
CSE333, Spring 2024L27: Concurrency and Processes

Concurrency: Processes
CSE 333

Instructor: Hannah C. Tang

Teaching Assistants:

Deeksha Vatwani Hannah Jiang Jen Xu

Leanna Nguyen Nam Nguyen Sayuj Shahi

Tanay Vakharia Wei Wu Yiqing Wang

Zohar Le

CSE333, Spring 2024L27: Concurrency and Processes

Outline

❖ searchserver

▪ Sequential

▪ Concurrent via forking threads – pthread_create()

▪ Concurrent via forking processes – fork()

▪

•

❖ Reference: Computer Systems: A Programmer’s

Perspective, Chapter 12 (CSE 351 book)

3

CSE333, Spring 2024L27: Concurrency and Processes

Creating New Processes

❖

▪ Creates a new process (the “child”) that is an exact clone* of the

current process (the “parent”)

• *Everything is cloned except threads; variables, file descriptors, open

sockets, the virtual address space (code, globals, heap, stack), etc are

all cloned

▪ Primarily used in two patterns:

• Servers: fork a child to handle a connection

• Shells: fork a child that then exec’s a new program

4

pid_t fork(void);

CSE333, Spring 2024L27: Concurrency and Processes

fork() and Address Spaces

❖ A process executes within an

address space

▪ Includes segments for different parts

of memory

▪ Process tracks its current state using

the stack pointer (SP) and program

counter (PC)

5

0xFF…FF

0x00…00

OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

SP

PC

CSE333, Spring 2024L27: Concurrency and Processes

fork() and Address Spaces

❖ Fork cause the OS to

clone the

address space

▪ The copies of the

memory segments are

(nearly) identical

▪ The new process has

copies of the parent’s

data, stack-allocated

variables, open file

descriptors, etc.

6

OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

SP

PC

OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

SP

PC

fork()PARENT CHILD

CSE333, Spring 2024L27: Concurrency and Processes

fork()

❖ fork() has peculiar semantics

▪ The parent invokes fork()

▪ The OS clones the parent

▪ Both the parent and the child return

from fork

• Parent receives child’s pid

• Child receives a 0

7

parent

OS

fork()

CSE333, Spring 2024L27: Concurrency and Processes

fork()

❖ fork() has peculiar semantics

▪ The parent invokes fork()

▪ The OS clones the parent

▪ Both the parent and the child return

from fork

• Parent receives child’s pid

• Child receives a 0

8

parent child

OS

clone

CSE333, Spring 2024L27: Concurrency and Processes

fork()

❖ fork() has peculiar semantics

▪ The parent invokes fork()

▪ The OS clones the parent

▪ Both the parent and the child return

from fork

• Parent receives child’s pid

• Child receives a 0

❖ See fork_example.cc

9

parent child

OS

child pid 0

CSE333, Spring 2024L27: Concurrency and Processes

pollev.com/uwcse333

What happens when a grandchild process finishes?

A. Zombie until grandparent exits

B. Zombie until grandparent reaps

C. Zombie until systemd reaps

D. ZOMBIE FOREVER!!!

E. I’m not sure…

10

CSE333, Spring 2024L27: Concurrency and Processes

Concurrent Server with Processes

❖ The parent process blocks on accept(), waiting for a

new client to connect

▪ When a new connection arrives, the parent calls fork() to

create a child process

▪ The child process handles that new connection and exit()’s

when the connection terminates

❖ Remember that children become “zombies” after

termination

▪ Option A: Parent calls wait() to “reap” children

▪ Option B: Use a double-fork trick

11

CSE333, Spring 2024L27: Concurrency and Processes

Double-fork Trick

12

server

CSE333, Spring 2024L27: Concurrency and Processes

Double-fork Trick

13

client

server accept()

CSE333, Spring 2024L27: Concurrency and Processes

Double-fork Trick

14

client

server

server
fork() child

CSE333, Spring 2024L27: Concurrency and Processes

Double-fork Trick

15

client server

server

server

fork() grandchild

CSE333, Spring 2024L27: Concurrency and Processes

Double-fork Trick

16

client server

server

child exit()’s / parent wait()’s

CSE333, Spring 2024L27: Concurrency and Processes

Double-fork Trick

17

client server

server
parent closes its
client connection

CSE333, Spring 2024L27: Concurrency and Processes

Double-fork Trick

18

client server

server

CSE333, Spring 2024L27: Concurrency and Processes

Double-fork Trick

19

client server

server

server

server

client

fork() grandchild
exit()

fork() child

CSE333, Spring 2024L27: Concurrency and Processes

Double-fork Trick

20

client server

client server

server

CSE333, Spring 2024L27: Concurrency and Processes

Double-fork Trick

21

client server

client server

client server

client server

client server

client server

client server

client server

client server

server

CSE333, Spring 2024L27: Concurrency and Processes

pollev.com/uwcse333

❖ Review code from L26 (concurrency via threads – May 22)

and the networking "layer cake"

❖ What application protocol does searchserver use?

