CSE333, Spring 2024

YW UNIVERSITY of WASHINGTON L18: C++ Inheritance |

C++ Inheritance |
CSE 333

Instructor: Hannah C. Tang

Teaching Assistants:

Deeksha Vatwani Hannah Jiang
Leanna Nguyen Nam Nguyen
Tanay Vakharia Wei Wu
Zohar Le

Jen Xu
Sayuj Shahi
Yiging Wang

YW UNIVERSITY of WASHINGTON L18: C++ Inheritance | CSE333, Spring 2024

HW3 Tips

+» HW3 writes some pretty big index files

" Hundreds of thousands of write operations - no problem for
today’s fast machines and disks!!

« EXxcept...
= |f you’re running on attu or a CSE lab linux workstation, every
write to your personal directories goes to a network file server(!)

-~ Lots of slow network packets vs full-speed disks — can take much
longer to write an index to a server vs. a few sec. locally (!!)

- Suggestion: write index filesto /tmp/ . . ., whichis a local disk and
very fast. But please clean up when you’re done.

YW UNIVERSITY of WASHINGTON L18: C++ Inheritance | CSE333, Spring 2024

HW3 Tips

+~ Do your main debugging on a tiny set of files in a just a
few nested directories

" Goal: dataset is tiny enough that you can draw pictures of what
should be happening

= Because you can manually verify in gdb and with disk file tools!

+ See section materials about visualizing disk data!

YA UNIVERSITY of WASHINGTON L18: C++ Inheritance | CSE333, Spring 2024

Lecture Outline

« C++ Inheritance
= Review of basic idea
" Dynamic Dispatch

= vtables and vptr

+ Reference: C++ Primer, Chapter 15

YW UNIVERSITY of WASHINGTON

L18: C++ Inheritance |

CSE333, Spring 2024

Overview of Next Two Lectures

« C++ inheritance

= Review of basic idea (pretty much the same as in Java)

" What's different in C++ (compared to Java)

- Static vs dynamic dispatch - virtual functions and vtables (i.e.,
dynamic dispatch) are optional

- Pure virtual functions, abstract classes, why no Java “interfaces”

- Assignment slicing, using class hierarchies with STL

« Casts in C++

+» Reference: C++ Primer, ch. 15

YW UNIVERSITY of WASHINGTON L18: C++ Inheritance | CSE333, Spring 2024

Overview of Next Two Lectures

+» C++ inheritance
= Review of basic idea (pretty much the same as in Java)

" What's different in C++ (compared to Java)

mmmm) - Static vs dynamic dispatch - virtual functions and vtables (i.e.,
dynamic dispatch) are optional

*

o0

D)

+» Reference: C++ Primer, ch. 15

" (read it! a lot of how C++ does this looks like Java, but details
differ)

YW UNIVERSITY of WASHINGTON L18: C++ Inheritance | CSE333, Spring 2024

Stock Portfolio Example

+ A portfolio represents a person’s financial investments
" Each asset has a cost (i.e. how much was paid for it) and a market
value (i.e. how much it is worth)

- The difference between the cost and market value is the profit (or
loss)

= Different assets compute market value in different ways

- A stock that you own has a ticker symbol (e.g. “GO0OG”), a number of
shares, share price paid, and current share price

- A dividend stock is a stock that also has dividend payments

- Cash is an asset that never incurs a profit or loss

L18: C++ Inheritance |

YW UNIVERSITY of WASHINGTON

CSE333, Spring 2024

Desigh Without Inheritance

+ One class per asset type:

symbol
total shares
total cost
current price

GetMarketValue ()
GetProfit ()
GetCost ()

" Redundant!

= Cannot treat multiple investments together

DividendStock

symbol
total shares
total cost
current price
dividends

GetMarketValue ()
GetProfit ()
GetCost ()

amount

GetMarketValue ()

- e.g. can’t have an array or vector of different assets

+ See samplecodeininitial design/

YW UNIVERSITY of WASHINGTON L18: C++ Inheritance | CSE333, Spring 2024

Inheritance

» A parent-chilelationship between classes

= A child (derived class) extends a parent (base class)
+ Benefits:
= Code reuse
« Children can automatically inherit code from parents
= Polymorphism
- Ability to redefine existing behavior but preserve the interface

« Children can override the behavior of the parent

- Others can make calls on objects without knowing which part of the
inheritance tree it is in

= Extensibility

« Children can add behavior

10

YA UNIVERSITY of WASHINGTON L18: C++ Inheritance | CSE333, Spring 2024

Terminology
Java C++
Superclass Base Class
Subclass Derived Class

+» Mean the same things. You’ll hear both.

