
CSE333, Spring 2024L24: HTTP

Hypertext Transport Protocol
CSE 333

Instructor: Hannah C. Tang

Teaching Assistants:

Deeksha Vatwani Hannah Jiang Jen Xu

Leanna Nguyen Nam Nguyen Sayuj Shahi

Tanay Vakharia Wei Wu Yiqing Wang

Zohar Le

CSE333, Spring 2024L24: HTTP

pollev.com/uwcse333

❖ Why is the transport layer the first one we start discussing

in detail in CSE 333?

❖ What layers are above the transport layer?

2

network network

physical physical

data link data link

network

physical

data link

transport transport

session session

presentation presentation

application application

CSE333, Spring 2024L24: HTTP

Administrivia

❖ Ex16 due date pushed off to next Wednesday

▪ Please take a mental health break from CSE 333 this weekend!

❖ Learning is supposed to be hard

▪ But it's not supposed to cause suffering. It's ok to ask for help

when things are too hard – many of your peers already have!

❖ About HW3 in particular …

▪ Just one homework out of 4, and homeworks are "only" 35% of

your grade

▪ This class does not attempt to "fit a curve" – if your peers do well,

it doesn't mean that you will do poorly
3

CSE333, Spring 2024L24: HTTP

HTTP Basics

❖ A client establishes one or more TCP connections to a

server

▪ The client sends a request for a web object over a connection and

the server replies with the object’s contents

❖ We have to figure out how to let the client and server

communicate their intentions to each other clearly

▪ We have to define a protocol

“I’d like index.html”

“Found it, here it is: (index.html)”

4

CSE333, Spring 2024L24: HTTP

Protocols

❖ A protocol is a set of rules governing the format and

exchange of messages in a computing system

▪ What messages can a client exchange with a server?

• What is the syntax of a message?

• What do the messages mean?

• What are legal replies to a message?

▪ What sequence of messages are legal?

• How are errors conveyed?

❖ A protocol is (roughly) the network equivalent of an API

5

CSE333, Spring 2024L24: HTTP

HTTP: Hypertext Transport Protocol

❖ A request / response protocol

▪ A client (web browser) sends a request to a web server

▪ The server processes the request and sends a response

❖ Typically, a request asks a server to retrieve a resource

▪ A resource is an object or document, named by a Uniform Resource

Identifier (URI)

❖ A response indicates whether or not the server succeeded

▪ If so, it provides the content of the requested response

❖

https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol

6

https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol#Request_methods

CSE333, Spring 2024L24: HTTP

HTTP Requests

❖ General form:

▪ [METHOD] [request-uri] HTTP/[version]\r\n

[headerfield1]: [fieldvalue1]\r\n

[headerfield2]: [fieldvalue2]\r\n

[...]

[headerfieldN]: [fieldvalueN]\r\n

\r\n

[request body, if any]

❖ Demo: use nc to see a real request

7

CSE333, Spring 2024L24: HTTP

HTTP Methods

❖ There are three commonly-used HTTP methods:

▪ GET: “Please send me the named resource”

8

GET:

REQUEST

RESPONSE

HEADERS

BODY

HEADERS

CLIENT
(Web Browser)

SERVER

CSE333, Spring 2024L24: HTTP

HTTP Methods

❖ There are three commonly-used HTTP methods:

▪ GET: “Please send me the named resource”

▪ POST: “I’d like to submit data to you” (e.g. file upload)

9

POST:

REQUEST

RESPONSE

HEADERS

BODY

HEADERS

CLIENT
(Web Browser)

SERVER

CSE333, Spring 2024L24: HTTP

HTTP Methods

❖ There are three commonly-used HTTP methods:

▪ GET: “Please send me the named resource”

▪ POST: “I’d like to submit data to you” (e.g. file upload)

▪ HEAD: “Send me the headers for the named resource”

10

HEAD:

REQUEST

RESPONSE

HEADERS

HEADERS

CLIENT
(Web Browser)

SERVER

CSE333, Spring 2024L24: HTTP

HTTP Methods

❖ There are three commonly-used HTTP methods:

▪ GET: “Please send me the named resource”

▪ POST: “I’d like to submit data to you” (e.g. file upload)

▪ HEAD: “Send me the headers for the named resource”

• Doesn’t send resource; often to check if cached copy is still valid

11

HEAD:

REQUEST

RESPONSE

HEADERS

HEADERS

CLIENT
(Web Browser)

SERVER

CSE333, Spring 2024L24: HTTP

HTTP Methods

❖ There are three commonly-used HTTP methods:

▪ GET: “Please send me the named resource”

▪ POST: “I’d like to submit data to you” (e.g. file upload)

▪ HEAD: “Send me the headers for the named resource”

• Doesn’t send resource; often to check if cached copy is still valid

❖ Other methods exist, but are much less common:

▪ PUT, DELETE, TRACE, OPTIONS, CONNECT, PATCH, ...