23

CSE333, Spring 2024L27: Concurrency and Processes

Concurrent with Processes

❖ See searchserver_processes/

24

CSE333, Spring 2024L27: Concurrency and Processes

Wherefore Concurrent Processes?

❖ Advantages:

▪ Almost as simple to code as sequential

• In fact, most of the code is identical!

▪ Concurrent execution leads to better CPU, network utilization

❖ Disadvantages:

▪ Processes are heavyweight

• Relatively slow to fork

• Context switching latency is high

▪ Communication between processes is complicated

25

CSE333, Spring 2024L27: Concurrency and Processes

How Fast is fork()?

❖ See forklatency.cc

❖ ~ 0.25 ms per fork*

▪ ∴ maximum of (1000/0.25) = 4,000 connections/sec/core

▪ ~350 million connections/day/core

• This is fine for most servers

• Too slow for super-high-traffic front-line web services

– Facebook served ~ 750 billion page views per day in 2013!

Would need 3-6k cores just to handle fork(), i.e. without doing any work

for each connection

❖ *Past measurements are not indicative of future performance – depends on hardware, OS,

software versions, …

26

CSE333, Spring 2024L27: Concurrency and Processes

How Fast is pthread_create()?

❖ See threadlatency.cc

❖ ~0.036 ms per thread creation*

▪ ~10x faster than fork()

▪ ∴ maximum of (1000/0.036) = 28,000 connections/sec

▪ ~2.4 billion connections/day/core

❖ Much faster, but writing safe multithreaded code can be

serious voodoo

❖ *Past measurements are not indicative of future performance – depends on hardware, OS,

software versions, …, but will typically be an order of magnitude faster than fork()

27

CSE333, Spring 2024L27: Concurrency and Processes

Aside: Thread Pools

❖ In real servers, we’d like to avoid overhead needed to

create a new thread or process for every request

❖ Idea: Thread Pools:

▪ Create a fixed set of worker threads or processes on server

startup and put them in a queue

▪ When a request arrives, remove the first worker thread from the

queue and assign it to handle the request

▪ When a worker is done, it places itself back on the queue and

then sleeps until dequeued and handed a new request

28

CSE333, Spring 2024L27: Concurrency and Processes

Why Sequential?

❖ Advantages:

▪ Simple to write, maintain, debug

▪ The default. Supported everywhere!

❖ Disadvantages:

▪ Depending on application, poor performance

• One slow client will cause all others to block

• Poor utilization of resources (CPU, network, disk)

29

CSE333, Spring 2024L27: Concurrency and Processes

Why Concurrent Threads?

❖ Advantages:

▪ Almost as simple to code as sequential

▪ Concurrent execution with good CPU and network utilization

▪ Threads can run in parallel if you have multiple CPUs/cores

▪ Shared-memory communication is possible

❖ Disadvantages:

▪ Need language and OS support for threads

▪ If threads share data, you need locks or other synchronization

▪ Threads can introduce overhead (technical + cognitive)

▪ Threads have a “shared fate” (eg, “rogue” thread, shared limits)

30

CSE333, Spring 2024L27: Concurrency and Processes

Why Concurrent Processes?

❖ Advantages:

▪ Almost as simple to code as sequential

▪ Concurrent execution with good CPU and network utilization

▪ Processes almost certainly run in parallel thanks to OS time-

sharing

▪ No need to synchronize access to in-memory structures

❖ Disadvantages:

▪ Processes are heavyweight

• Relatively slow to fork and context switching latency is high

▪ Communication between processes is complicated

▪ Fewer things to synchronize – but when you do need to

synchronize, it’s hard! 31

CSE333, Spring 2024L27: Concurrency and Processes

Why Events?

❖ Advantages:

▪ For some kinds of programs – those with mostly-stateless, simple

responses – leads to very simple and intuitive program

• Eg, GUIs: one event handler for each UI event

❖ Disadvantages:

▪ Can lead to very complex structure for some programs

• Sequential logic gets broken up into a jumble of small event handlers

• You have to package up all task state between handlers

32