11

YW UNIVERSITY of WASHINGTON

L18: C++ Inheritance |

Desigh With Inheritance

symbol
total_shares_
total_cost_

GetProfit ()
GetCost ()

Asset (abstract)

GetMarketValue ()
GetProfit ()
GetCost ()

current price_
GetMarketValue () DividendStock

symbol
total shares
total cost
current price
dividends_

GetMarketValue ()
GetProfit ()
GetCost ()

CSE333, Spring 2024

amount_

GetMarketValue ()

12

YW UNIVERSITY of WASHINGTON L18: C++ Inheritance | CSE333, Spring 2024

Like Java: Access Modifiers

public: visible to all other classes

protected: visible to current class and its derived
classes

private: visible only to the current class

Use protected for class members only when
= (Class is designed to be extended by subclasses
= Subclasses must have access but clients should not be allowed

" (recall that C++ style guide says all data members should be
private; your getters/setters must, minimally, be protected)

13

CSE333, Spring 2024

YW UNIVERSITY of WASHINGTON L18: C++ Inheritance |

Class derivation List

+» Comma-separated list of classes to inherit from:

r#include "BaseClass.h"

\

class Name : public BaseClass {

¥)

\

" Focus on single inheritance, but multiple inheritance possible

+ Almost always you will want public inheritance

= Acts like extends does in Java
= Any member that is non-private in the base class is the same in
the derived class; both interface and implementation inheritance

- Except that constructors, destructors, copy constructor, and

assignment operator are never inherited
14

YA UNIVERSITY of WASHINGTON L18: C++ Inheritance | CSE333, Spring 2024

Back to Stocks

symbol
symbol —

- 1 sh
total_ shares__ tiziaISCEZiS_
total cost — .
current orice current price

P - dividends
GetMarketValue ()
. GetMarketValue ()
GetProfit () GetProfit ()
GetCost ()
GetCost ()

BASE DERIVED

15

YA UNIVERSITY of WASHINGTON

Back to Stocks

L18: C++ Inheritance |

CSE333, Spring 2024

symbol dividends
- symbol _
total_ shares__ total shares
total cost total cost
3 c ent pric
current_price_ cwrrentprice.]| Getprofit()
GetMarketValue () - G:trPreofiat f)eA» "’ _ - GetCost ()
GetProfit () GetCost () 4= PayDividend ()
GetCost ()
« A derived class:
" |nherits the behavi tate (specification) of the base class

some of the base class” member functions (opt.)

= Extends the base class with new member functions, variables
(opt.)

16

YW UNIVERSITY of WASHINGTON L18: C++ Inheritance | CSE333, Spring 2024

Like Java: Dynamic Dispatch

+ Usually, when a derived function is available for an object, we
want the derived function to be invoked
= This requires a run time decision of what code to invoke
® This is similar to Java

+ A member function invoked on an object should be the most-
derived function accessible to the object’s visible type
= Can determine what to invoke from the object itself

Example: PrintStock(Stock *s) { s->Print() }

Calls Print() function appropriate to Stock, DividendStock, etc. without
knowing the exact class of *s, other than it is some sort of Stock

So the Stock (DividendStock, etc.) object itself has to carry some sort of
information that can be used to decide which Print() to call

(see inherit-design/useasssets.cc)

17

YW UNIVERSITY of WASHINGTON L18: C++ Inheritance | CSE333, Spring 2024

Requesting Dynamic Dispatch

« Prefix the member function declaration with the

 virtualkeyword

" Derived functions don’t need to repeat virtual, since it's
virtual in all subclasses, but was traditionally good style to do so

" This is how method calls work in Java (no virtual keyword needed)

=Y t always want functions to be virtual
¢ overridekeyword (C++11)