• Eg: TRACE is “show any proxies or caches in between me and the

server”

12

CSE333, Spring 2024L24: HTTP

HTTP Versions

❖ All current browsers and servers “speak” HTTP/1.1

▪ Version 1.1 of the HTTP protocol

• https://www.w3.org/Protocols/rfc2616/rfc2616.html

▪ Standardized in 1997 and meant to fix shortcomings of HTTP/1.0

• Better performance, richer caching features, better support for

multihomed servers, and much more

❖ HTTP/2 standardized mid 2010’s (published in 2015)

▪ Allows for higher performance but doesn’t change the basic web

request/response model

▪ Will coexist with HTTP/1.1 for a long time

13

https://www.w3.org/Protocols/rfc2616/rfc2616.html

CSE333, Spring 2024L24: HTTP

Client Headers

❖ The client can provide zero or more request “headers”

▪ These provide information to the server or modify how the server

should process the request

❖ You’ll encounter many in practice

▪ Host: the DNS name of the server

▪ User-Agent: an identifying string naming the browser

▪ Accept: the content types the client prefers or can accept

▪ Cookie: an HTTP cookie previously set by the server

▪ https://www.w3.org/Protocols/rfc2616/rfc2616-sec5.html

14

https://www.w3.org/Protocols/rfc2616/rfc2616-sec5.html

CSE333, Spring 2024L24: HTTP

A Real Request

15

GET / HTTP/1.1

Host: attu.cs.washington.edu:3333

Connection: keep-alive

Upgrade-Insecure-Requests: 1

User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36

(KHTML, like Gecko) Chrome/66.0.3359.181 Safari/537.36

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,

image/apng,*/*;q=0.8

DNT: 1

Accept-Encoding: gzip, deflate

Accept-Language: en-US,en;q=0.9

Cookie: SESS0c8e598bbe17200b27e1d0a18f9a42bb=5c18d7ed6d369d56b69a1c0aa441d7

8f; SESSd47cbe79be51e625cab059451de75072=d137dbe7bbe1e90149797dcd89c639b1;

_sdsat_DMC_or_CCODE=null; _sdsat_utm_source=; _sdsat_utm_medium=; _sdsat_ut

m_term=; _sdsat_utm_content=; adblock=blocked; s_fid=50771A3AC73B3FFF-3F18A

ABD559FFB5D; s_cc=true; prev_page=science.%3A%2Fcontent%2F347%2F6219%2F262%

2Ftab-pdf; ist_usr_page=1; sat_ppv=79; ajs_anonymous_id=%229225b8cf-6637-49

c8-8568-ecb53cfc760c%22; ajs_user_id=null; ajs_group_id=null; __utma=598078

07.316184303.1491952757.1496310296.1496310296.1; __utmc=59807807; __utmc=80

...

CSE333, Spring 2024L24: HTTP

pollev.com/uwcse333

❖ Send a request to a website you use regularly

❖ What do you observe in the response? What can you

infer about the response protocol?

16

CSE333, Spring 2024L24: HTTP

HTTP Responses

❖ General form:

▪ HTTP/[version] [status code] [reason]\r\n

[headerfield1]: [fieldvalue1]\r\n

[headerfield2]: [fieldvalue2]\r\n

[...]

[headerfieldN]: [fieldvalueN]\r\n

\r\n

[response body, if any]

❖ Demo: use telnet (old) or nc to see a real response

▪ nc needs option -C to send \r\n as line ending (or -c on mac)

17

CSE333, Spring 2024L24: HTTP

Status Codes and Reason

❖ Code: numeric outcome of the request – easy for

computers to interpret

▪ A 3-digit integer with the 1st digit indicating a response category

• 1xx: Informational message

• 2xx: Success

• 3xx: Redirect to a different URL

• 4xx: Error in the client’s request

• 5xx: Error experienced by the server

❖ Reason: human-readable explanation

▪ e.g. “OK” or “Moved Temporarily”

18

CSE333, Spring 2024L24: HTTP

Common Statuses

❖ HTTP/1.1 200 OK

▪ The request succeeded and the requested object is sent

❖ HTTP/1.1 404 Not Found

▪ The requested object was not found

❖ HTTP/1.1 301 Moved Permanently

▪ The object exists, but its name has changed

• The new URL is given as the “Location:” header value

❖ HTTP/1.1 500 Server Error

▪ The server had some kind of unexpected error
19

CSE333, Spring 2024L24: HTTP

Server Headers

❖ The server can provide zero or more response “headers”

