
CSE333, Spring 2024L22: Client-side Networking

Client-side Networking
CSE 333

Instructor: Hannah C. Tang

Teaching Assistants:

Deeksha Vatwani Hannah Jiang Jen Xu

Leanna Nguyen Nam Nguyen Sayuj Shahi

Tanay Vakharia Wei Wu Yiqing Wang

Zohar Le

CSE333, Spring 2024L22: Client-side Networking

pollev.com/uwcse333

❖ Write code to populate a sockaddr_in6 (IPv6) with

198.35.26.96 (::ffff:c6:23:1a:60)

2

#include <arpa/inet.h>

int main(int argc, char **argv) {

struct sockaddr_in6 sa;

return EXIT_SUCCESS;

}

struct sockaddr_in6 {

sa_family_t sin6_family; // Address family: AF_INET6

in_port_t sin6_port; // Port number

uint32_t sin6_flowinfo; // IPv6 flow information

struct in6_addr sin6_addr; // IPv6 address

uint32_t sin6_scope_id; // Scope ID

};

CSE333, Spring 2024L22: Client-side Networking

Administrivia

❖ Potential strike tomorrow!

❖ Course logistics:

▪ Please land your HW3 code – regardless of whether it works –

today so I can figure out contingency plans

▪ For now, assume HW3 is due on Wed night (as scheduled)

▪ Ex15 will be due Friday

• Change from originally announced deadline!

❖ Go easy on striking TAs, and go easy on yourselves

3

CSE333, Spring 2024L22: Client-side Networking

Lecture Outline

❖ Finish IP addresses and DNS

❖ Reading/writing to a socket

4

CSE333, Spring 2024L22: Client-side Networking

Socket API: Client TCP Connection

❖ There are five steps:

1) Figure out the IP address and port to connect to

2) Create a socket

3) .connect() the socket to the remote server

4) .read() and write() data using the socket

5) Close the socket

5

CSE333, Spring 2024L22: Client-side Networking

Step 1: DNS Lookup

❖ (from last time; details/examples in sections yesterday)

❖ See dnsresolve.cc

6

struct addrinfo {

int ai_flags; // additional flags

int ai_family; // AF_INET, AF_INET6, AF_UNSPEC

int ai_socktype; // SOCK_STREAM, SOCK_DGRAM, 0

int ai_protocol; // IPPROTO_TCP, IPPROTO_UDP, 0

size_t ai_addrlen; // length of socket addr in bytes

struct sockaddr* ai_addr; // pointer to socket addr

char* ai_canonname; // canonical name

struct addrinfo* ai_next; // can form a linked list

};

CSE333, Spring 2024L22: Client-side Networking

Step 2: Creating a Socket

❖ Use the socket() system call

▪ Creating a socket doesn’t bind it to a local address or port yet

▪ Returns file descriptor or -1 on error

int socket(int domain, int type, int protocol);

#include <arpa/inet.h>

#include <stdlib.h>

#include <string.h>

#include <unistd.h>

#include <iostream>

int main(int argc, char** argv) {

int socket_fd = socket(AF_INET, SOCK_STREAM, 0);

if (socket_fd == -1) {

std::cerr << strerror(errno) << std::endl;

return EXIT_FAILURE;

}

close(socket_fd);

return EXIT_SUCCESS;

}

7

socket.cc

CSE333, Spring 2024L22: Client-side Networking

Step 3: Connect to the Server

❖ The connect() system call establishes a connection to
a remote host
▪

• sockfd: Socket file description from Step 2

• addr and addrlen: Usually from one of the address structures
returned by getaddrinfo in Step 1 (DNS lookup)

• Returns 0 on success and -1 on error

❖ connect() may take some time to return

▪ It is a blocking call by default

▪ The network stack within the OS will communicate with the
remote host to establish a TCP connection to it

• This involves ~2 round trips across the network

int connect(int sockfd, const struct sockaddr* addr,

socklen_t addrlen);

8

CSE333, Spring 2024L22: Client-side Networking

How long are two “round trips”

❖ Remember this table?

▪ Exact numbers change somewhat over time, but you should know

the order-of-magnitudes here

9

CSE333, Spring 2024L22: Client-side Networking

Connect Example

❖ See connect.cc

// Get an appropriate sockaddr structure.

struct sockaddr_storage addr;

size_t addrlen;

LookupName(argv[1], port, &addr, &addrlen);

// Create the socket.

int socket_fd = socket(addr.ss_family, SOCK_STREAM, 0);

if (socket_fd == -1) {

cerr << "socket() failed: " << strerror(errno) << endl;

return EXIT_FAILURE;

}

// Connect the socket to the remote host.

int res = connect(socket_fd,

reinterpret_cast<sockaddr*>(&addr),

addrlen);

if (res == -1) {

cerr << "connect() failed: " << strerror(errno) << endl;

}

10

CSE333, Spring 2024L22: Client-side Networking

pollev.com/uwcse333

❖ How do we error check read() and write()?

A. ferror()

B. Return value less than expected

C. Return value of 0 or NULL

D. Return value of -1

E. We’re lost…

11

CSE333, Spring 2024L22: Client-side Networking

Step 4: read()

❖ If there is data that has already been received by the

network stack, then read will return immediately with it

▪ read() might return with less data than you asked for

❖ If there is no data waiting for you, by default read()

will block until something arrives

▪ This might cause deadlock!

▪ Can read() return 0?

12

CSE333, Spring 2024L22: Client-side Networking

Step 4: write()

❖ write() enqueues your data in a send buffer in the OS

and then returns

▪ The OS transmits the data over the network in the background

▪ When write() returns, the receiver probably has not yet

received the data!

❖ If there is no more space left in the send buffer, by default

write() will block

14

CSE333, Spring 2024L22: Client-side Networking

Read/Write Example

❖ See sendreceive.cc

▪ Demo

15

while (1) {

int wres = write(socket_fd, readbuf, res);

if (wres == 0) {

cerr << "socket closed prematurely" << endl;

close(socket_fd);

return EXIT_FAILURE;

}

if (wres == -1) {

if (errno == EINTR)

continue;

cerr << "socket write failure: " << strerror(errno) << endl;

close(socket_fd);

return EXIT_FAILURE;

}

break;

}

CSE333, Spring 2024L22: Client-side Networking

Step 5: close()

❖

▪ Nothing special here – it’s the same function as with file I/O

▪ Shuts down the socket and frees resources and file descriptors

associated with it on both ends of the connection

int close(int fd);

16

CSE333, Spring 2024L22: Client-side Networking

Extra Exercise #1

❖ Write a program that:

▪ Reads DNS names, one per line, from stdin

▪ Translates each name to one or more IP addresses

▪ Prints out each IP address to stdout, one per line

17