= Tells compiler this method should be overriding an inherited
virtual function — always use if available

" Prevents overloading vs. overriding bugs
+ Both of these are technically optional in derived classes

= A virtual function is virtual in all subclasses as well

" Be consistent and follow local conventions
18

YW UNIVERSITY of WASHINGTON L18: C++ Inheritance |

CSE333, Spring 2024

Dynamic Dispatch Example

+» When a member function is invoked on an object:

" The most-derived function accessible to the object’s visible type is
invoked (decided at run time based on actual type of the object)

rdouble DividendStock: :GetMarketValue () const {
return get shares() * get share price() + dividends ;

}

double "DividendStock": :GetProfit () const { // inherited
return GetMarketValue () - GetCost () ;

} // really Stock::GetProfit () DividendStock.cc

\.

[double Stock::GetMarketValue () const {
return get shares() * get share price();

}

double Stock::GetProfit() const {
return GetMarketValue() - GetCost();

}

\.

Stock.cc 19

YA UNIVERSITY of WASHINGTON L18: C++ Inheritance | CSE333, Spring 2024

@ Poll Everywhere pollev.com/uwcse333

Fr

«» Which version of GetMarketValue () is called? (\

C

int main (void) >
DividendStock *ds = ... //
cout << ds->GetProfit() << endl; t>f5

}

K{\@W\w? Dw@

double DividendStock::GetMarketValue () const {
return get shares() * get share price() + dividends ;

}

[double Stock: :GetMarketValue () const {
return get shares() * get share price();

}

double Stock::GetProfit() const {
return GetMarketValue() - GetCost();

YW UNIVERSITY of WASHINGTON L18: C++ Inheritance | CSE333, Spring 2024

Dynamic Dispatch Example

(#include "Stock.h"
#include "DividendStock.h"

DividendStock dividend() ;
DividendStock* ds = ÷nd;
Stock* s = ÷nd; // why 1is this allowed?

// Invokes DividendStock::GetMarketValue ()
ds->GetMarketValue () ;

// Invokes DividendStock::GetMarketValue ()
s—->GetMarketValue () ;

// 1invokes Stock::GetProfit (), since that method is inherited.
// Stock::GetProfit () invokes DividendStock::GetMarketValue(),
// since that 1is the most-derived accessible function.
s—->GetProfit () ;

21

YW UNIVERSITY of WASHINGTON L18: C++ Inheritance | CSE333, Spring 2024

Most-Derived

(class A { B
public:
// Foo will use dynamic dispatch
virtual void Foo () ; (void Bar() |)
}; A* a ptr;
C c;
class B : public A {
public: a ptr = &c;
// B::Foo overrides A::Foo
virtual void Foo () ; // Whose Foo () 1is called?
I a ptr->Foo () ;
k} J
class C : public B {
// C inherits B::Foo()
\}; y,

22

YA UNIVERSITY of WASHINGTON L18: C++ Inheritance | CSE333, Spring 2024

@ Poll Everywhere pollev.com/uwcse333
: rclass A | 7]
+» Whose Foo () is called? | DA
public: o
virtual void Foo() ;
E C
voudBar ()i class B ﬁﬁbi\& A {
Q1 Q2 C ¢ v1rtua void Foo (
E e;
’ } i
A. . '
// Ql: class C : public B {
B. A D a ptr = &cy b
a ptr->Foo () ; . . o o
class : public
C. B B // 02 : public:
D. B D a ptr = se; virtual void Foo () ;
, a:ptr—>Foo(); b
E. We're lost...) | (T
I

23

YA UNIVERSITY of WASHINGTON L18: C++ Inheritance | CSE333, Spring 2024

@ Poll Everywhere pollev.com/uwcse333

+ Consider a hash table that maps strings to function
pointers

" Could you use this to selectively declare how the HW1 HashTable
and LinkedLists should clean up its members?
= What would happen if you could change the hash table mid-

program? (int main() {
HashTable ht;

// .. initialization ..

*(ht.Find("Say Hi!!")) ("FR4F");
ht.Insert("Say Hi!!", printf);
*(ht.Find ("Say Hi!!"™)) (" Uosyo ")

return EXIT SUCCESS;

YW UNIVERSITY of WASHINGTON L18: C++ Inheritance | CSE333, Spring 2024

Administrivia

- New exercise today — C++ inheritance mechanics: define
an abstract class and two subclassses.