▪ These provide information to the client or modify how the client

should process the response

❖ You’ll encounter many in practice

▪ Server: a string identifying the server software

▪ Content-Type: the type of the requested object

▪ Content-Length: size of requested object

▪ Last-Modified: a date indicating the last time the request

object was modified

▪ https://www.w3.org/Protocols/rfc2616/rfc2616-sec6.html

20

https://www.w3.org/Protocols/rfc2616/rfc2616-sec6.html

CSE333, Spring 2024L24: HTTP

A Real Response

21

HTTP/1.1 200 OK

Date: Mon, 21 May 2018 07:58:46 GMT

Server: Apache/2.2.32 (Unix) mod_ssl/2.2.32 OpenSSL/1.0.1e-fips

mod_pubcookie/3.3.4a mod_uwa/3.2.1 Phusion_Passenger/3.0.11

Last-Modified: Mon, 21 May 2018 07:58:05 GMT

ETag: "2299e1ef-52-56cb2a9615625"

Accept-Ranges: bytes

Content-Length: 82

Vary: Accept-Encoding,User-Agent

Connection: close

Content-Type: text/html

Set-Cookie:

bbbbbbbbbbbbbbb=DBMLFDMJCGAOILMBPIIAAIFLGBAKOJNNMCJIKKBKCDMDEJHMPONHCILPIBL

ADEAKCIABMEEPAOPMMKAOLHOKJMIGMIDKIHNCANAPHMFMBLBABPFENPDANJAPIBOIOOOD;

HttpOnly

<html><body>

Awesome!!

</body></html>

CSE333, Spring 2024L24: HTTP

Administrivia

❖ HW4 starter code and spec out; due in 1.5w

▪ Budget time carefully; we have Memorial Day weekend coming up

❖ Ex16 due Wednesday, then exercise schedule picks up

again

❖ Panel next Wednesday (May 29) – start thinking about

topics you'd like them to cover!

22

CSE333, Spring 2024L24: HTTP

Cool HTTP/1.1 Features

❖ “Chunked Transfer-Encoding”

▪ A server might not know how big a response object is

• e.g. dynamically-generated content in response to a query or other

user input

▪ How do you send Content-Length?

• Could wait until you’ve finished generating the response, but that’s

not great in terms of latency – we want to start sending the response

right away

▪ Chunked message body: response is a series of chunks

23

CSE333, Spring 2024L24: HTTP

Cool HTTP/1.1 Features

❖ Persistent connections

▪ Establishing a TCP connection is costly

• Multiple network round trips to set up the TCP connection

• TCP has a feature called “slow start”; slowly grows the rate at which a

TCP connection transmits to avoid overwhelming networks

▪ A web page consists of multiple objects and a client probably

visits several pages on the same server

• Bad idea: separate TCP connection for each object

• Better idea: single TCP connection, multiple requests

24

CSE333, Spring 2024L24: HTTP

20 years later…

❖ World has changed since HTTP/1.1 was adopted

▪ Web pages were a few hundred KB with a few dozen objects on

each page, now several MB each with hundreds of objects (JS,

graphics, …) & multiple domains per page

▪ Much larger ecosystem of devices (phones especially)

❖ Many hacks used to make HTTP/1.1 performance

tolerable

▪ Multiple TCP sockets from browser to server

▪ Caching tricks; JS/CSS ordering and loading tricks; cookie hacks

▪ Compression/image optimizations; splitting/sharding requests

▪ etc., etc. …
25

CSE333, Spring 2024L24: HTTP

HTTP/2

❖ All current browsers and servers “speak” HTTP/1.1

▪ Version 1.1 of the HTTP protocol

• https://www.w3.org/Protocols/rfc2616/rfc2616.html

▪ Standardized in 1997 and meant to fix shortcomings of HTTP/1.0

• Better performance, richer caching features, better support for

multihomed servers, and much more

❖ HTTP/2 standardized in 2015

▪ Supported by all major browsers and servers since ~2015

▪ Doesn’t change the basic web request/response model

▪ Will coexist with HTTP/1.1 for a long time

26

https://www.w3.org/Protocols/rfc2616/rfc2616.html

CSE333, Spring 2024L24: HTTP

HTTP/2

❖ Based on Google SPDY

▪ Binary protocol - easier parsing by machines (harder for humans);

sizes in headers, not discovered as requests are processed; …

• But same core request/response model (GET, POST, OK, …)

▪ Multiple data steams multiplexed on single TCP connections

▪ Header compression, server push, object priorities, more…

❖ All existing implementations incorporate TLS encryption

(https)

27

CSE333, Spring 2024L24: HTTP

hw4 demo

❖ Multithreaded Web Server (333gle)

▪ Don’t worry – multithreading has mostly been written for you

▪ ./http333d <port> <static files> <indices+>

▪ Some security bugs to fix, too

28

CSE333, Spring 2024L24: HTTP

Extra Exercise #1

❖ Write a program that:

▪ Creates a listening socket that accepts connections from clients

▪ Reads a line of text from the client

▪ Parses the line of text as a DNS name

▪ Connects to that DNS name on port 80

▪ Writes a valid HTTP request for “/”

•

▪ Reads the reply and returns it to the client

GET / HTTP/1.1\r\n

Host: <DNS name>\r\n

Connection: close\r\n

\r\n

31

