class[] = "CSE331";
 bar(fav_class[5]);
 printf("%s\n", fav_class); // should print "CSE333"
 return EXIT_SUCCESS;
}

20

The following code has a bug. What’s the problem, and how would you fix it?

void bar_fixed(char* ch) {
 *ch = '3';
}

int main(int argc, char* argv[]) {
 char fav_class[] = "CSE331";
 bar(&fav_class[5]);
 printf("%s\n", fav_class); // should print "CSE333"
 return EXIT_SUCCESS;
}

21

Modifying the argument ch in bar will not affect fav_class in
main() because arguments in C are always passed by value.

In order to modify fav_class in main(), we need to pass a
pointer to a character (char*) into bar and then dereference it:

void bar_fixed(char* ch) {
 *ch = '3';
}

The following code has a bug. What’s the problem, and how would you fix it?

char[] fav_class
main stack frame 'C' '\0''S' 'E' '3' '3' '1''3'

char* chbar_fixed stack
frame

Function Pointers

22

Function Pointers

● Pointers can store addresses of
functions
○ Functions are just instructions

in read-only memory, their
names are pointers to this
memory.

● Used when performing
operations for a function to use
○ Like a comparator for a sorter

to use in Java
○ Reduces redundancy

23

int one() { return 1; }
int two() { return 2; }
int three() { return 3; }

int get(int (*func_name)()) {
 return func_name();
}

int main(int argc, char* argv[]) {
 int res1 = get(one);
 int res2 = get(two);
 int res3 = get(three);
 printf("%d, %d, %d\n", res1, res2, res3);
 return EXIT_SUCCESS;
}

Setting Up git

24

gcc 11

● CSE Lab machines and the attu cluster use gcc 11.

● As such we’ll be using gcc 11 this quarter

● To verify that you’re using gcc 11 run:
○ gcc -v or
○ gcc --version

● If you use the CSE Linux home VM, you should use the newer version
even if you have an older one installed.

25

Git Repo Usage

26

● Try to use the command line interface (not Gitlab’s web interface)

● Only push files used to build your code to the repo
○ No executables, object files, etc.
○ Don’t always use git add . to add all your local files

● Commit and push when an individual chunk of work is tested and
done
○ Don’t push after every edit
○ Don’t only push once when everything is done

Using VS Code

● Can install an extension that will allow you to directly edit files on a virtual
machine (attu!)

● Will also be helpful to install the C/C++ extension for syntax highlighting
● To set up, visit

https://courses.cs.washington.edu/courses/cse333/24sp/resources/VSCode.p
df

27

https://courses.cs.washington.edu/courses/cse333/24sp/resources/VSCode.pdf
https://courses.cs.washington.edu/courses/cse333/24sp/resources/VSCode.pdf

git/Gitlab Reference
We have a page that details how to (1) set up Gitlab and (2) use git to
manage your repo:
● https://courses.cs.washington.edu/courses/cse333/24sp/resources/git_tutorial

.html

We asked you to attempt your Gitlab setup ahead of time:
● If you didn’t, please do so now on your CSE Linux environment setup
● If you did and ran into issues, we’ll walk around to help you now

28

https://courses.cs.washington.edu/courses/cse333/24sp/resources/git_tutorial.html
https://courses.cs.washington.edu/courses/cse333/24wi/resources/git_tutorial.html

Accessing Gitlab

● Sign-in using your CSE NetID @
https://gitlab.cs.washington.edu/

● There should be a repo created for
you titled:
cse333-24sp-<netid>

● Please let us know if you don’t
have one!

2
9

https://gitlab.cs.washington.edu/

SSH Key Generation

Step 1a) See if you have an existing SSH key
● Run cat ~/.ssh/id_rsa.pub
● If you see a long string starting with ssh-rsa or ssh-dsa go to Step 2

Step 1b) Generate a new SSH key
● If you don’t have an existing SSH key, you’ll need to create one
● Run ssh-keygen -t rsa -C "<netid>@cs.washington.edu" to

generate a new key
● Hit enter to skip creating a password

○ git docs suggest creating a password, but it’s overkill for CSE333

3
0

Adding your SSH key to Gitlab

Step 2) Copy your SSH key
● Run cat ~/.ssh/id_rsa.pub
● Copy the complete key starting with ssh- and ending with your username and

host
(i.e. <netid>@cs.washington.edu)

Step 3) Add your SSH key to Gitlab

3
1

Adding your SSH key to Gitlab

Step 3) Add your SSH key to Gitlab
● Navigate to your ssh-keys page

(click on your avatar in the
upper-right, then “Preferences,”
then “SSH Keys” in the left-side
menu)

● Paste into the “Key” text box
and give a “Title” to identify
what machine the key is for

● Click the green “Add key” button
below “Title”

3
2

Setting up git

● The git command looks for a file named .gitconfig in your home
directory. Some commands like commit and push expect certain options to
be set and will produce verbose messages if not.

● If you have not already configured git, enter the following commands (once)
in a terminal window to set these values:

git config --global user.name “<your name>”

git config --global user.email <your netid>@cs.washington.edu

git config --global push.default simple

3
3

First Commit
1. git clone <repo url from project page>

a. Clones your repo

2. touch README.md
a. Creates an empty file called README.md

3. git status
a. Prints out the status of the repo: you should see 1 new file README.md

4. git add README.md (or: git stage README.md)
a. Stages a new file/updated file for commit.

 git status: README.md staged for commit
5. git commit -m "First Commit"

a. Commits all staged files with the provided comment/message.

 git status: Your branch is ahead by 1 commit.
6. git push

a. Publishes the changes to the central repo.
 You should now see these changes in the web interface (may need to refresh).

7. Might need git push -u origin master on first commit (only), but would be unusual for
this to happen

3
4