» HW3 duein a 1.5 weeks

= On track to return HW1 before HW3 deadline; & for
HW?2 as well!

26

YA UNIVERSITY of WASHINGTON L18: C++ Inheritance | CSE333, Spring 2024

Lecture Outline

« C++ Inheritance
= Review of basic idea
" Dynamic Dispatch

= vtables and vptr

+ Reference: C++ Primer, Chapter 15

27

YW UNIVERSITY of WASHINGTON L18: C++ Inheritance | CSE333, Spring 2024

How Can This Possibly Work?

+» The compiler produces Stock.o from just Stock.cc
" |t doesn’t know that DividendStock exists during this process

" So then how does the emitted code know to call
Stock: :GetMarketValue () or
DividendStock: :GetMarketValue ()

or something else that might not exist yet?

- Function pointers Stock.h

rvirtual double Stock: :GetMarketValue () const;
virtual double Stock::GetProfit () const;

rdouble Stock: :GetMarketValue () const {
return get shares() * get share price();

}

double Stock::GetProfit () const {
return GetMarketValue () - GetCost () ;

} Stock.cc

28

YW UNIVERSITY of WASHINGTON L18: C++ Inheritance |

CSE333, Spring 2024

vtables and the vptr

+ If a class contains any virtual methods, the compiler
emits:

= A (single) virtual function table (vtable) for the class
- Contains a function pointer for each virtual method in the class

- The pointers in the vtable point to the most-derived function for that
class

= A virtual table pointer (vptr) for each object instance
- A pointer to a virtual table as a “hidden” member variable

- When the object’s constructor is invoked, the vptr is initialized to
point to the vtable for the newly constructed object’s class

- Thus, the vptr “remembers” what class the object is

29

YW UNIVERSITY of WASHINGTON L18: C++ Inheritance | CSE333, Spring 2024

vtable/vptr Example

(class Base { b (Base b; h
public: Derl dil;
virtual wvoid f£1(); Der2 d2;
virtual void £2 () ;
s Base* blOptr = &b;
Base* blptr = &dl1;
class Derl : public Base { Base* b2ptr = &d2;
public:
virtual void £1 () ; bOptr->£1(); // Base::fl1()
}: bOptr->£2(); // Base::f2()
class Der2 : public Base { blptr->£f1(); // Derl::f1()
public: blptr->£f2(); // Base::f2()
virtual wvoid £2();
\};) d2.£f1(); // Base::f1/()
b2ptr->£f1(); // Base::fl()
b2ptr->£2(); // Der2::f2()

. J

31

YW UNIVERSITY of WASHINGTON L18: C++ Inheritance |

vtable/vptr Example

object class compiled
instances vtables code
Base::f1()
b|vptr @= push $rbp
Base::f2()
push Srbp
dl | vptr @=
Derl::£f1()
push S%rbp
Der2::£2()
d2 | vptr @= push $%rbp

CSE333, Spring 2024

(Base b;
Derl dl;
Der?2 d2;

Base* bptr = &dl;

bptr->£1 () ;

// bptr -->

// dl.vptr -->
// Derl.vtable.fl
// Derl::f1()

bptr = &d2;

bptr->£1 () ;

// bptr -->

// d2.vptr -->
// Der2.vtable.fl
// Base::fl()

CSE333, Spring 2024

YW UNIVERSITY of WASHINGTON L18: C++ Inheritance |

Let’s Look at Some Actual Code

+ Let’s examine the following code using objdump

*

" gt++ -g -o vtable vtable.cc
" objdump -CDS vtable > vtable.d vtable.cc

(class Base {

public:
virtual void £1();
virtual void £2 () ;

b g

class Derl : public Base {
public:
virtual wvoid f£1();

b g

~\

int main(int argc, char** argv) {
Derl dil;
dl.£1();
Base* bptr = &dl;
bptr->£1 () ;

33

YA UNIVERSITY of WASHINGTON L18: C++ Inheritance | CSE333, Spring 2024

More to Come...

Next time...

34

